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Abstract— ST segment changes provide a sensitive marker
in the diagnosis of myocardial ischemia in Holter recordings.
However not only the mechanisms of ischemia result in ST
segment deviation but also heart rate related events. The very
similar signature of ST modifications in ischemia and heart
rate related events have driven us to look for other ECG
indexes allowing to discriminate between them. Heart rate-
based indexes, correlation between the absolute ST segment
deviation and heart rate series, the interval between T apex
and T end and changes in the upward/downward slopes of
the QRS complex have been shown as significant discriminant
parameters, getting a sensitivity for the ischemic events SE =

82.2% , specificity SP = 88.4% , positive predictivity value
+ P V = 87.6% and negative predictivity value − P V = 83.2%

in ST events of the Long Term ST database.

I. INTRODUCTION

Myocardial ischemia is the most common cause of death

in the industrialized countries and, as a consequence, its early

diagnosis and treatment is of great importance [1].

Myocardial ischemia can be defined as the imbalance

between oxygen/nutrient delivery with regard to myocardial

requirements. It is usually produced when a coronary artery

gets slightly occluded reducing the amount of blood and

then oxygen in the heart. Ischemia is a transient phenomena,

then time constrained and could be missed during physical

examination and routine electrocardiography (ECG) because

these procedures permit only a few seconds of observation.

To diagnose ischemia, longer periods of ECG recording are

required while the patient is pursuing his or her normal

routine. The most common method is Holter monitoring that

gives a constant reading of two to three channels of ECG

data over a 24-hour period.

The cellular modifications generated by acute ischemia are

responsible for changes in the ST segment, which makes

ST segment changes as an early marker of ischemia [2].

Electrocardiographic images of ischemia are different de-

pending on whether the ischemic area affects mainly the

sub-endocardium or the sub-epicardium. In case of sub-

endocardial ischemia ST depression appears of different

intensity according to the degree and in case of sub-epicardial

or transmural ischemia ST elevation occurs [3].
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However, changes in the ST segment are also caused

by ST events not generated by transient artery occlusions

such as heart rate related events, body position changes

or conduction changes. This makes ischemia detection in

ambulatory recordings a difficult task.

Several techniques that automate ischemia detection have

been proposed during the last decade and neatly rely on

ST changes. However distinction between ST changes given

by artery occlusion (supply ischemia) or because increased

demand (demand ischemia) could be highly desirable in

order to have a proper diagnosis of the occlude artery

problem [4] [5].

For the 2003 Physionet/Computers in Cardiology Chal-

lenge [6] it was proposed to classify ST changes as ischemic

or non-ischemic (heart rate- related, axis shifts or conduction

changes) using a set of 43 freely available annotated records

of the Long Term ST Database (LTSTDB) as training set

and the remaining 43 as the test set. Only two groups

ended up the challenge with a performance in terms of

sensitivity/positive predictivity of 98%/83% and 64%/48%.

The top scoring entry of this challenge [7] considered only

the change in ST relative to a baseline ST level provided

by the PhysioNet database, and based on level thresholding

within specified time windows. In this challenge there was

no distinction between the two different patterns: transient

ST events such as heart rate related events and sudden shifts

in the ST segment produced by axis shifts or conduction

changes. Alternatively, in this work we do no consider

axis changes but we concentrate on distinguishing between

ischemic ST episodes and heart rate related events; both of

them with similar ST patterns so being the more problematic

to differentiate by automatic ischemia detectors.

II. MATERIALS AND METHODS

A. Long-Term ST Database

The LTSTDB [8] consists of 86, two or three leads, 21

to 24 hour, Holter ECG recordings sampled at fs = 250
Hz. Complete expert annotations have been provided for the

database following different annotation protocols and with

the clinical history as the gold standard for episode classifi-

cation. Although ST changes provide a sensitive marker of

supply ischemia, there are a variety of other events that result

in ST segment changes as we mentioned before. In the LT-

STDB non-supply ischemic events such as heart rate related

events, body position changes and conduction changes were

also annotated. The dynamics of these ST changes is different

in each case. Heart rate related events as well as supply is-

chemic events are considered transient ST segment episodes
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characterised by a duration and a extremum deviation, while

body position changes and conduction changes are bounded

with a sudden shift in the ST level function. One ST episode,

ischaemic or non-ischaemic heart-rate related, had to be

significant to be annotated according to the following rules:

a) episode beginning when the magnitude of the ST deviation

first exceeds 50 µV , b) ending when the deviation becomes

smaller than 50 µV , provided that it does not exceed 50
µV in the following 30 s and c) the deviation must reach a

magnitude of Vmin or more throughout a continuous interval

of at least Tmin s.

Three different protocols A, B and C are set depending

on Vmin and Tmin .

• Protocol A: Vmin = 75 µV and Tmin = 30 s.

• Protocol B: Vmin = 100 µV and Tmin = 30 s.

• Protocol C: Vmin = 100 µV and Tmin = 60 s.

In this work we have used protocol B for the classification

analysis. Annotations are attached to the lead or leads where

the episode is significant, so all the study will consider the

lead at which the annotated episodes are linked to.

We select the set of ST episodes from the annotated

LTSTDB, removing manually those with mistakes in the T

wave delineation process, and resulting in 735 ST episodes

evaluated in the performance analysis. From those, 623 are

ischemic and 112 heart rate related events.

B. Classification between heart rate related and ischemic

events

Different ECG features (F ) measured from repolarization,

depolarization and heart rate indexes have been used in a

discriminant analysis. These features have been computed in

three different intervals (I1, I2 and I3) of 30 s each, located

around each ST episode as described in Fig. 1. Changes

between them (∆F ) across the three intervals ( ∆F12, ∆F13

and ∆F23) have been evaluated (Fig. 1). All the indexes are

computed over the ECG after removal of the baseline wander

with a cubic splines technique. The same preprocessing was

applied to all recordings and should affect similarly all of

them.

∆Fjk is defined as the difference across intervals of the

mean feature value in every interval, equation 1.

∆Fjk =

∑

i∈Ik

F (i)

NIk

−

∑

i∈Ij

F (i)

NIj

(1)

where i is an integer denoting the ith beat order in interval

I and NIk and NIj are the number of beats at interval Ik
and Ij respectively.

1) Repolarization indexes (Fig. 2):

• The ST level series are estimated in each ith beat and

lead by averaging the first 8 ms of the ECG signal

from a heart rate related position (nST(i)) from the QRS

fiducial point defined as the center of gravity of the

whole QRS complex (nQRS(i)):

nST(i)= nQRS(i)+

(

40+ 1.3

√

R R (i)
1000

fs

)

fs

1000
(2)

Fig. 1. The three different intervals I1, I2 and I3 used to compute ∆F 12,
∆F 13 and ∆F 23 are shown.

where RR(i) = nQRS(i) − nQRS(i − 1).
Changes in the deviation of the ST level are denoted

as ∆ST12, ∆ST13 and ∆ST23. The absolute value of

these changes in the ST level series are also considered

for the classification analysis and denoted as |∆ST12|,
|∆ST13|and |∆ST23|.
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Fig. 2. In this figure it is shown the different intervals used for obtaining
the series of T width (TW ), T apex to T end (TE), the QT interval (QT )
and the RR interval used for the HR series. The ST level series is calculated
by averaging the first 8 ms of the ST.

• As a potential feature related to repolarization disper-

sion and eventually related also to ischemia [9], the

width of the T wave was measured in each lead of

the ECG using a wavelet-based ECG delineator [10].

Changes of the T wave width across the three intervals

are denoted as ∆TW12, ∆TW13 and ∆TW23.

• Analogously, changes in the interval from the peak to

the end of the T wave are measured in each lead as

dispersion markers. These changes measured in each ST

episode are denoted as ∆TE12, ∆TE13 and ∆TE23.

• Differences of the QT interval have been also measured

in the lead of each annotated ST episode over the same

intervals (∆QT12, ∆QT13 and ∆QT23)

• The correlation between the heart rate series (HR)

and the deviation of the ST level series within an

interval (I) from 20 s before the beginning of the

ST episode to the expert annotated extremum of it

has also been evaluated and referred to as ρ. It has

been calculated after resampling the series to an evenly

sampling frequency of 1 Hz in the following way:

ρ =
∑

k∈I

(ST (k) − µST)(HR(k) − µHR)

NσSTσHR

(3)

where µST and µHR are the mean in each vector series, σST

and σHR are the standard deviation of the ST vector and

heart rate vector series, and N the number of elements

of the vector.
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TABLE I

THIS TABLE SHOWS THE SUMMARY OF THE MEANS AND STANDARD DEVIATION IN ISCHEMIC AND HEART RATE RELATED EVENTS , PERFORMANCE

AND P-VALUE OF THE DIFFERENT VARIABLES USED IN THE CLASSIFICATION ANALYSIS.

VARIABLES ISCHEMIC EVENTS HR RELATED EVENTS PERFORMANCE P-VALUE

MEAN STD. DEV. MEAN STD. DEV. SE SP +PV -PV EX

|∆HR13|(bpm) 9.93 9.40 18.86 11.46 76 60.7 65.9 71.6 73.7 5.8 E − 18
|∆ST13|(µV ) 144.07 82.98 93.76 47.48 55.2 78.6 72.0 63.7 58.8 1.1 E − 09
∆ST13 (µV ) − 71.07 150.4 − 26.25 102.13 77.9 42.9 57.7 66 72.6 2.7 E − 03
HRext (bpm) 85.25 19.48 101.74 19.91 65.3 63.4 64.1 64.6 65 1.5 E − 15
∆Sl23 6.61 154.36 50.98 155.56 58.7 50.9 54.5 55.2 57.6 5.6 E − 03

∆QT13 (ms) − 4.55 27.3 − 27.8 31.64 74.2 57.1 63.4 68.9 71.6 3.4 E − 15
∆TE12 (ms) − 2.34 7.29 − 1.60 9.86 49.3 58.0 54.0 53.4 50.6 0.35

|∆HR12|(bpm) 5.05 5.33 9.89 7.53 77.0 58.0 76.0 71.6 74.1 1.3 E − 15
TW13(ms) − 18.1 25.6 − 30.4 36.5 65.9 53.6 58.7 61.1 64.0 4.6 E − 05

ρ − 0.04 0.55 − 0.32 0.57 55.4 65.2 61.4 59.4 56.9 3.9 E − 06
∆Se23 − 16.4 122.5 27.0 116.3 60.8 54.5 57.2 58.2 59.9 5.8 E − 04
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Fig. 3. In this figure it is shown the QRS complex of the raw ECG signal
in the upper figure and its second scale wavelet transform in the lower
figure. The maximum and minimum of the wavelet transform corresponds
to the two steepest slopes. Note that zero crossing of the wavelet transform
corresponds with the peak of the QRS complex.

2) Depolarization indexes: Changes in the steepest slopes

of the QRS complex that will be referred to as the early (Se)

and late (Sl) slopes, are considered in the classification anal-

ysis. Se and Sl can be sequenced either upward/downward

or downward/upward depending of the QRS morphology.

The QRS slope series are computed by taking, from the

processing in the QRS detection [10], the second scale-

wavelet transform maximum (minimum) that correspond to

the maximum (minimum) derivative of the QRS complex

(see Fig. 3). Changes in the absolute values of these series

(early and late QRS slopes) across the three intervals are

taking into account and denoted as ∆Se12, ∆Se13, ∆Se23,

∆Sl12, ∆Sl13 and ∆Sl23.

3) Heart rate indexes: Changes in the heart rate corre-

sponding to the three intervals were also measured (∆HR12,

∆HR13 and ∆HR23). The absolute value of these changes

are also analysed and referred to as |∆HR12|, |∆HR13|
and |∆HR23|. The absolute value averaging 40 s before the

beginning the ST episode and 40 s around the extrema were

computed and denoted as HRbef and HRext respectively.

C. Statistical Analysis

First monovariate ANOVA discriminant analysis is per-

formed to each variable so to establish the individual sig-

nificance for classification performance. The multivariate

discriminant analysis has been used to pick out the most

significant indexes that distinguish ischemic from heart rate

related events. The stepwise approach is applied, using the

Wilk’s Lambda minimization as the criteria for entry and

removal of variables [11]. F statistic is set to 3.84 for entry

and 2.71 for removal.

The cross-validated estimation (leave-one-out) is applied

for the classification results. As the name suggests, leave-

one-out cross-validation (LOOCV) uses a single observation

from the original sample as the validation data, and the

remaining observations as the training data. This is repeated

such that each observation in the sample is used once as the

validation data.

The performance analysis was calculated in terms of

sensitivity (SE), specificity (SP ), positive predictivity value

(+PV ), negative predictivity value (−PV ) and exactness

(EX).

III. RESULTS

The mean and the standard deviation of several variables

evaluated in the discriminant analysis for the two different

groups (ischemic and heart rate related) are presented in

Table I. The performance analysis and the p value of the

discrimination between groups are also evaluated for each

variable individually (Table I).

For the multivariate analysis, the stepwise method based

on the minimization of the Wilk’s Lambda has picked out

as the most significant variables entering in the classifica-

tion analysis |∆HR13|, |∆ST13|, ∆ST13, HRext, ∆Sl23,

∆QT13, ∆TE12, |∆HR12|and ∆TW13. Table II shows the

classification performance in terms of SE, SP , +PV and

−PV , obtained when adding new significant variables in the

stepwise approach.

IV. DISCUSSION AND CONCLUSIONS

Although some indexes show a poor performance individ-

ually (Table I), they may have complementary information

or minimize the variance of the groups so that increasing the

combined performance and being included in the multivariate

analysis (Table II).
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TABLE II

THIS TABLE SHOWS THE IMPROVEMENT IN CLASSIFATION PERFORMANCE BETWEEN SUPPLY ISCHEMIC EVENTS AND HEART RATE RELATED EVENTS

IN TERMS OF SE , SP , +PV , − PV AND EX , IN EACH STEP OF THE METHOD

VARIABLES (ORDERED BY CLASSIFICATION RELEVANCE) SE SP +PV -PV EX

|∆HR13| 76.0 60.7 65.9 71.7 73.7
|∆HR13|, |∆ST13| 78.7 77.7 77.9 78.5 78.6
|∆HR13|, |∆ST13|, ∆ST13 79.8 80.4 80.3 79.9 79.9
|∆HR13|, |∆ST13|, ∆ST13, HRext 79.5 84.8 84.0 80.5 80.3
|∆HR13|, |∆ST13|, ∆ST13, HRext, ∆Sl23 80.1 88.4 87.3 81.6 81.4
|∆HR13|, |∆ST13|, ∆ST13, HRext, ∆Sl23, ∆QT13 80.7 85.7 85.0 81.6 81.5
|∆HR13|, |∆ST13|, ∆ST13, HRext, ∆Sl23, ∆QT13, ∆TE12 80.6 88.4 87.4 82.0 81.8
|∆HR13|, |∆ST13|, ∆ST13, HRext, ∆Sl23, ∆QT13, ∆TE12, |∆HR12| 81.7 90.2 89.3 83.1 83.0
|∆HR13|, |∆ST13|, ∆ST13, HRext, ∆Sl23, ∆QT13, ∆TE12, |∆HR12|, ∆TW13 82.2 88.4 87.6 83.2 83.1

As it was expected, heart rate related events, associated to

demand ischemia, have a direct relation to a higher increment

of the heart rate as opposed to supply ischemic events. The

absolute heart rate in demand ischemia is about 15 bpm

higher than in supply ischemia, Table I. This is reflected

also by changes in the QT interval, that is adapted to the RR

interval. In ischemic events QT interval is hardly shortening

(about 4 ms) while in heart rate related events QT interval

is reduced about 28 ms.

Alterations in the late steepest slope is proposed as an

index to quantify ECG changes in supply ischemia, resulting

that QRS slopes were considerably less steep during pro-

longed (⋍ 4 minutes) artery occlusion [12]. However, in

short term (⋍ 1 minute) angioplasty episodes, discrepant

slope variations were found [13]. Our results show no

concluding changes.

A greater shortening in the T width is observed in heart

rate related (− 30 ms) than in ischemic events (− 18 ms)

although the interval between T apex to T end does not seem

to be correlated with that, so the QRS to T apex should be

the responsible for the T wave shortening.

In both types of episodes appears ST level depression.

In the ischemic events the ST level decrease about 71 µV
and heart rate related events about 26 µV . The absolute

deviation of the ST segment is also included in the significant

parameters, being the ischemic events the ones that shows a

higher amplitude of 144 µV in mean and heart rate related

events about 93 µV .

Transmural ischemia is reflected in ST elevation while

subendocardial ischemia shows ST depression. However, in

Holter recordings it is very difficult to differentiate between

subendocardial and transmural ischemia; indeed most of the

cases are in between. Our results are compatible with this

ST depression tendency, being the ischemic events the ones

with higher absolute deviation.

We noticed variables with a very high p-value such as

∆TE12, entering in the classification results while other

parameters such as ρ did not enter, meaning that the classi-

fication information given by ρ was already supplied by the

earlier parameters included in the analysis.

In relation with the Physionet/Computers in Cardiology

Challenge, our results are compatible with [7] since changes

in the ST level is a very important parameter for distinguish-

ing between ischemic and non-ischemic ST events (heart

rate related events, body position changes and conduction

changes). However it is not enough when comparing two

types of episodes with a very similar signature as ischemic

and heart rate related events. We need further information

as combining heart rate and repolarization indexes with a

greater discriminant power.
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