
Dynamic assessment of spontaneous baroreflex sensitivity by means of
time–frequency analysis using either RR or pulse interval variability

Michele Orini, Luca T. Mainardi, Eduardo Gil, Pablo Laguna and Raquel Bailón

Abstract— In this study we propose a method to continuously
assess the changes of spontaneous baroreflex sensitivity (BRS).
Systolic arterial pressure and RR intervals are analyzed by
time–frequency analysis to estimate their instantaneous powers
as well as the time–course of their spectral coherence. The BRS
estimated in classical frequency bands is compared to the BRS
estimated in dynamic frequency bands centered on respiratory
frequency. The possibility of obtaining reliable estimations of
the BRS using the pulse interval from the pressure signal as
a surrogate of the RR is considered. Results on a tilt table
test database suggest that is possible to obtain reliable BRS
estimates just from the analysis of the pressure signal, without
the need of ECG recordings.

I. INTRODUCTION

The baroreflex is one of the homeostatic mechanism for
maintaining blood pressure. The assessment of baroreflex
sensitivity [1] (BRS, i.e. the change in the RR interval
following a unitary change in the blood pressure) from non–
invasive measurements is challenging since a baroreflex im-
pairment has been suggested to have diagnostic and prognos-
tic relevance. In the last 20 years different techniques have
been proposed to estimate the spontaneous BRS [2]. Among
them there is the simultaneous analysis of systolic arterial
pressure variability (SAPV) and RR variability (RRV) in the
frequency domain, via spectral analysis. In particular, the
parameter α has been defined as the squared root of the
ratio between the power content of RRV and SAPV [2], and
it is usually defined in the LF and HF bands. This parameter
is computed whenever the linear coupling between SAPV
and RRV, assessed through spectral coherence estimation,
is higher than an arbitrary threshold. The modulus of the
spectral coherence usually presents two peaks, one centered
around typical Mayer wave frequency (about 0.1 Hz) and
an other centered around respiratory frequency. Thus, the
respiratory rate should be taken into account in the analysis
of the BRS. Most of the autonomic tests used to evoke
a cardiovascular response, such as tilt table test, Valsalva
maneuver, exercise stress testing etc. are non–stationary. In
such situations the interest lies in the dynamic assessment
of the BRS and time–frequency (TF) analysis is required.
Among the different TF and time–varying methods which
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have been applied to the study of the cardiovascular vari-
ability [3], the smoothed pseudo Wigner–Ville distribution
(SPWVD) is one of the most interesting, since it provides
an independent control of time and frequency resolution.
Recently, a method to robustly estimate the TF coherence
between cardiovascular variables, based on the SPWVD,
has been presented [4]. The time–varying quantification of
the linear coupling between RRV and SAPV through TF
coherence analysis allows to define time epochs during
which reliable estimates of α(t) can be obtained. Finally,
one limitation of the spontaneous BRS analysis is that it
requires the simultaneous recording of the ECG and the
pressure signal. Thus, the aims of this study are: (1) present
a comprehensive framework for the continuous estimation
of α(t) in non–stationary conditions based on the SPWVD;
(2) discuss the importance of including the respiratory rate
in the analysis of the BRS and (3) assess the possibility of
estimating α(t) without the need of the ECG recordings, i.e
using the pulse interval variability estimated from the pulse
waves in the pressure signal as an alternative measurement
of the RR variability.

II. METHODS

A. Signal acquisition and preprocessing

Thirteen young volunteers (age 28.2± 2.7 years, 9 males)
without any previous cardiovascular history underwent a
head–up tilt table test without fainting. In this test, subjects
undergo a progressive orthostatic stress and blood pressure
is maintained thanks to baroreflex regulation [5], which
involves an increase in heart rate and a constriction of
the blood vessels in the legs. The experimental protocol
consisted of: 3 minutes in early supine position (T1), 5
minutes tilted head–up to an angle of 70o (T2) and 3 minutes
back to later supine position (T3). The ECG and respiratory
signals were recorded using the Biopac MP 150 system with
a sampling frequency of 1 kHz and 125 Hz, respectively,
while the pressure signal was recorded using the Finometer
system with a sampling frequency of 250 Hz. Beats from
ECG and pulses from the pressure signal were detected to
generate RR, pulse interval and systolic arterial pressure time
series. During the procedure, the device used for pressure
signal recording was recalibrated at the beginning of T2
and T3. The recalibration took few seconds and introduced
artefacts which were detected and corrected by interpolation.
All the time series were subsequently resampled at 4 Hz and
RR variability (RRV), pulse interval variability (PIV) and
systolic arterial pressure variability (SAPV) were obtained
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by high–pass filtering the corresponding series with a cut–
off frequency of 0.03 Hz.

B. Time–frequency analysis

The smoothed pseudo Wigner–Ville distribution (SPWVD)
was used to estimate the time–varying spectral properties
of the cardiovascular variables, as well as to perform TF
coherence analysis. The cross–SPWVD is defined as [6]:

Sx,y(t, f ) =
∫ ∞

−∞

∫ ∞
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φ(τ ,ν)Ax,y(τ ,ν)e j2π(tν− f τ)dνdτ (1)
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where ax(t) and ay(t) are the complex analytic sig-
nal representations of the original real signals {x,y} ∈
{RRV,PIV,SAPV}; Ax,y(τ ,ν) is the narrowband symmetric
ambiguity function (AF) of ax(t) and ay(t) and can be seen
as the 2D Fourier transform of the Wigner–Ville distribu-
tion. The kernel φ(τ ,ν) is a 2D weighting function which
performs the TF low–pass filtering necessary to suppress
the interference terms which reduce the readability of the
Wigner–Ville distribution. The SPWVD of signal x(t) is
obtained using y = x. We choose as kernel the elliptical
exponential function previously used to obtain a robust
estimation of the TF coherence [4]:
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The kernel’s iso–contours are ellipsis whose major axis
length, i.e. the bandwidth of the TF low–pass filter, depends
on parameters τ0 and ν0. Parameters τ0 and ν0 were selected
to have a frequency resolution of 0.031 Hz and a time
resolution of 15 s. These values corresponded to the full
width at half maximum of the Fourier transform of φ(τ,0)
and φ(0,ν), respectively. Time–frequency coherence, used
to continuously quantify the strength of the linear coupling
between pairs of signals during time, was then estimated as
[7], [4]:

γx,y(t, f ) =

√

Sx,y(t, f )S∗x,y(t, f )
Sx(t, f )Sy(t, f )

. (4)

C. Spectral band definition and indices estimation

Respiration affects RRV, through respiratory sinus ar-
rhythmia (RSA), and SAPV, through mechanical changes
provoked in the intra-thoracic pressure and vessel compli-
ance. Thus, the inclusion of the respiratory rate FR(t) in the
analysis can improve the estimation of spectral RRV and
SAPV indices [8] and could help to interpret the results.
To evaluate the effect of including (or not) the respiratory
rate in the BRS analysis, two kinds of spectral bands were
defined. Instantaneous powers as well as instantaneous band
coherences were then estimated by integrating Sx(t, f ) and
averaging γx,y(t, f ) in these spectral bands, defined as:
I) Time–invariant traditional bands (TI–B); TI–LF ∈
[0.04,0.15] Hz and TI–HF ∈ [0.15,0.4] Hz were used for
the estimation of instantaneous powers P x

TI–B(t) and band
coherence γ x,y

TI–B(t), with TI–B ∈ {TI–LF,TI–HF};

II) Time–varying respiration–dependent bands (TV–B); Two
dynamic frequency ranges were defined, the TV–RSA and
the TV–LF bands. For instantaneous power estimation, TV–
RSA band was dynamically centered around FR(t) while TV–
LF band was centered around the instantaneous frequency
F x

LF(t), estimated as the maximum of Sx(t, f ) in traditional
TI–LF band. Both bands were twice the frequency resolu-
tion wide (0.062 Hz), unless TV–RSA and TV–LF bands
overlapped. In this case the upper limit of TV–LF band
decreased to the lower limit of TV–RSA band. In those
cases in which the width of TV–LF band was lower than the
frequency resolution (i.e. FR(t)−F x

LF(t) < 0.031), estimation
of Px

TV–LF(t) was discarded. For band coherence estimation,
we used the same TV–RSA as for power estimation, whereas
TV–LF band was centered around (F x

LF(t)+F y
LF(t))/2 and the

same rules mentioned above were adopted for its dynamic
adjustment. When TV respiration–dependent bands were
used, instantaneous powers and band coherences were noted
as P x

TV–B(t) and γ x,y
TV–B(t), with TV–B∈[TV–LF,TV–RSA].

The respiratory rate FR(t) was estimated as the maximum of
the SPWVD of the respiratory signal in a frequency range
from 0.04 to 0.5 Hz and was carefully revised to avoid
misestimations due to movement artefacts. The time–course
of the BRS was then estimated as:

α x,y
TI–B(t) =

√

Px
TI–B(t)

Py
TI–B(t)

; α x,y
TV–B(t) =

√

Px
TV–B(t)

Py
TV–B(t)

; (5)

with x ∈ {RRV,PIV} and y ∈ {SAPV}. Instantaneous estima-
tions of α(t) were accepted only for those t for which band
coherences were higher than 0.5 and discarded otherwise.
The Wilcoxon test was applied for every t to statistically
compare the instantaneous values of Px

B(t), γ x,y
B (t) and α x,y

B (t)
to baseline values (obtained by averaging Px

B(t), γ x,y
B (t) and

α x,y
B (t) in T1). The percentage of total time during which dif-

ferences were statistically significant (T%) as well as the mean
p-value (p̄) obtained in those epochs were then estimated in
T2 and T3. The first 40 s of T2 and T3 were excluded to
discard the effect of artefacts due to recalibration.

III. RESULTS
In our study population, FR(t) presented high inter–subject

variability. In only 6 subjects the TV–RSA band never
overlapped with TI–LF band, while in 5 subjects the TV–
RSA band overlapped with the TI–LF band and reduced
the width of the TV–LF band to less than the frequency
resolution for almost the entire recording (>90%). In these
5 subjects Px

TV–LF(t) and γ x,y
TV–LF(t) were not estimated.

In Fig. 1, we report the averaged time–courses of indices
PRRV

B (t) and PPIV
B (t) (panels (a)–(b)), PSAPV

B (t) (panels (c)–(d)),
γ x,y

B (t) (panels (e)–(f)) and α x,y
B (t) (panels (g)–(h)) for both

types of spectral bands TI–B (left panels) and TV–B (right
panels). Results obtained using PIV instead of RRV are
reported in dotted lines. Black crosses mark the presence
of artefacts in the pressure signal. In Fig. 2, results are
given as the temporal mean and standard deviation of the
cardiovascular indices, averaged among subjects. Results of
the statistical analysis are shown in table I only for those
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ᾱSAPV,PIV
TI–HF (t)
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TV–LF (t)
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TV–LF (t)

ᾱSAPV,RRV
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ᾱSAPV,PIV
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Fig. 1. Mean time–course of cardiovascular indices. Left and right panels refers to estimations obtained using time–invariant and time–varying respiration–
dependent bands, respectively; LF and HF values are in red and blue lines, respectively; estimations obtained using the PIV as a surrogate of RRV are in
dotted lines.

indices whose time–course significantly changed with respect
to baseline. Panels 1(a)–(d) show that using different types
of spectral bands, i.e. TI–B or TV–B, we obtained different
results. By using TI–B, we observed that Px

TI-LF(t) > Px
TI-HF(t),

for both RRV and SAPV, whereas the use of TV–B led
to opposite results. As shown in table I, the increase of
PSAPV

B (t) in T2 was statistically significant in TI–LF, TI–HF
and TV–RSA, while it was almost never significant in TV–
LF band. This difference is likely due to the inclusion or not
in the statistical analysis of those 5 subjects for whom the
TV–RSA band overlapped with the TI–LF band for almost
the entire recording. Moreover, excluding them from the
statistical analysis performed on results obtained using TI–B,
the increase of PSAPV

TI–B (t) in T2 became not significant in TI–LF
(T% = 1%) and less significant in TI–HF (T% = 27%). From
panels 1(e)–(f) we observe that the averaged time–courses of
γ x,SAPV

TI–LF (t) and γ x,SAPV
TV–LF (t), with x∈ {RRV,PIV}, was high during

the entire procedure and slightly decreased at the beginning
of T2 and T3, probably due to the presence of artefacts in the
pressure signal. The averaged time–course of γ RRV,SAPV

TV–RSA (t) was
also very high, while the lower value of γ RRV,SAPV

TI–HF (t) was likely
due to the fact that, in several subjects, the central frequency
of the spectral component related to respiration moved into
TI–LF. Interestingly, the differences in the estimates obtained
with different spectral bands slightly affected the estimation
of the BRS. Indeed, as shown in Fig. 1 and 2, similar

results were obtained for α x,y
B (t) using both TV–B and TI–B.

The increase of PSAPV
B (t) during head–up tilt, made α x,y

B (t)
decrease in all spectral bands. This decrease was always
significant (T% = 100%, p̄ < 0.007) except during TV–LF.
Finally, from Fig. 1 and 2 and table I, we observed that
the use of the PIV signal instead of the RRV signal did not
produce any relevant effect in LF band. In TI–HF and TV–
RSA, PRRV

B (t) < PPIV
B (t) and γRRV,SAPV

B (t) < γ PIV,SAPV
B (t), with B∈

{TI–HF,TV–RSA}. However, these differences were small
and even further decreased in the estimation of parameter
α x,y

B (t). For example, as shown in Fig. 2, during T2 difference
between mean values of α RRV,SAPV

B (t) and α PIV,SAPV
B (t) were lower

than 0.4 ms/mmHg for TI–LF and TV–LF and lower than 1.1
ms/mmHg for TI–HF and TV–RSA.

IV. DISCUSSION

In this study we presented a framework to continuously
quantify the baroreflex sensitivity based on TF analysis. The
SPWVD was used to perform TF and TF coherence analysis
of RRV, PIV and SAPV. The degree of TF filtering gives a
good TF resolution while providing consistent estimations
of TF coherence (γx,y(t, f ) ∈ [0,1] ∀ subjects). A time–
varying estimation of band coherence, necessary to accept
the estimation of α x,y

B (t), is obtained by averaging γx,y(t, f )
in the spectral bands. As for spectral coherence, γx,y(t, f )
is affected by the parameters used in its calculation, i.e.
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Fig. 2. Averaged of temporal mean and SD among subjects. Left panels:
TI–B. Right panels: TV–B. Black and grey colors indicate that values were
obtained using x=RRV and x=PIV, respectively.

TABLE I
STATISTICAL ANALYSIS TO ASSESS THE CHANGES IN T2 WITH RESPECT

TO BASELINE (T1)

T2 T2

T% (p̄) T% (p̄)
PSAPV

TI–LF 77 (2e-2) PSAPV
TV–LF 7 (4e-2)

PSAPV
TI–HF 100 (2e-3) PSAPV

TV–RSA 82 (3e-2)
αRRV,SAPV

TI–LF 100 (6e-3) αRRV,SAPV
TV–LF 38 (3e-2)

αRRV,SAPV
TI–HF 100 (4e-3) αRRV,SAPV

TV–RSA 100 (2e-3)
αPIV,SAPV

TI–LF 100 (7e-3) αPIV,SAPV
TV–LF 39 (3e-2)

αPIV,SAPV
TI–HF 100 (2e-3) αPIV,SAPV

TV–RSA 100 (2e-3)

by the degree of TF smoothing performed by φ(τ,ν). To
reduce the dependence of band coherence on the degree of
TF smoothing, we used TV spectral bands whose width
depended on the TF resolution. This justified the use of
γx,y(t, f ), which is characterized by the same TF resolution
as the TF spectra, instead of the quadratic TF coherence
as proposed elsewhere [2]. Time–frequency analysis allows
to track the changes of the autonomic modulation of heart
rate and arterial pressure and to continuously assess the
strength of their linear coupling in different spectral ranges
of interest. The assessment of the dynamics of the barore-
flex sensitivity by means of the SPWVD is appealing due
to its good TF resolution and robustness. Nevertheless, a
limitation compared to causal autoregressive model–based
methodologies [9] is the impossibility to disentangle the
feedback baroreflex mechanism (from SAPV to RRV) from
other mechanisms (mechanical feedforward mechanism from

RRV to SAP, cardio–pulmonary reflex, etc) [10]. Moreover,
the simultaneous estimation of the respiratory rate allows
one to interpret the changes observed in the cardiovascular
indices in relation with the respiration. Indeed, we showed
that, when respiratory-rate is low, the increase of the power
of the RRV and SAPV signals observed in TI–LF band
during head–up tilt could be enhanced by the interactions
between the respiratory–driven oscillations and the baroreflex
regulation activity around 0.1 Hz. Nevertheless, the param-
eter α(t), which significantly decreased in response to the
orthostatic stress provoked by head–up tilt, only slightly
changed by using different spectral bands. The similarity
between α x,y

TI–LF(t) and α x,y
TV–LF(t) and between α x,y

TI–HF(t) and
α x,y

TV–RSA(t) can be justified considering that the BRS were
estimated only in those TF regions where the coupling
between RRV and SAPV was consider sufficiently high. An
important finding of this study is that PIV estimated from the
pressure signal may be used as a surrogate of RRV in the
BRS analysis. Indeed, indices estimated using PIV instead
of RRV presented the same temporal pattern (Fig. 1) with
mean differences lower than their mean standard deviations
(Fig. 2) and led to very similar results when a statistical
test is performed (table I). If this finding is confirmed on
larger study populations it would give the opportunity to
obtain reliable estimates of BRS without the need of the
ECG recordings, i.e. only using the pressure signal from the
finger.
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