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Abstract— T-wave alternans (TWA) is a cardiac phenomenon
associated with the mechanisms leading to sudden cardiac
death. In this work, we evaluate different source separation
techniques for multilead detection of TWA in the electrocar-
diogram (ECG). Two periodicity-based techniques – periodic
component analysis (πCA) and the newly proposed spectral
ratio maximization (SRM) – are compared to two independence-
based techniques – FastICA and JADE – and to principal
component analysis (PCA). According to simulation results, the
best detection performance is obtained with the periodicity-
based schemes.

I. INTRODUCTION

The electrocardiogram (ECG) is extensively used as a

clinical tool to study the heart function. It is measured

placing electrodes on the body surface, and simultaneously

recording the electrical activity of the heart in different chest

locations (different channels, also termed leads). A widely

used electrode configuration is the Frank lead system, which

contains three orthogonal leads that represent the perpendic-

ular X, Y and Z directions. The ECG usually presents five

characteristic waves on each beat, labeled from P to T (Fig.

1(a)). The interval between the end of the S wave and the

end of the T wave represents the repolarization activity of

the heart ventricles, and is known as ST-T segment.

T-wave alternans (TWA) is defined as a consistent fluc-

tuation in the repolarization morphology (ST-T segment)

every other beat (Fig. 1(b) and (c)), and is a promising

index of susceptibility to sudden cardiac death [1], [2].

TWA amplitudes are in the range of microvolts, and can

be even below the noise level, making the detection of TWA

a difficult task. There exist several methods to automatically

detect TWA [3], which are usually applied to each lead of

the ECG individually.

In previous works [4], [5], we presented a multilead

analysis scheme that improves the detection performance of

single-lead techniques the such as the spectral method (SM)

and the Laplacian likelihood ratio (LLR) method. The idea

behind this scheme is that separating the TWA from the non-

alternating components of the ECG improves the detection

of TWA with low amplitudes. The search for a suitable

TWA separation technique can be interpreted as a blind

source separation problem, and approaches such as principal
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Fig. 1. (a) ECG signal with visible TWA. (b) Superposition of two
consecutive beats. (c) Alternans waveform. Reproduced from [4].

component analysis (PCA) or independent component anal-

ysis (ICA) can be explored to solve it. In previous works,

we evaluated the use of PCA [4] and periodic component

analysis (πCA) [5] separation techniques. In this work we

propose a new separation technique based on the periodicity

of the signal, the spectral ratio maximization (SRM), and also

evaluate the applicability of two widely used ICA algorithms:

FastICA [6] and JADE [7]. The detection performances

obtained with PCA, πCA, SRM, FastICA and JADE are

compared by analyzing a set of ECG signals with known

TWA.

II. METHODS

A. General multilead analysis scheme

The general scheme for multilead TWA detection consists

of three stages: signal preprocessing, signal transformation

and TWA detection (Fig. 2). A full description of this scheme

can be found in [5]. The three stages are summarized below.

In the preprocessing stage, the multilead ECG signal is

low-pass filtered and decimated to a sampling frequency of

30 Hz. Baseline wandering is removed using a cubic spline

interpolation technique, and beat positions are determined

using a wavelet-based algorithm [8]. An interval of 350 ms is

selected on each beat for TWA analysis (the ST-T segment).

In this work, K represents the number of beats in the analysis

window, N the number of samples of each ST-T segment, L
the number of leads, and xk,l(n) the n-th sample in the ST-T

segment of the k-th beat and the l-th lead. Each ST-T segment
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can be modeled as

xk,l(n) = sl(n) +
1

2
al(n)(−1)k + vk,l(n) n = 0, . . . ,N − 1

where sl(n) is the background ST-T segment, which is

periodically repeated in each beat, al(n) is the alternans

waveform, and vk,l(n) is additive random noise. In vector

notation, each ST-T segment is denoted as

xk,l =
[
xk,l(0) . . . xk,l(N − 1)

]
.

For each lead l, ST-T segments are concatenated to form the

lead vectors:

x̃l =
[
x0,l . . . xK−1,l

]
(1)

x̃(m)
l =

[
xm,l . . . xm+K−1,l

]

where x̃(m)
l is the equivalent to x̃l obtained after sliding the

analysis window m beats forward. Two matrices are finally

constructed by putting together all the leads:

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃1

...
x̃L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; �(m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃(m)
1
...

x̃(m)
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

The second stage aims to find a transformation that sepa-

rates TWA from noise. First, background ST-T segments are

canceled with a detrending filter

x
′
k,l = xk,l − xk−1,l, k = 1 . . . K − 1 (3)

and the detrended beats x′k,l are arranged as in (1) and (2)

to form matrices �
′

and �(m)′ . Then, the transformation Ψ

is calculated with one of the techniques described in section

II-B, and is applied to the original data �

� = ΨT� (4)

to obtain the transformed signal �, whose leads (rows of �)

will be denoted as transformed leads.

After signal transformation, TWA detection is performed

in the transformed signal � using the LLR method [9], [10].

This method decides whether TWA is present or not in each

transformed lead by applying the Generalized Likelihood

Ratio Test (GLRT) for Laplacian noise, which consists of

calculating a detection statistic from the data, and comparing

it to a detection threshold. The overall detection is positive

if TWA is detected at least in one transformed lead.

B. Transformation techniques

Five techniques to find the transformation matrix Ψ are

compared in this study: PCA, πCA, FastICA, JADE and

spectral ratio maximization (SRM).
Principal Component Analysis: PCA separates the or-

thogonal components of the signal in descending order of

variance. In this case, the transformation Ψ is obtained by

solving the equation

R�′Ψ = ΨΛ (5)

where R�′ =
1

(K − 1)N
�
′
�
′T denotes the estimated spatial

autocorrelation of �
′
, Λ denotes the eigenvalue matrix with

the eigenvalues sorted in descending order, and Ψ denotes

the corresponding eigenvector matrix.

1) Periodic Component Analysis: This technique aims to

find the projection ỹ′ = wT�
′

that maximizes the periodic

structure of the signal at the TWA frequency. To do so, a

measure of periodicity is defined as

ε(w,m) =

∥∥∥ỹ′(m) − ỹ′
∥∥∥2

∥∥∥ỹ′
∥∥∥2

(6)

where m = 2 beats is the period of the TWA. The weight

w that minimizes (6) is given by the generalized eigenvector

corresponding to the smallest generalized eigenvalue of the

matrix pair
(
A�′ ,R�′

)
, where A�′ is the spatial correlation

of
(
�(m)′ −�′

)
[5], [11]. Note that, with this technique, the

transformation matrix Ψ only contains the column vector

w, which can be interpreted as the spatial direction from

which the periodic content of the signal is better observed,

and therefore the transformed signal � will only contain one

transformed lead.

Spectral Ratio Maximization: Like πCA, this technique

tries to find a projection ỹ′ = wT�
′

that maximizes the pe-

riodicity of the transformed signal. In this case, the measure

of periodicity is defined as

ξ(w) =
S ỹ( f0.5)∫
S ỹ( f ) d f

(7)

where S ỹ( f ) is the power spectral density of the transformed

signal, estimated with the modified periodogram, and f0.5 is

the frequency of TWA (0.5 cycles per beat). To find the w
that maximizes (7), a gradient-based optimization algorithm

implemented by MATLAB fminunc routine (default options)

is applied. Two options are considered to initialize this

iterative algorithm: the vector w = [1 0 . . . 0]T , which

represents a projection on the first lead axis of the input

signal (SRM scheme), and the projection w obtained with

πCA as described above (πCA-SRM scheme). As in the

πCA case, the transformed signal � will only contain one

transformed lead.

FastICA: FastICA is one of the most referenced ICA

techniques in the literature [6] and it is freely distributed

in [12]. The FastICA algorithm finds the transformation that

maximizes the independence of the components by minimiz-

ing their mutual information with a fixed point algorithm.

JADE: This widely used algorithm [7] finds the trans-

formation that maximizes the independence of the signal

components by jointly diagonalizing fourth-order cumulant

tensors. The JADE algorithm is publicly available in [13].

III. DATA SET

To compare the performance of the different separation

techniques, we created a set of synthetic ECG signals with

known TWA using an artificial multilead ECG model [14].

Synthetic signals were created with TWA amplitudes (Valt)

ranging from 0 μV to 200 μV. For a given TWA amplitude,

a total of 50 3-Frank-lead ECG records of 5-minute length

were generated at a sampling frequency of 500 Hz. A mixture
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Fig. 2. Block diagram of the multilead scheme.

of noises from the MIT-BIH Noise Stress Test Database [15]

- electrode motion (em), muscular activity (ma) and baseline

wander (bw) - was added to the signals. For each synthetic

ECG signal, two-lead segments of 5 minutes were extracted

from em, ma and bw records beginning at a random position.

These records only contain two leads, so a third lead of

spatially correlated noise was computed as the first principal

component of the two available leads. Finally, the three noise

leads were scaled to obtain an SNR of 20 dB with respect

to the ECG, and added to the synthetic signal.

IV. RESULTS

Signals were processed with PCA, πCA, SRM, πCA-

SRM, FastICA and JADE schemes using a 32-beat analysis

window. The execution time (in seconds) for the analysis of

the entire dataset was 64 s with PCA, 68 s with πCA, 6678

s with SRM, 5345 s with πCA-SRM, 1254 s with FastICA

and 129 s with JADE.

The detection performance of the schemes was compared

as follows. Probability of false alarm (PFA) was defined as

the ratio between the number of positive TWA detections

in signals with Valt = 0 (false detections) and the total

number of decisions made in those signals. Probability of

detection (PD) was defined as the ratio between the number

of positive TWA detections in signals with a given Valt and

the total number of decisions made in those signals. For each

scheme, a detection threshold was set so that (PFA) was 0.01,

and the resulting PD was compared. The best performance

was obtained with schemes πCA, SRM and πCA-SRM, that

presented similar PD for every Valt (Fig. 3).

The projection directions obtained with πCA, SRM and

πCA-SRM schemes were also studied. For each Valt value,

the vectors w obtained with each scheme were normalized

and averaged. The average directions obtained with SRM and

πCA-SRM schemes coincided in all cases. The directions of

πCA and SRM schemes were similar for low Valt (Fig. 4(a)),

and the difference between them decreased as Valt increased

(Fig. 4(b)).

V. DISCUSSION AND CONCLUSIONS

The best detection performance is obtained with the

periodicity-based schemes. Both πCA and SRM search for

the direction from which the periodicity of the transformed
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Fig. 3. PD of the different schemes vs. simulated TWA amplitude. PFA =
0.01 for all schemes.

signal is maximum, following a temporal and a spectral cri-

terion respectively. These criteria offer equivalent detection

results; the directions obtained by the two schemes tend

to converge as TWA increases, and for low Valt values,

πCA and SRM directions are close enough to produce the

same PD. The projections obtained with SRM and πCA-SRM

schemes coincide in all cases. Initializing the optimization

algorithm with πCA - a closer point to the solution - reduces

convergence time, but even in that case the computational

cost is more than 70 times higher than the cost of the πCA

scheme.

PCA is the fastest among the compared schemes, although

the execution times of PCA and πCA are comparable. The

maximum-variance criterion of PCA produces a denoising
effect on the multilead signal that improves the detection of

TWA over a single-lead scheme [5], but this improvement

is not high enough to outperform the periodicity-based

schemes.

The ICA algorithms, FastICA and JADE, present the

worst detection performance among the compared schemes.

ICA has been successfully applied to ECG problems in the

past [16], but, according to our results, it is not the best

approach for TWA analysis. FastICA and JADE algorithms

are based on the classic ICA model, which assumes that

the input signal is an instantaneous stationary linear mixture

of independent sources, whose number equals the number

of signal channels. This is not a very realistic assumption

for TWA analysis in 3-lead ECGs, in which the signal

after the preprocessing stages, besides the TWA component,

may still contain different types of residual noise (electrode

movement, baseline wander, motion artifacts) and residual

activity of the ventricles due to a non-perfect detrending
filter. In this case, assuming only three sources could be

unrealistic, and independence between sources is not assured

5369



0 0.5 1
0

0.5

1
projection direction on the XY plane

X

Y

0 0.5 1
0

0.5

1
projection direction on the XZ plane

X

Z

0 0.5 1
0

0.5

1

Y

Z

projection direction on the YZ plane

 

 
πCA
SRM
πCA-SRM

(a)

0 0.5 1
0

0.5

1
projection direction on the XY plane

X

Y

0 0.5 1
0

0.5

1
projection direction on the XZ plane

X

Z

0 0.5 1
0

0.5

1

Y

Z

projection direction on the YZ plane

 

 
πCA
SRM
πCA-SRM

(b)

Fig. 4. Average direction of the projections obtained with the πCA scheme (squares), the SRM scheme (diamonds) and the πCA-SRM scheme (asterisks)
in signals with (a) Valt=10 μV and (b) Valt=60 μV.

either. ICA algorithms could yield better results with 12-lead

ECGs, such as those obtained in TWA clinical stress tests,

but their utility with ambulatory 2 or 3-lead ECGs seems

limited. According to our results, the preferred option for

TWA analysis in ambulatory ECG signals should be the πCA

scheme.
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