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Abstract— In this work we studied the classification perfor-
mance of feature models selected with a floating algorithm,
focusing in the generalization capability. The features were
extracted from the RR interval series, from all ECG leads and
different scales of the wavelet transform. The generalization was
studied using Physionet databases. In all databases the AAMI
recommendations for class labeling and results presentation
were followed. A floating feature selection algorithm was used
to obtain the best performing and generalizing models in the
training and validation sets for different search configurations.
The best model found includes 8 features, was trained in a
partition of the MIT-BIH Arrhythmia database, and was eval-
uated in a completely disjoint partition of the same database.
The results obtained were: global accuracy of 93%; for normal
beats, sensitivity (S) 95%, positive predictive value (P+) 98%;
for supraventricular beats, S 77%, P+ 39%; for ventricular
beats S 81%, P+ 87%. This classifier model has less features
and performs better than other state of the art methods with
results suggesting better generalization capability.

I. INTRODUCTION

Cardiovascular diseases are currently the biggest single
cause of death in developed countries according to their
public health agencies. The analysis of the electrocardio-
graphic signal (ECG) provides a noninvasive and inexpensive
technique to analyze the heart function for different cardiac
conditions. One important analysis performed in the ECG is
the classification of heartbeats, which is important for the
study of arrhythmias.

Many algorithms for ECG classification were developed in
the last decade [1]–[4], but only few of them have completely
comparable methodologies and therefore results [2], [3]. The
Association for the Advancement of Medical Instrumentation
(AAMI) recommendations [5] for class labeling and results
presentation have eased this problem, and at the present
time it is broadly accepted [2]–[4]. Regarding to the classes
of interest, the AAMI recommendation suggests 5 classes:
supraventricular (S) and ventricular (V) ectopic beats, fusion
of normal and ventricular beats (F), a class including paced
beats, fusion of paced and normal beats and beats that cannot
be classified (Q), and finally a normal or bundle branch block
beats (N) [5]. It is remarkable that all previous works were
interested in discriminating between N and V classes, but
only few of these works studied the multiclass classification
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problem [2], [3]. In terms of the data division, some works
performed a beat-oriented division no matter which subject
the heartbeats belong to, with the inconvenience that some-
times heartbeats from some subjects were included in both
the training and testing datasets [4]. It was shown in [2]
that this approach leads to an optimistic bias of the results,
being more advisable a patient-oriented division, as it will
also happen in the application scenario where the algorithm
is to be used.

The objective of this work is to develop and evaluate a
heartbeat classification model including the most discrim-
inating features, in order to achieve the best performance
in a multidatabase context. The algorithm developed will
be completely automatic, compliant with AAMI recommen-
dations, based on a simple classifier and robust features
with physiological meaning. The developed classifier will be
compared with [2], the best performing multiclass classifier
to our best knowledge.

II. METHODOLOGY

A. ECG databases

In this work we used the well-known MIT-BIH Ar-
rhythmia database (MIT-BIH-AR) for training and testing
purposes. Additionally, the MIT-BIH Supraventricular Ar-
rhythmia database (MIT-BIH-SUP) was used for validation
purposes. All databases are described and freely available
on Physionet [6]. We adopted the training (DS1) and test
(DS2) set division scheme used in [2] to allow comparison.
The AAMI Q class (unclassified and paced heartbeats) was
discarded since it is poorly represented in all databases. A
similar limitation occurs with the fusion (F) AAMI class,
but instead of discarding the heartbeats of this class, a class-
labeling modification to the AAMI recommendation was
adopted. It consists in considering fusion (of normal and ven-
tricular beats) and ventricular classes, as the same ventricular
class. We will refer to this modification as AAMI2 labeling.
The division scheme and class presence is summarized in
Table I.

B. Signal processing

The sampling frequency of the MIT-BIH-SUP was first
resampled to 360 Hz to become compatible with respect to
the MIT-BIH-AR. This was performed with a tenth order
lowpass filter without observing any notorious distortion.
All recordings in all databases were first preprocessed to
remove artifacts as described in [2]. No energy or amplitude
normalization was done, as we were interested in some
amplitude related features. Many of the considered features
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TABLE I
SCHEME OF THE DIVISION OF THE MIT-BIH-AR DATABASE. RECORDINGS WITH PACED BEATS WERE EXCLUDED. HEART BEATS CLASSES ARE N:

NORMAL, S: SUPRAVENTRICULAR, V: VENTRICULAR AND F: FUSION. BELOW THE DETAILS OF THE DATASET RECORDING DIVISION PERFORMED IN

THE MIT-BIH-AR DATABASE FOR BUILDING TRAINING (DS1) AND TESTING (DS2) SETS.

MIT-BIH-AR Arrhythmia
Dataset purpose N S V F #Rec
DS1 train 45673 929 3755 412 22
DS2 test 44053 1833 3202 388 22

MIT-BIH-SUP validation 161902 12083 9897 193 78

Dataset MIT-BIH-AR recordings

DS1
101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,
124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230

DS2
100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,
212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234

are based on the discrete wavelet transform (DWT) of the
ECG signal. We used the derivative of a smoothing function
(quadratic spline) as the prototype wavelet, resulting the
different scales of the DWT as a smoothed derivative of
the ECG. As a result, the DWT retains at certain scales
the useful information present in the ECG in form of
absolute maxima and zero-crossings. See [7] for details in
the DWT implementation for ECG delineation. Following the
conclusions of [7], the resulting WT framework allows an
analysis robust to the typical interferences present in routine
ECG recordings, so the features derived from the DWT could
inherit this desirable property.

C. Heartbeat classification: classifier and features

Under the assumption of independent and normally dis-
tributed data, using the maximum a posteriori criterion
(MAP) we reach to the quadratic discriminants func-
tions, broadly used for classification purposes. The general
quadratic discriminant functions for feature vectors x, and
the i-th class can be written as

gi(x) = −1

2
xTΣ−1

i x + µT
i Σ−1

i x− 1

2
µT

i Σ−1
i µi

−1

2
log(|Σi|) + log(P (ωi)) (1)

The classification rule assigns x to the class i which results
in the maximum posterior probability gi(x). Being µi, Σi

and P (ωi) the mean vector, covariance matrix and prior
probability of the i-th class. The values of µi and Σi were
computed as the sample mean and covariance matrix. The
values for the prior probabilities P (ωi) were considered the
same for all classes. In the case that the covariance matrix Σ
is considered to be unique for all classes (Σi = Σj ,∀i 6= j),
the quadratic discriminant classifier (QDC) becomes linear
in x leading to the linear discriminant classifier (LDC) where
Σ can be estimated as the weighted sample covariance

Σ =

∑C
i=1 wi

∑Mi

m=1(xi(m)− µi).(xi(m)− µi)
T∑C

i=1 wi.Mi

. (2)

The class-weighting possibility is interesting due to the heavy
class-size unbalance inherent to this application, where the
normal class is in general one order of magnitude more
represented that other classes. We refer as LDC to the linear
classifier where wi = wj ,∀i 6= j, any other weight scheme
will be referred as compensated linear classifier (LDC-C).

Following the conclusions of previous works [1], [2],
we included in our model both interval and morphological

features. As interval features we used features from the RR
sequence RR[i − 1], RR[i] and RR[i + 1] to describe the
local time evolution of the heart rhythm. In order to assess
the local variation of the heart rhythm, the feature RRV [i] =∑1

j=−1 |dRR[i− j]| (being dRR[i] = RR[i] − RR[i − 1])
comprehends the variation in the surrounding heartbeats. We
also included estimates of the local and global rhythm by
the mean RR interval in the last 1, 5, 10 and 20 minutes
(RRP being P ∈ {1, 5, 10, 20}, the interval in minutes of
aggregation).

As morphological features we considered the QRS width,
from the vectocardiogram (VCG) loop constructed with the
two available leads we calculated the maximum modulus of
the QRS loop and the angle of the loop at this position.
Other morphological features were calculated from peak
amplitudes and positions from the fourth scale of the DWT,
since this scale has good projection of the ECG information
(between 12.25–22.5 Hz). From the same scale of the DWT,
the autocorrelation sequence for both leads (rx(k) and ry(k))
and the inter-lead cross-correlation signal (rxy(k)) were
calculated within a time window which starts 130 ms before
the fiducial point and ends 200 ms after. Then we calculated
for the 3 correlation sequences the location and value of the
absolute maximum, and for rx and ry the location of the first
zero-crossing, as shown in Figure 1. One remarkable aspect
is that features calculated from the correlation signals will
essentially be synchronized in time, even if the fiducial point
is not accurately determined.

The complete set of features consists of 39 features, related
to the heart rhythm and QRS complex morphology. It is
well known that low dimensional models generalize better to
examples not presented during the training phase, resulting
in a more robust and realistic classifier. In order to obtain
the smallest and best performing model, a sequential floating
feature selection algorithm (SFFS) was used [8].

D. Experiment Setup

In this work we are interested in finding a small, well per-
forming and generalizing model in a multidatabase context.
The experiment can be divided in three steps:

1) The first step is to find the best performing model
from the pool of available features in the training (DS1
of MIT-BIH-AR) and validation (MIT-BIH-SUP) sets, as is
shown in Figure 2a. For the model (or features) selection we
used all data except DS2 of the MIT-BIH-AR, which was
reserved for the final performance evaluation (test set) as in
[2]. Each iteration of the SFFS algorithm, the current model
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Fig. 1. Illustration of the features calculated from the wavelet correlation
signals for the same normal and ventricular beats. The autocorrelation signal
of the QRS complex at scale 4 is shown for both leads (rx and ry) as well
as the cross-correlation signal (rxy) at the bottom. The zero-crossings and
peaks of interest are indicated with an asterisk.

was trained in DS1 of MIT-BIH-AR and its performance
was evaluated in the MIT-BIH-SUP database, ensuring in this
manner the generalization of the selected models. As the data
divisions in both databases does not share any recording, the
features selected should retain the generalization properties.
Several parameter configurations were studied for the SFFS
algorithm, like the effect of the classifier (LDC, LDC-C
and QDC) and the optimization criterion for the search.
The optimization criteria used were the mean class positive
predictive value (JP+ ) and the mean class sensitivity (JS).
The weight compensation used in the experiments for the
LDC classifier is wN = 1, wS = 10 and wV = 10.

2) The second step is the selection of the best performing
model, among the best models obtained with the SFFS for the
different parameter configurations in the previous step. For
that purpose, we compare the results obtained in the union
set of DS1 of MIT-BIH-AR dataset and the MIT-BIH-SUP
database, using a recording-based k-fold cross validation
with k = 10 recordings, as it is shown in Figure 2b.

3) Finally the performance of the selected model is eval-
uated in DS2 for comparison with [2], as shown in Figure
2c.

All experiments described in this work will focus to
achieve automatic classification between the three AAMI2
classes (N, S and V’), since the fusion class is poorly
represented in the databases used. The restrictions imposed
by the recording-oriented division of the data, and the fact
that only a few recordings concentrates the majority of
the examples of the fusion heartbeats, makes unfeasible

Fig. 2. In the picture a block diagram describing the experiments performed
in this work is shown. In panel A the feature selection algorithm is
summarized, indicating the train and validation dataset division, as well
as the different parameters of the algorithm. In panel B is shown the
methodology to obtain the best performing model among the different
searches performed. Finally in panel C, the best performing model is
selected for the final performance evaluation in the test dataset.

to perform the feature selection using the original AAMI
labeling.

III. RESULTS

The results of the experiments described in the previous
section are presented in tables II and III. In table III, balanced
performance calculation means that all rows (or classes) in
the confusion matrix were scaled to sum the same. This is
equivalent to repeat examples of the less represented classes,
in order to balance the class presence. The best model found
was an LDC-C with 8 features, trained in the DS1 of the
MIT-BIH-AR. The features were ln(RR[i]), ln(RR[i+ 1]),
ln(RR1), ln(RR20), kxZ , kyZ , kxM and kyM .

IV. DISCUSSION AND CONCLUSIONS

The best model found consists of 8 features, and as can be
noted, the selected features are computed without exception
from time interval measurements. This could be explained
given that the used databases, do not always include the
same pair of ECG leads in each recording, and naturally the
classification performance of features which are calculated
from amplitudes are heavily degraded. The first four features
in the model are clearly connected to the evolution of heart
rhythm, while the other four can be understood as surrogate
measurements of the QRS width, and therefore the QRS
morphology. As a result, the model found has the evident
advantage of a lower size, which results in a computational
saving and lower error in the parameter estimation during the
training phase. In addition, it only relies on the QRS fiducial
point detection, making the classifier model robust to signals
where the delineation of the ECG waves is not reliable.

In this work we have developed and evaluated a heartbeat
classification system focusing in the generalization capability
during the feature selection; as a result we obtained im-
provements in size and performance. In order to do this,
we included in the development the MIT-BIH-SUP database
[9], freely available in Physionet [6]. The limitation of a not
as well represented fusion class, is overcome by adopting
the alternative labeling AAMI2 proposed in this work. The
AAMI2 labeling could have a physiological interpretation
since the AAMI fusion class comprehends those heartbeats
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TABLE II
SUMMARY OF THE BEST PERFORMING MODELS FOUND WITH THE SFFS ALGORITHM SEPARATING ALL AAMI2 CLASSES ACCORDING TO FIGURE 2B.

THE BEST PERFORMING MODEL (IN BOLD) IS SELECTED FOR THE FINAL PERFORMANCE EVALUATION. THE RESULTS ARE EXPRESSED IN

PERCENTAGES.

Configuration parameters Model Evaluation
Opt. Resultant Normal Suprav. Ventr. Total

Classifier Crit. # Features S P+ S P+ S P+ A S P+

LDC-C JP+ 8 93 98 78 40 68 70 91 80 70
QDC JP+ 7 80 98 7 12 89 22 77 59 44
LDC JS 10 92 98 74 37 70 67 89 78 67
QDC JS 9 87 98 43 32 80 33 84 70 55
de Chazal et al. [2] 48 87 98 57 30 63 36 84 69 55

TABLE III
PERFORMANCE COMPARISON BETWEEN THE MODEL SUGGESTED IN THIS WORK AND THE REFERENCE CLASSIFIER [2] SEPARATING AAMI2 CLASSES

IN DS2 OF MIT-BIH-AR. BOTH MODELS WERE TRAINED IN DS1 OF THE SAME DATABASE. FIRST THE CONFUSION MATRICES FOR BOTH MODELS

ARE SHOWN, AND BELOW THE CLASS AND TOTAL PERFORMANCES ARE SUMMARIZED. THE PERFORMANCES ARE EXPRESSED IN PERCENTAGES FOR

BOTH, BALANCED AND UNBALANCED CLASS PRESENCE IN THE DATASET.

Tr
ut

h

de Chazal et al. [2]
Algorithm

n s v’ Total
N 40718 1863 1677 44258
S 307 1361 169 1837
V’ 235 845 2529 3609

Total 41260 4069 4375 49704

Tr
ut

h

This work
Algorithm

n s v’ Total
N 41950 2002 236 44188
S 216 1422 197 1835
V’ 473 222 2911 3606

Total 42639 3646 3344 49629

Performance Normal Suprav. Ventr. Total
calculation mode Classifier # Features S P+ S P+ S P+ A S P+

Unbalanced
This work 8 95 98 77 39 81 87 93 84 75

de Chazal et al. [2] 48 92 99 74 33 70 58 90 79 63

Balanced This work 8 95 79 77 88 81 88 84 84 85
de Chazal et al. [2] 48 92 80 74 73 70 84 79 79 79

which results from the simultaneous occurrence of normal
and ventricular heartbeats.

From the results obtained for the model selection presented
in Table II, several models that outperform the reference
classifier in the train and validation datasets were obtained.
The selected model corroborates the generalization capability
when is evaluated in heartbeats not considered during the
development phase, as shown in table III. It is worth to note
than the performance achieved by both compared classifiers
in Table II is lower for all classes than the obtained in the
final performance reported in Table III. This phenomenon
was also reported in the original work [2] suggesting further
corroboration of the performance achieved. The validity
of the generalization capability of the proposed model, is
somehow restricted to the available data, and should be
corroborated in future works by including new databases in
the analysis. Despite this limitation, the degree of general-
ization should be better than the works reviewed, which only
were developed considering the MIT-BIH-AR database. The
results presented in this work are an improvement regarding
to the size of the classification model and the performance
achieved.
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