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Abstract— A method for estimation of respiratory rate from
electrocardiogram (ECG) signals, based on variations in slopes
of QRS complexes, is presented. 12 standard leads, 3 leads from
vectorcardiogram (VCG), and 2 additional non-standard leads
derived from VCG loops were analysed. A total of 34 slope
series were studied, 2 for each analysed lead: slopes between
the peak of Q and R waves, and between the peak of R and
S waves. Information of QRS slopes series was combined in
order to increase the robustness of estimation.

Evaluation is performed over a database containing ECG
and respiratory signals simultaneously recorded in 17 subjects
spontaneously breathing during a tilt table test. Respiratory
rate estimation is performed with information of 4 different
combinations of QRS slope series. The best results in respira-
tory rate estimation error terms are 0.72±4.34% (0.46±7.59

mHz). These results outperform those obtained with other
known methods, motivating the use of QRS slopes to obtain
reliable respiratory rate estimates.

I. INTRODUCTION

Monitoring respiration is important in many situations, e.

g., an abnormal respiratory rate is a sensitive early indicator

of critical illness [1].

The respiratory signal is usually recorded with techniques

like spirometry, pneumography, or plethysmography. These

techniques require the use of cumbersome devices that may

interfere with natural breathing, and which are unmanage-

able in certain applications such as ambulatory monitoring,

stress testing, and sleep studies [2]. Consequently, obtaining

respiratory information from non–invasive devices is useful

in several applications.

Many algorithms for deriving respiration from electro-

cardiogram (ECG) have been developed, some of them

are collected in [3]. These algorithms can be classified by

the type of information they explode: beat occurrence time

instants and/or beat morphology.

On one hand, it is well known that respiration influences

heart rate, making it higher during inspiration than during

expiration. On the other hand respiration also affects the ECG

measurements through electrode movements with respect to

the heart and changes in the thorax impedance distribution

due to filling and emptying of the lungs, which causes a
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rotation of the electrical axis of the heart having effect on

beat morphology [3].

Several methods were studied in [2] and [4], based on heart

rate, QRS complexes amplitude, QRS complexes area, and

electrical axis rotation angles, being this last method the one

which offered the best results in respiratory rate estimation

(from ECG) error terms. Recently, a respiratory modulation

in QRS complexes slopes was observed and mentioned in

[5], although it was not studied. In this work, QRS slopes

are proposed to estimate respiratory rate from the ECG. A

total of 34 ECG derived respiration (EDR) signals based on

QRS slopes are studied.

Respiratory rate is estimated by a time–frequency tech-

nique presented in [4], which can combine information

from several EDR signals offering robust estimates. For

comparison purposes, electrical axis rotation angles EDR

signals are analysed in the same way than QRS slopes based

ones.

II. METHODS

A. Signal acquisition and preprocessing

The database used for evaluation is the same used in [4]. It

contains 17 (11 men) registers from volunteers, aged 28.5±
2.5 years, during a tilt table test according to the following

protocol: 4 minutes in early supine position, 5 minutes tilted

head-up to an angle of 70◦, and 4 minutes to later supine

position. Table takes 18 s to tilt during transitions.

The standard 12 lead ECG was recorded with a sam-

pling rate of Fs = 1000 Hz, and the respiratory signal

was recorded by a plethysmography-based technique with

a sampling rate of 125 Hz. Vectorcardiogram (VCG) was

synthesized using the inverse Dower matrix obtaining its 3
orthogonal leads denoted lX(n), lY(n), and lZ(n) in this paper.

QRS complexes in all ECG leads were detected using

the ECG analysis software Aristotle [6], normal sinus beat

locations nNl,i
were determined according to [7], and baseline

wander was removed by cubic-spline interpolation. Then,

wave delineation was performed using a wavelet-based tech-

nique [8] determining among other points, nQl,i
, nRl,i

, nSl,i
,

and nONl,i
, which denote Q peak, R peak, S peak (or QRS

end when no S wave is present), and QRS onset, of the ith

QRS complex in lead l, respectively. Fig. 1 illustrates these

points.

B. Non-standard leads

In addition to the 12 standard leads and the 3 orthogonal

leads of the VCG, 2 other non-standard leads were derived

in order to study their QRS slopes: the loop derived lead

(LDL), and the N loops derived lead (NLDL).
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The first one, LDL, was presented in [5] and represents

the projection of VCG loop onto dominant direction ui of

the ith QRS loop, obtained by maximizing the following

equation:

ui = [uXi
, uYi
, uZi
]
T
= [lX(n0i), lY(n0i), lZ(n0i)]

T
(1)

being

n0i = argmax
n∈ΩQRSi

[

l2
X
(n) + l2

Y
(n) + l2

Z
(n)
]

(2)

where ΩQRSi
is a 140 ms interval starting 10 ms before the

earliest QRS onset in the 3 VCG leads nONi
:

nONi
= min

{

nONX,i
, nONY,i

, nONZ,i

}

(3)

ΩQRSi
= [nONi

− 0.01Fs, nONi
+ 0.13Fs] . (4)

Then, the LDL lLDL(n) is computed at each beat and then

concatenating as:

lLDL(n) =
[lX(n), lY(n), lZ(n)]ui

||ui||
, ∀n ∈ ΩQRSi

(5)

Note that lLDL(n) follows the beat-to-beat variations of

the dominant direction of QRS loop, and these variations

are in part, due to respiration [2] so cancelling them may

result counter-productive in this application. For this reason,

a new QRS loop derived lead, NLDL, is proposed in this

paper. NLDL is similar to LDL with only one difference:

the direction which the VCG is projected onto is estimated

with the first N beats and it is not updated, as define:

ū =

N
∑

i=1

{

ui

||ui||

}

(6)

lNLDL(n) =
[lX(n), lY(n), lZ(n)] ū

||ū||
(7)

being N set to 5 beats in this work.

C. QRS slopes measurement algorithm

QRS slopes measurement algorithm was presented in [9].

Two slopes are measured: upward slope of the R wave (IUSl,i
)

and downward slope of the R wave (IDSl,i
).

Once nQl,i
, nRl,i

, and nSl,i
are determined as described in

Section II-A, the time instants associated with the maximum

slopes of the ECG signal between nQl,i
and nRl,i

, and

between nRl,i
and nSl,i

are computed as:

nUl,i
= max
n∈[nQl,i

,nRl,i ]
{|l′l(n)|} (8)

nDl,i
= max
n∈[nRl,i

,nSl,i ]
{|l′l(n)|} (9)

where l′l(n) is the first derivative of lead l:

l′ln) = ll(n)− ll(n− 1). (10)

Finally, a straight line is fitted in the least squares sense

to the ECG signal in two 8 ms-length intervals, one of them

centred at nUl,i
and the other one at nDl,i

. The slopes of

this lines are denoted IUSl,i
and IDSl,i

, respectively. Fig. 1

illustrates relevant points in this algorithm. The length of

interval in which the least squares adjustment is performed,

represents a trade-off between the robustness of estimation

and the possibility of taking samples which not correspond

to the estimating slope. The 8 ms value has shown to deal

successfully with this trade-off situation.
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Fig. 1. Relevant points in the slope measurement algorithm, over a QRS
from lNLDL(n).

D. Electrocardiogram derived respiration signals

1) From QRS slopes: Each QRS slope series leaded to

an EDR signal generated by assigning to each normal sinus

beat occurrence nNl,i
, an amplitude value proportional to its

associated QRS slope:

du{US, DS}l
(n) =

∑

i

I{US, DS}l,i
δ
(

n− nNl,i

)

(11)

where the superindex “u” denotes the signal is unevenly

sampled. These signals were processed as in [4]: first, a

median absolute deviation (MAD)-based outlier rejection

rule was applied, then, a 4 Hz evenly sampled version of each

EDR signal was obtained by cubic splines interpolation and,

finally, a band-pass filter (0.075–1) Hz was applied. These

filtered signals are denoted with the same nomenclature than

the unevenly sampled versions, but without the superindex

“u”, e. g., dUSNLDL
(n) is the 4-Hz, outlier-rejected, evenly

sampled, band-pass filtered version of du
USNLDL

(n).
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Fig. 2. Example of some EDR signals: a) dUSNLDL
(n) and dUSLDL

(n), b)
dDSNLDL

(n) and dDSLDL
(n), and c) respiratory signal for visual comparison.
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Fig. 3. Example of peak-conditioned averaged running spectra obtained from the studied combinations: a) 12ECG, b) LDL, c) VCG, d) Φ, e) NLDL, and
f) from the reference respiratory signal sR(n). Estimated respiratory rate from each combination is plotted with continuous black line over its associated
time–frequency map, and reference respiratory rate obtained from sR(n) is plotted with slashed black line over all time–frequency maps.

A total of 34 EDR signals were studied corresponding to

IUSl,i
and IDSl,i

in the 17 leads. Fig 2 shows an example of

some of these EDR signals.

2) From electrical axis rotation angles: For comparison

purposes, three additional EDR signals based on the elec-

trical axis rotation angles were obtained by the algorithm

presented in [2] based on spatio-temporal alignment of

successive QRS–VCG loops with respect to a reference loop.

These three EDR signals were processed in a similar way to

the QRS slopes EDR ones. Resulting signals are denoted

dΦX
(n), dΦY

(n), and dΦZ
(n) in this paper.

E. Reference and delay correction

The reference respiratory signal was also resampled to

4 Hz and (0.075–1) band-pass filtered, leading to a signal

denoted sR(n) in this paper. Then, the delay of each EDR

signal with respect to the reference signal is estimated as the

point in which the absolute value of cross-correlation r(τ)
reaches its maximum value. This delay is constrained to 1 s

as defines:

τ{US, DS}j
= argmax

τ∈[0,1]

{∣

∣

∣
rsR,d{US, DS}j

(τ)
∣

∣

∣

}

. (12)

The series alignment is performed to avoid mismatches in

the time allocation of the respiratory frequency estimation

from the different EDR signals.

F. Respiratory rate estimation algorithm

Respiratory rate estimation algorithm was presented in [4]

and it is applied in this work using the same values for

all parameters. This algorithm allow to combine information

of several respiratory signals, increasing the robustness of

the estimation. It consists of two different phases: power

spectrum estimation, and “peak-conditioned” averaging.

For power spectrum estimation of jth EDR signal and

kth running interval Sj,k(f), the algorithm uses the Welch

periodogram. Every 5 s, a 42 s spectrum is estimated by

averaging spectra obtained from subintervals of 12 s using

an overlap of 6 s.

Once all the Sj,k(f) are computed, for each one of them,

a peak f II

p(j, k) is chosen as respiration peak based on

its amplitude and its proximity to a respiratory frequency

reference fR(k − 1) obtained from previous (k − 1) steps.

This peak must be inside a reference interval ΩR(k) that

represents the band in which respiration is estimated to be.

Subsequently, the peakness of Sj,k(f) is computed as the

percentage of power around f II

p(j, k) with respect to the total

power in ΩR(k). Then, the Sj,k(f) are peak-conditioned

averaged leading to S̄k(f), which means that only those

Sj,k(f) whose peakness fulfil 2 criteria take part in the

average. The 2 peakness criteria are threshold-based, being

one of them a fixed threshold (only peaked spectra take part

in the average), and the other one a time-varying threshold

which depends on the maximum peakness reached by all

spectra at each time instant (only the most peaked spectra

at each time instant take part in the average). Subsequently,

the respiratory rate f̂(k) is estimated from a peak of S̄k(f)
whose choice is also based on its amplitude and its proximity

to fR(k − 1). Further details are given in [4].

Respiratory rate was estimated from each one of the 34
QRS slopes-based EDR signals, from each one of the 3
electrical axis rotation angle series, and from 5 combinations:

QRS slopes of the 12 standard leads (24 EDR signals)

(12ECG), QRS slopes of the 3 leads from the VCG (6
EDR signals), QRS slopes of the LDL (2 EDR signals),

QRS slopes of the NLDL (2 EDR signals), and electrical

axis rotation angle series (3 EDR signals) (Φ). Fig. 3

shows an example of respiratory rate estimation from these

combinations.

G. Performance measurements

This work uses the same performance measurements than

[4]. They are based on absolute (eA(k)) and relative (eR(k))
error signals:

eA(k) = f̂d − f̂RES(k) (13)

eR(k) =
eA(k)

f̂RES(k)
× 100 (14)
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where f̂d(k) and f̂RES(k) are the respiratory rates estimated

from the evaluated EDR signals or combination of them, and

sR(n), respectively. Note that the same absolute differences

can correspond to very different relative error due to the

f̂RES(k) normalization.

III. RESULTS

In order to evaluate the EDR signals, the mean and stan-

dard deviation (STD) of both eA(k) and eR(k) signals were

computed for each subject and, subsequently, the intersubject

mean of both means and STDs as in [4].

Table I shows the results obtained from each one of the

combinations described in Section II-F, and the best and

worst results obtained estimating respiratory rate individually

from each one of EDR signals which take part of them.

The criterion used for choosing best and worst results was

the minimum (best) and maximum (worst) of the sum of

intersubject means of means plus STDs of eR(k). Note that

for the combinations LDL and NLDL, results obtained with

all individual estimations are shown, since only 2 EDR

signals take part on these combinations.

TABLE I

INTER–SUBJECT MEAN OF MEANS AND STDS OF eA(k) AND eR(k).

eR(k) [%] eA(k) [mHz]

Mean STD Mean STD

1
2

E
C

G Combination 0.66% 5.07% 0.50 9.27

Best (dDSV2
(n)) 0.19% 5.75% −1.42 11.37

Worst (dDSaVL
(n)) 5.19% 24.45% −1.66 44.74

V
C

G

Combination 0.70% 5.55% 0.32 9.81

Best (dUSX
(n)) 0.12% 8.55% 0.31 16.33

Worst (dUSY
(n)) 10.61% 19.59% 9.61 33.53

L
D

L

Combination 0.78% 4.46% 0.63 8.17

dUSLDL
(n) 0.37% 6.41% −0.63 11.61

dDSLDL
(n) 5.28% 13.56% 6.45 23.78

N
L

D
L Combination 0.72% 4.34% 0.47 7.59

dDSNLDL
(n) 2.53% 8.21% 2.42 12.75

dUSNLDL
(n) 8.66% 8.22% 9.26 15.09

Φ

Combination 1.82% 6.84% 2.17 11.87

Best (dΦX
(n)) 4.28% 10.95% 5.07 17.27

Worst (dΦY
(n)) 24.37% 31.28% 30.32 48.99

IV. DISCUSSION AND CONCLUSIONS

In this paper, several methods for the estimation of respi-

ratory rate from the ECG signal have been presented. They

explode the changes that respiration causes in morphology

of the QRS complexes, particularly the variations in their

slopes.

Combinations obtained results that outperform those ob-

tained individually for EDR signals, demonstrating the ad-

vantage of performing the combination.

Results obtained for combinations 12ECG (0.66 ±
5.07%; 0.50 ± 9.27 mHz) and VCG (0.70 ± 5.55%; 0.32 ±
9.81 mHz) are similar, and they are outperformed by those

obtained with combinations LDL (0.78±4.46%; 0.63±8.17
mHz) and NLDL (0.72± 4.34%; 0.46± 7.59 mHz). Results
obtained with NLDL are slightly better than those obtained

with LDL, probably because NLDL does not follow the

variations of electrical axis as LDL does, and these variations

are, in part, due to respiration [2].

Any of these results obtained with the methods based

on QRS slopes outperform those obtained for the method

based on electrical axis rotation angles Φ, which was cho-

sen as reference method for comparison because in [4], it

obtained better results than any other ECG-based method

(2.05 ± 6.92%; 2.63 ± 11.50 mHz). In this work, results

obtained for this method Φ are slightly different (1.82 ±
6.84%; 2.17±11.87 mHz) even though the same database is

used for evaluation. This slight difference could be explained

by the delay correction, which was not performed in [4].

Nevertheless, in [2], it was demonstrated that electrical axis

rotation angles used in Φ are highly suitable for analysis of

ECG signals as noisy as those acquired during stress test

(results obtained were 5.9± 4%; 22± 16 mHz).

The combinations of QRS slopes studied in this paper

require a high number of electrodes (10 for the 12ECG,

and at least 7 for the VCG, LDL or NLDL). However, the

respiratory rate estimation algorithm could combine a smaller

number of series which would require a smaller number of

electrodes. Note that results obtained from dDSV2
(n) which

requires only 2 electrodes (0.19±5.75%;−1.42±11.37 mHz)

have also outperformed those obtained from the reference for

comparison method.

These results suggest that proposed methods based on

QRS slopes are highly suitable for respiratory rate estimation

from ECG signals even in non-stationary situations such as

tilt testing, but further studies must be elaborated in order to

test the behaviour of proposed methods with noisy signals.
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