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Abstract— Ventricular repolarization instability is known to
be related to arrhythmogenesis and increased risk of sudden
cardiac death. These repolarization dynamics are linked to
the distance between T-wave and Q-wave occurrances (QT)
on the ECG, and they are coupled with R-wave to R-wave
interval variability (RRV). Several efforts have been dedicated
to the analysis of QT-RR interactions in order to provide
both a quantification of the coupling and estimates of intrinsic
repolarization dynamics. However, a methodology able to quan-
tify dynamic changes in repolarization variability unrelated to
RRV dynamics is still needed. In this study, we propose a
bivariate model embedded within a multiple inhomogeneous
point-process framework to obtain time-varying tracking of
(causal) interactions between QT variability (QTV), a marker
of repolarization variability, and RRV. Data from 15 healthy
subjects undergoing a tilt table test were analyzed. Our results
demonstrate that the model effectively captures the time-
varying mutual QTV-RRV interactions. The analysis of time-
varying coherence confirms that head-up tilt is associated with
a decrease in linear QTV-RRV coupling, while time-varying
directed coherence shows that intrinsic QTV becomes more
prominent during head-up tilt.

I. INTRODUCTION

QT variability (QTV), i.e. the temporal difference between
consequent Q and T waves in the ECG, is a marker of
ventricular repolarization instability [1]. QTV is influenced
by autonomic nervous system (ANS) activity and several
other non-autonomic factors [2]. Increased QTV is associated
with an increased risk of sudden cardiac death [3], [4].
Heartbeat dynamics, reflected in R-R interval variability
(RRV), significantly contributes to QTV [5]. However, the
contribution of RRV to QTV may confound and reduce the
predictive value of intrinsic QTV [4], i.e. the temporal fluc-
tuations of ventricular repolarization unrelated to RRV and
ANS control of the sinus node [1]. To this extent, the analysis
of dynamic QTV-RRV interactions could provide a novel
understanding of autonomic regulation of the cardiovascular
function as well as more accurate measures of the intrinsic
QTV.
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Recently, it has been shown that RRV-QTV coupling
can significantly change under different physiological and
pathological conditions, such as reduced vagal activity [5],
aging [6], and presence of acute myocardial infarction [7].
Estimates of RRV-QTV coupling have been achieved through
bivariate linear models [5], [6], [8]. This parametric represen-
tation allows for the calculation of frequency-domain mea-
sures of coupling (e.g., coherence (COH), partial coherence)
and causality (e.g., directed coherence (DC), partial directed
coherence) providing estimates of information transfer in
physiological processes [9]. Time-varying methods for the
detection of coupling or causality are strongly recommended
when dealing with non-stationary data (such as RR and QT
series) which are expected to reflect connectivity patterns
with significant changes over time [9]. Therefore, in this
study we investigate the temporal changes in COH and DC,
along with auto- and cross-spectral measures. We further ad-
dress the real-time R-wave, Q-wave, and T-wave occurrences
by embedding a standard bivariate model into a multiple
inhomogeneous point-process framework. Of note, the QT
interval is approximated by the RT interval [10], i.e., the
temporal distance going from the R-peak and the end of
the T-wave in the ECG. Given that RT refers to the waiting
time between two events, RT dynamics can also be suitably
modeled using a point-process framework [11].

The bivariate model accounts for the mutual linear inter-
action between RT and RR dynamics to describe the first
order moment of two coupled inverse-Gaussian probability
distributions. The two probability functions follow inde-
pendent temporal dynamics for the instantaneous parameter
estimation [12], thus accounting for a real-time assessment
of the RRV-RTV coupling. Other advantages defined by the
point-process theory include model goodness-of fit and no
need for interpolation methods on the series [13]–[16]. The
proposed methodology is tested using data recorded from
healthy volunteers undergoing head up tilt table tests. We first
quantify temporal changes in spectral features and coherence,
and then we use DC indices to quantify RRV linear contri-
bution to RTV, and assess how intrinsic RTV changes during
tilt. We investigate the newly derived instantaneous measures
of coupling and causality through variability measures of
the estimated indices along the experimental sessions (i.e.,
resting and tilted state). Averaged results are compared with
previous findings reporting on the powers of the RR and RT
spectral components and coherence [9].

II. METHODOLOGY OF STATISTICAL SIGNAL
PROCESSING

A. Multiple Inhomogeneous Point-Process Framework for
RR-RT Cardiovascular Dynamics

The point-process framework defines the probability of
having an event at each moment in time. In this study, we
define two parallel Inverse Gaussian-based inhomogeneous
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point-processes modeling the RR and RT dynamics, whose
interaction is implemented through the mutual linear depen-
dency of RR and RT autoregressive terms on the definition
of the first order moments. Let us consider a set of R-wave
events {u j}J

j=1, detected from the ECG, such that RR j =

u j− u j−1 > 0 denotes the jth R-R interval. We also define
t ∈ (0,T ] as the observation interval, 0 ≤ u1 < · · · < uk <
uk+1 < · · ·< uK ≤ T as the times of the events, and N(t) =
max{k : uk ≤ t} as the sample path of the associated counting
process. Its differential, dN(t), denotes a continuous-time
indicator function, where dN(t) = 1 when there is an event,
or dN(t) = 0 otherwise. The left continuous sample path is
defined as Ñ(t) = max{k : uk < t}.

The probability density function of the waiting time t−u j
until the next R-wave event is characterized by the following
inverse-Gaussian model [13]:

fRR(t|H RR
t ,ξ RR(t)) =

[
ξ RR

0 (t)
2π(t−u j)3

] 1
2

× exp
{
−1

2
ξ RR

0 (t)[t−u j−µRR(t,H RR
t ,ξ RR(t))]2

µRR(t,H RR
t ,ξ RR(t))2(t−u j)

}
(1)

where j = Ñ(t) is the index of the
R-wave event before time t, H RR

t =
(u j,RR j,RR j−1, ...,RR j−p+1,RT j,RT j−1, ...,RT j−q+1),
ξ RR(t) the vector of the time-varying parameters,
µRR(t,H RR

t ,ξ RR(t)) the first-moment statistic (mean)
of the distribution, and ξ RR

0 (t) > 0 the shape parameter of
the inverse Gaussian distribution.

As mentioned above, also the RT series can be modeled
as an inhomogeneous point process [11]. We define {v j}J

j=1
as the ordered set of T-wave events whose fiducial point
corresponds to the end of the wave. Then, let RT j = v j−u j >
0, as the jth RT interval. Therefore, for u j < t < v j it is
possible to define:

fRT (t|H RT
t ,ξ RT(t)) =

[
ξ RT

0 (t)
2π(t−u j)3

] 1
2

× exp
{
−1

2
ξ RT

0 (t)[t−u j−µRT(t,H RT
t ,ξ RT(t))]2

µRT(t,H RT
t ,ξ RT(t))2(t−u j)

}
(2)

Similarly to fRR(t|H RR
t ,ξ RR(t)), the

fRT (t|H RT
t ,ξ RT(t)) definition has H RT

t =
(u j,RR j,RR j−1, ...,RR j−p+1,RT j,RT j−1, ...,RT j−q+1),
ξ RT(t) the vector of the time-varying parameters,
µRT(t,H RT

t ,ξ RT(t)) the first-moment statistic (mean)
of the distribution, and ξ RT

0 (t) > 0 the shape parameter of
the inverse Gaussian distribution.

B. Modeling the First Order Moment of the Two Coupled
Inhomogeneous Point-Processes

The link between the two coupled inhomogeneous point
processes of the heartbeat and RT dynamics refers to the
mathematical representation of the first order moment of the
two inverse-Gaussian distributions. In this study, we adopted
the following bivariate linear modeling:

µRR(t,H RR
t ,ξ RR(t)) = a11(0, t)+

p

∑
i=1

a11(i, t)RRÑ(t)−i

+
q

∑
i=1

a12(i, t)RTÑ(t)−i (3)

µRT(t,H RT
t ,ξ RT(t)) = a22(0, t)+

p

∑
i=1

a21(i, t)RRÑ(t)−i

+
q

∑
i=1

a22(i, t)RTÑ(t)−i (4)

with alk(i, t) as the model coefficients which continuously
characterize the dynamic RR-RT interactions. In particular,
a11(i, t) and a22(i, t) account for the pure autoregressive con-
tribution of the RR and RT dynamics, respectively, whereas
a12(i, t) quantifies the linear contribution that the past RT
events have on µRR(t,H RR

t ,ξ RR(t)), and a21(i, t) quantifies
the linear contribution that the past RR events have on
µRT(t,H RT

t ,ξ RT(t)), whereas i indicates the heartbeats.
We use the Newton-Raphson procedure to maximize

the local log-likelihood defined in [13], [17], also using a
waiting function W (t−u j) = 0.98(t−u j), with t−u j ≤ 90 s, to
estimate the unknown time-varying parameter sets ξ RR(t) =
[ξ RR

0 (t),a11(0, t),a11(1, t), ...,a11(p, t),a12(1, t), ...,a12(q, t)]
and ξ RT(t)= [ξ RT

0 (t),a22(0, t),a22(1, t), ...,a22(p, t),a21(1, t),
...,a21(q, t)]. Each model goodness-of-fit is evaluated by
Kolmogorov-Smirnov (KS) distance and autocorrelation plot
[13]. KS distance measures the largest distance between
the cumulative distribution function of RR and RT series
transformed to the interval (0,1] by using the time rescaling
theorem [13], and the cumulative distribution function of a
uniform distribution on (0,1]. The smaller the KS distances,
the closer is the agreement between original RR and RT
series and the proposed model.

C. Instantaneous Coupling and Causality Assessment of the
dynamic RR-RT interactions

1) Time-frequency representations: Once the model’s pa-
rameters have been derived, the instantaneous auto- and
cross-spectra, as well as measures of COH and DC are
calculated. Let us define the time-varying coefficient matrix
Ai(t) as:

Ai(t) =
[

a11(i, t) a12(i, t)
a21(i, t) a22(i, t)

]
(5)

This matrix can be projected from the time-lag domain to
the frequency domain by Fourier transform:

A(t, f ) =
M

∑
i=1

Ai(t)e− j2π f i, H(t, f ) = [I−A(t, f )]−1 (6)

where H(t, f ) is the non-stationary transfer function of
the system, and M is the order of the model M = max(p,q).
Spectra, Slk(t, f ), coherence γlk(t, f ) and directed coherence
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γDC
lk (t, f ) are defined, for {l,k} ∈ {1,2}, as [9]:

Slk(t, f ) =
2

∑
m=1

Hlm(t, f )σ2
m(t)H

∗
km(t, f ) (7)

γlk(t, f ) =
Slk(t, f )√

Sll(t, f )Skk(t, f )
(8)

γ
DC
lk (t, f ) =

σk(t)Hlk(t, f )√
σ2

1 (t)|Hl1(t, f )|2 +σ2
2 (t)|Hl2(t, f )|2

(9)

where

σ1(t) =
√

µRR(t,H RR
t ,ξ RR(t))3(t)/ξ RR

0 (t);

σ2(t) =
√

µRT(t,H RT
t ,ξ RT(t))3(t)/ξ RT

0 (t) (10)

are used as estimates of RR and RT variability, re-
spectively. Coherence |γlk(t, f )| = |γkl(t, f )| quantifies the
strength of the RR-RT linear local coupling, whereas
|γll(t, f )|= |γkk(t, f )|= 1. Directed coherence γDC

lk (t, f ) rep-
resents the ratio between the part of Sll(t, f ) due to process k
and Sll(t, f ) [9]. By definition, |γDC

ll (t, f )|2+ |γDC
lk (t, f )|2 = 1.

In the proposed bivariate model, |γDC
lk (t, f )| is equal to the

magnitude of the partial directed coherence evaluated along
the same direction k→ l [9].

2) Estimation of Synchronization Indices: In order to
estimate the instantaneous indices of synchronization, a
time-varying spectral power calculated around the central
frequency flk,B(t) (i.e.,the instantaneous frequency of the LF
or HF spectral peak of |Slk(t, f )|) is defined as:

Ωlk,B =

{
(t, f ) ∈ [R+×B]

∣∣ f = f jk,B(t)±
∆F

2

}
(11)

where B ∈ {LF,HF}, LF∈ [0.04− 0.15] Hz, HF∈ [0.15−
0.40] Hz, TOT∈ [0−0.45] Hz, and ∆F = 0.1 Hz is the width
of Ωlk,B. Moreover, Ωlk,TOT = [0.04− 0.45] Hz. Note that
flk,B(t) is estimated only if a spectral peak is detected in
f ∈ B. The ratio between the power calculated in LF and
HF bands are BalRR and BalRT , referring to the RR and RT
estimates, respectively.

In addition, instantaneous powers, Pl,B(t), coherence,
γlk,B(t), and directed coherence, γDC

lk,B(t) are estimated as:

Pl,B(t) =
1

∆F

∫
Ωlk,B

Sll(t, f )d f (12)

γlk,B(t) = max flk,B γlk(t, f ) (13)

γ
DC
lk,B(t) = max flk,B γ

DC
lk (t, f ) (14)

along with their maxima P̂l,B(t), γ̂lk,B(t), γ̂DC
lk,B(t), and

average in frequency domain 〈Pl,B〉(t), 〈γlk,B〉(t), 〈γDC
lk,B〉(t).

III. EXPERIMENTAL PROTOCOL AND RESULTS

Extensive details on the experimental protocol are reported
in [18], [19]. Briefly, ECG recordings were acquired from 15
healthy volunteers (age: 28.5± 2.8, 11 males) undergoing a
head up tilt table test (standard lead V4 with a sampling
frequency of 1000 Hz). Each recording comprised three
stages: of 4 minutes in early supine position, 5 minutes
tilted head up to an angle of 70 degrees, and 4 minutes
back to supine position. Automatic algorithms for R-wave

TABLE I: Results estimated across subjects during the three
stages of the experimental protocol.

Indices of RR-RT interaction
Index Rest Head Up TIlt Rest p-value

µRR [ms] 991.2±58.4 788.6±81.1 984.0±41.2 < 10−6

µRT [ms] 382.3±17.3 345.8±7.7 376.2±14.1 < 10−6

σ2
RR [ms] 605.4±318.3 172.2±155.8 520.0±284.7 < 0.02

σ2
RT [ms] 5.8±1.7 7.6±2.4 7.3±2.8 < 0.04

BalRR 1.809±1.131 5.241±2.848 1.059±0.876 < 0.005
BalRT 0.485±0.218 0.621±0.273 0.430±0.184 n.s.
γ̂DC

12,LF 0.568±0.099 0.479±0.060 0.557±0.101 < 0.03
γ̂12,HF 0.929±0.049 0.849±0.062 0.916±0.052 < 0.003
〈γDC

11,TOT 〉 0.884±0.017 0.916±0.019 0.905±0.021 < 0.02
〈γDC

12,TOT 〉 0.412±0.020 0.352±0.025 0.369±0.043 < 0.01
〈γDC

21,TOT 〉 0.460±0.046 0.402±0.025 0.455±0.057 < 0.005
〈γDC

22,TOT 〉 0.848±0.030 0.872±0.019 0.860±0.028 < 0.005
p-values are from the Friedman non-parametric test
n.s. not significant

and T-wave detection were applied as described in [20]. Peak
detection errors and ectopic beats were detected by means of
our previously developed algorithm [14], based on the point-
process statistics (local likelihood), and able to perform a
real-time interval error detection and correction. Moreover,
RR and RT series were manually checked.

For each index X , the following steps were performed:
1) estimation of X through the series of each subject along
the three stages (supine, tilted, supine); 2) considering the
central 2 minutes of each stage, the median of X was
calculated for each subject and for each stage; 3) inter-
subject statistical analysis of X was performed through the
Friedman non-parametric test under the null hypothesis of
equal medians between the three experimental stages. All
results in this paper referring to the inter-subject statistics
are expressed as Median(X)±MAD(X), where MAD(X) =
Median(|X−Median(X)|). The model orders p= q= 7 were
chosen by preliminary KS goodness-of-fit analysis [13]. The
sampling rate at which the model parameters were updated
was set at 0.005 s, while all spectral indices were evaluated
after having downsampled coefficients to 4 Hz.

We found that the two coupled point-process models
performed a satisfactory prediction of the next RR and RT
events in all subjects. KS distance values were 0.0900±
0.0176 for the RR series and 0.1508±0.0322 for RT series.
Table I shows the inter-subject statistics for some relevant
indices. Figure 1 shows instantaneous trend and statistics of
γDC

22,TOT (t) which represents the intrinsic RT variability, i.e.,
the RT variability not linearly related to RRV. A significant
decrease during the tilt phase was found in the means
µRR and µRT, and variances σ2

RR and σ2
RT. No significant

differences were found among the rest and tilt sessions for
PRR,LF , PRR,TOT , and PRT,LF , PRT,HF , PRT,TOT . However, the
power PRR,HF significantly decreased and BalRR increased
during the tilt session than in supine position. A significant
decrease in the tilt phase with respect to the resting states was
observed in γ̂DC

12,LF , γ̂12,HF with p-value< 0.04. Significant
changes were observed also in RR-RT causality measures
such as 〈γDC

lk,TOT 〉 with {l,k} ∈ {1,2}. Of note, the maxima
γ̂DC

12,HF resulted decreased during the tilt phase considering
both its average and variability within the three sessions (p-
value< 0.01).
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Fig. 1: Instantaneous direct coherence γDC
22,TOT (t) (Top) and

related box plots (bottom) during the three stages of the
experimental protocol: first rest (T1), head up tilt(T2), and
second rest (T3).

IV. DISCUSSION AND CONCLUSION

In this study, we investigate a novel methodology to per-
form a real-time assessment of the RR-RT interaction using
multiple inhomogeneous point-process models. In particular,
a point-process framework including two separate probability
structures is defined for the RR and RT dynamics, where
their mutual interaction is considered in the definition of
the first order moments. Goodness of fit measures such
as KS and autocorrelation plots confirm that the proposed
probabilistic method is suitable for proper prediction of the
R- and T-waves by knowledge of past events detected from
the surface ECG. In addition to monovariate instantaneous
features defined in the time and frequency domain, we track
the strength and directionality of RR-RT coupling through
instantaneous coherence and directed coherence measures
[9]. Our results show expected changes as a result of passive
postural changes both in the time (µRR, µRT, σ2

RR, σ2
RT)

and frequency (PRR,HF and BalRR) domains, as well as
in γ12,HF . The instantaneous causality reveals that, during
tilt, RT variability due to heartbeat dynamics significantly
decreases, whereas the intrinsic RT variability increases.
Although this behavior is observed through the DC measures
on the whole spectrum, the most significant changes are
within the HF band. Interestingly, our results on 〈γDC

jk,TOT 〉
demonstrate that RT variability does not affect RR variability
as much as RR affects RT (〈γDC

12,TOT 〉 < 〈γDC
21,TOT 〉). More-

over, γ̂DC
12,HF significantly decreased during the tilt phase (p-

value< 0.01), suggesting a vagally-mediated mechanisms of
contraction and repolarization of the ventricle as related to
RR-RT coupling. The proposed framework confirms previous
findings [3], [5]–[7], and further yields important infor-
mation on the time-varying dynamics of RR-RT coupling.
This consideration also confirms that time-varying RR-RT
estimates provide valuable information for assessing ANS
control and cardiovascular dynamics. Future work will be
focused on devising novel nonlinear indices of causality
within a bivariate point-process model.
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