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Abstract— A mathematical model of the AP involves the sum
of different transmembrane ionic currents and the balance
of intracellular ionic concentrations. To each ionic current
corresponds an equation involving several effects. There are
a number of model parameters that must be identified using
specific experimental protocols in which the effects are con-
sidered as independent. However, when the model complexity
grows, the interaction between effects becomes increasingly
important. Therefore, model parameters identified considering
the different effects as independent might be misleading. In this
work, a novel methodology consisting in performing in silico
simulations of the experimental protocol and then comparing
experimental and simulated outcomes is proposed for param-
eter model identification and validation. The potential of the
methodology is demonstrated by validating voltage-dependent
L-type calcium current (/) inactivation in recently proposed
human ventricular AP models with different formulations.

Our results show large differences between /., inactivation
as calculated from the model equation and I, inactivation
from the in silico simulations due to the interaction between
effects and/or to the experimental protocol. Our results suggest
that, when proposing any new model formulation, consistency
between such formulation and the corresponding experimental
data that is aimed at being reproduced needs to be first verified
considering all involved factors.

I. INTRODUCTION

From the earliest mathematical model of the action poten-
tial (AP) developed by Hodgkin and Huxley in the fifties, the
complexity of current AP models has grown considerably.
The advent of new experimental techniques has made an
enormous set of experimental data readily available, which
has motivated the development of more complex models
to accurately describe cellular electrical activity. Whereas
growing in model complexity is a natural consequence of the
increased knowledge [1], the more complex the model, the
more difficult the identification of model parameters tends to
be.

A model of the AP involves the sum of different trans-
membrane ionic currents and the balance of intracellular
ionic concentrations. Each ionic current follows a mathemat-
ical formula in which several effects are present, e.g., ion
channel activation and inactivation gating. For each effect,
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a number of model parameters are identified based on data
from experimental protocols specific of each particular ionic
current. In most of the currently existing AP models in the
literature, parameter identification is performed by assuming
each effect as independent. At this point, validation of the
identified parameters is partially done by comparing the
prediction of the proposed mathematical model against the
experiment. However, when the model complexity grows, the
interaction between effects becomes increasingly important.
Therefore, model parameters identified considering the dif-
ferent effects as independent might be misleading. To avoid
this sort of problems new validation techniques that take into
account combined effects within each ionic current formula
are required.

In this work, a novel methodology for parameter model
validation accounting for interaction effects is presented. The
methodology consists in performing in silico simulations of
the experimental protocol using the intended mathematical
model of the effect and then comparing experimental and
simulated outcomes. The proposed methodology can be used
for validation and detection of inconsistencies between the
tested model and the set of experimental data the model aims
at representing, but also for model parameter identification.
The potential of the methodology is here demonstrated by
validating voltage-dependent L-type calcium current (I,,)
inactivation in recently proposed human ventricular AP mod-
els. I, inactivation plays a major role in the generation of
arrhythmogenic afterdepolarizations in a number of disease
states and conditions, and thus proper theorical characteriza-
tion is crucial when investigating arrhythmia mechanisms.

Human ventricular cell models in the literature use dif-
ferent formulations for /., inactivation. In the ten Tusscher
& Panfilov (TP06) model [2], inactivation is modeled as the
product of a fast f, and a slow f voltage-dependent gates,
and a calcium-dependent gate f.,ss. Gates have different time
constants (Ty2, Tr and Ty, ) and steady-state values (f2e,
foo and fiuss00). In the Grandi, Pasqualini & Bers (GPB)
model [3], voltage-dependent I, inactivation is modeled by a
single voltage-dependent gate f and two calcium-dependent
gates, one for the subsarcolemmal compartment, fc,, and
another one for the junctional compartment, fc, ;. In the
recently proposed O’Hara & Rudy (ORd) model [4] I,
inactivation is modeled as the multiplication and addition of
voltage-dependent gates (ff, feaf, fs» fcas> J) and a calcium-
dependent gate n. The n gate is modeled as a Markov chain.
All the other gates have different time constants, Tfys Ty
Tfouss Uoass and 7;, but the same steady-state value fy. All
the above mentioned models use only one voltage-dependent
I, activation gate d, which multiplies the inactivation gating
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Fig. 1. Paired-pulse voltage clamp protocol.

TABLE I
PAIRED-PULSE TEST PARAMETERS IN EXPERIMENTAL PROTOCOLS

Pelzman et al [S] Lietal [6] Magyar et al [7]
Vioia (mV) -45 -80 -80
Voulse (mV) 10 10 5
Vre,ini (V) -45 -100 -55
Vre.fin (mV) 40 60 15
AVpre (mV) 5 10 5
tpre (ms) 400 400 500
Lsep (ms) 10 5 0
toulse (MS) 400 300 390

expression in the I, formulation.

II. METHODS
A. Paired-pulse protocol in experiments and simulations

Voltage-dependent /., inactivation is experimentally char-
acterized using the paired-pulse protocol, which is graphi-
cally illustrated in Fig. 1. This protocol consists in clamping
the membrane potential from a holding potential Vj,4 to
different pre-pulse potentials V), during a specified time
interval #,,. After this time, the potential is clamped to a
pulse potential V5 during an interval ¢,,,s. Following this,
the membrane potential is clamped back to Vj,,;;. Variations
of this protocol introduce a separation between the pre-pulse
and the pulse potential, during which the potential is set to
Viota for a short period of time, ty,, before clamping the
membrane potential t0 V..

Different human ventricular cell models use different sets
of experimental data to define their voltage-dependent I,
inactivation functions. The TP06 model uses data from [5],
GPB from [6] and ORd from [7]. Table I shows the details
of the experimental protocols used to characterize steady-
state voltage-dependent I, inactivation in human ventricular
cardiomyocytes.

A MatLab program is implemented for each of the inves-
tigated AP models (Matlab R2008a, The MathWorks, Inc.).
To simulate the experiments, intracelluar and extracelluar
concentrations are fixed to the values used in the experimen-
tal procedures. All the currents except the I, are blocked.
By applying the inactivation protocol that has been used to
identify the model parameters in each case, the in silico
traces of the currents are obtained. This in silico protocol is
performed using the same values of Vioig, Vpre, and Vyuge
as in the corresponding experiments (see Table I). Also,
free intracellular calcium is fixed to zero in the simulations
to match the pipette solutions of the experiments. Calcium
concentrations in all the other intracellular compartments
follow the dynamics described in the corresponding model

equations. Models are solved using the odel5s MatLab
function with df = 0.1 ms for the output.

B. Measurement of steady-state voltage-dependent 1., inac-
tivation

Steady-state voltage-dependent I, inactivation is obtained
in the experiments and the in silico simulations during the
pulse. In this part of the test, peak I, current is measured for
each potential used as pre-pulse and results are normalized
by the value measured for the minimum pre-pulse potential.
In this work we have also calculated the voltage-dependent
steady-state inactivation as defined in each tested model.

C. Human ventricular cell models

For the analysis of this work we have selected the GPB,
TP06 and ORd models, each one representing I, inactiva-
tion with a different formulation: i) with a single voltage-
dependent gate (GPB model, f-d-(A;- fcaj+As - feas));
ii) as a multiplication of fast and slow voltage-dependent
gates (TPO6 model, f- f>-d- fouss); 1i1) as a weighted sum of
fast and slow voltage-dependent gates (ORd model, d- ((Ay, -
Tr+Ap - fs) - (L=n)+j-(Ar,, feaf + At feas) 1)) In each
case, A, represents the coeficients used in the weighted sums.

III. RESULTS

Results of the paired-pulse protocol for steady-state
voltage-dependent I, inactivation are shown in Fig. 2. Each
model is compared with the set of experimental data that
was used to characterize voltage-dependent I, inactivation.

Simulation results obtained with the GPB model fit quite
well the model definition (see Fig. 2(a)). Differences are
caused by the interaction with the voltage-dependent I,
activation gate d and by the protocol used to measured
fss» as substantiated in the following. As shown in Fig. 3,
the separation pulse makes a different effect depending on
the pre-pulse potential. For V,,, = —100 mV, the effect is
minimal because fy; is very similar for Vj,,; and for this
potential. On the other two cases shown, the value of f
increases during the separation pulse because the value of f
for V14 is larger than the values for V,, = =20 mV and V,,, =
60 mV. For this reason, as shown in Fig. 2(a), differences
between model definition and simulation increase when
fss decreases. Interaction with voltage-dependent activation,
represented by gate d, always reduces the measured value
but the nomalization approximately corrects this behavior.
Calcium-dependent inactivation gates have minimal effect,
as these gates are almost completely open during most of the
protocol duration. Finally, differences between experiments
[6] and in silico simulations increase where differences
between modeled and experimental data are larger.

The TP06 model is able to reproduce well enough the
experiments from [5] (see Fig. 2(b)). In this case, the
modeled steady-state voltage-dependent I, inactivation is
the product of the steady-states values (f2ss, fss) Of the
two inactivation gates (f2, f). The results from the in silico
simulations, which account for additional interaction effects,
are closer to the experimental data due to: i) the effect of the
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Fig. 2. Comparison between model definition (continuous and discontinuous lines), in silico simulations (red cross) and experimental results (green circles)

for fys. a) GPB model. b) TPO6 model. ¢c) ORd model.
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separation pulse; ii) the fact that the slow I, inactivation gate
does not reach steady-state during the pre-pulse; iii) the fact
that the minimum pre-pulse, used for the normalization of
the peak I, current, is not low enough for inactivation gates
to attain a value of 1. Fig. 4 shows that for the TPO6 model,
as for the GPB model, the separation pulse has no effect on
the inactivation gates for low potentials, but it increases their
values for high potentials. In particular, the slow inactivation
gate f does not reach steady-state for high potentials (see
Fig. 4 for V,,, = =5 mV and for V,, =40 mV). Fig. 4
also shows that calcium-dependent inactivation has not much
effect, being this slightly more pronounced at lower poten-
tials. Finally, one of the most visible differences between
the model outcome (multiplication of the steady-state values
of the gates) and the result of the in silico simulations is
that the curves are shifted. This shift makes the in silico
simulations approximate the experimental behavior due to
the performed peak current normalization, which is made at
a potential where the multiplication of the steady-state values
is less than one.

Simulation results with the ORd model are off the ex-
perimental data in the center of the curve (see Fig. 2(c)).
The largest difference appears when the pre-pulse potential
is —15 mV. The open probability at this potential is 18%
larger than that obtained in the experiments. Evolution of
the voltage-dependent I, gate variables during the pre-pulse
potential is shown in Fig. 5. This figure shows that for
medium and low potentials, the n gate is practically not
activated and the effects of the gates f; and f; dominate.
On the contrary, for high potentials, the effects of the gates
feafs feas and j prevail. This figure also shows that for
medium and high potentials, the fast inactivation gates reach
the steady-state value during the prepulse. However, the
slow inactivation gates are not able to reach the steady-
state value for the duration of the pre-pulse. For high pre-
pulse potentials, the predominant gate f,, is multiplied by
J, which is able to reach steady-state. The effects of this
product attenuate the discrepancies between simulations and
experiments for high potentials, while in the medium of the

400
time (ms)

200 400

time (ms)

Temporal evolution of the I¢,. gates (f, fca,j» fcast and d) during the simulation of the GPB model.

curve the discrepancy is very pronounced.

IV. DiscusioN

A methodology amenable for validating computational
model formulations has been introduced. The proposed
methodology consists in performing in silico simulations
using the same protocol as in the experiments that want
to be reproduced, thus considering all variables involved
in the model formulation as well as their interactions. The
methodology has been applied to validate voltage-dependent
inactivation of I., in three human ventricular AP models
presenting different formulations. Our results show large
differences between I, inactivation as calculated from the
model equation and I, inactivation from the in silico
simulations. This is due to the interaction between voltage-
dependent I, inactivation gating and additional effects like:
other gates in the model (i.e. I, activation gate), the protocol
definition, or the duration of the voltage pulses used to
calculate inactivation properties. This suggests that, when
proposing any new model formulation, consistency between
such formulation and the corresponding experimental data
that is aimed to be reproduced needs to be first verified
considering all involved factors.

A. Inactivation modeled with a single gate

The GPB model and the associated in silico simulations
provide similar results to the experiments used to fit the
steady-state value of the voltage-dependent inactivation gate.
Differences between in silico simulations and experimental
results come in this case mainly from the model fitting.
Our results suggest that a simple model like this one, with
only one voltage-dependent inactivation gate, suffices to
reproduce the experimental behavior of steady-state voltage-
dependent I, inactivation [6].

B. Inactivation modeled as the product of fast and slow
inactivation gates

In the TPO6 model the product of the steady-state values of
the two voltage-dependent I, inactivation gates is very far
from the experimental behavior. However, the results of the
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in silico simulations with this model adequately reproduce
the experimental observations. There are two effects that
explain these results: i) the normalization by the peak I,
current at the minimum pre-pulse potential, as performed
in [5], is done for a potential where the product of the
two voltage-dependent inactivation gates is less than 1; ii)
voltage-dependent inactivation gates do not reach the steady-
state value at the end of the pre-pulse interval for some
potentials.

C. Inactivation modeled as the weighted sum of fast and
slow inactivation gates

In the ORd model, the definition of voltage-dependent I,
inactivation as a weighted sum of fast and slow inactivation
gates is consistent with how experimentalists calculate in-
activation time constants. As described in [4] and [5], time
constants are calculated by fitting a biexponential function
to the inactivation phase of the experimental current traces.
Whereas this is true, large discrepancies between the ORd
model simulations and the experiments of [7] used for model
development are found for medium pre-pulse potentials.

There are two possible sources behind such discrepancies,
related to: i) the time constant of the voltage-dependent slow
inactivation gate; ii) the definition of voltage-dependent /.,
inactivation as the sum of two gates.

The first source has to do with the fact that model time
constants are identified in [4] based on a simple-pulse test
protocol of 75 ms duration, whereas the slow time constant
of voltage-dependent I, inactivation in the ORd model is of
the order of 10 seconds.

The second source has to do with formulating /., inacti-
vation as a sum of two gates. If inactivation is expressed as
a product, when one of the gates reaches zero, the product
reaches zero. Due to the interaction with the n and j gates
in this model, as we have shown previously, the result for
high potentials is the product of two gates and the effect is
reduced, while this does not happen for low and medium
potentials.

V. CONCLUSIONS

When developing AP models, parameter identification
is typically performed by fitting the model equations to
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Temporal evolution of the Ic.. gates (ff, fs, feafs feass J. 1 and d) during the simulation of the ORd model.

experimental data without ensuring consistency between the
model definition and the hypothesis underlying the processed
experimental data. As we have shown in this paper, proper
characterization and validation of a given model should be
performed with the in silico simulation of the experimental
protocol. Proceeding this way, interaction effects between
different model components are accounted for and model
inconsistencies are avoided.

As a final remark, complex models represent a real chal-
lenge for parameter identification and validation. This does
not mean that models should be necessarily simple, but that
complex models require additional testing in order to fully
verify their correct performance.
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