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a b s t r a c t

Intradialytic hypotension (IDH) is a major complication during hemodialysis treatment, and therefore it is

highly desirable to identify, at an early stage during treatment, whether the patient is prone to IDH. Heart

rate variability (HRV), blood pressure variability (BPV) and baroreflex sensitivity (BRS) were analyzed during

the first 30 min of treatment to assess information on the autonomic nervous system. Using the sequential

floating forward selection method and linear classification, the set of features with the best discriminative

power was selected, resulting in an accuracy of 92.1%. Using a classifier based on the HRV features only,

thereby avoiding that continuous blood pressure has to be recorded, accuracy decreased to 90.2%. The re-

sults suggest that an HRV-based classifier is useful for determining whether a patient is prone to IDH at the

beginning of the treatment.

© 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Hemodialysis is a well-established treatment for patients with se-

vere kidney problems. A serious problem during treatment is intradi-

alytic hypotension (IDH), which occur in about 20% of all sessions [1],

causing symptoms such as dizziness and vertigo, and possibly also

premature termination of the session [1,2]. The causes of hypotension

are multifactorial, of which the primary factor is the decrease in blood

volume that occurs during hemodialysis. This decrease results from

fluid withdrawal of the vascular compartment during ultrafiltration

and insufficient refilling of fluid from the interstitial compartment to

the vascular compartment. Other factors include impaired peripheral

vasoconstriction, autonomic dysfunction, arteriosclerosis, cardiovas-

cular pathologies, hydration, and medication [3]. The occurrence of

IDH not only leads to higher costs and increased need for medical

service, but, more seriously, to increased mortality [4,5]. Therefore, it

is desirable to determine, at an early stage of each treatment, whether

a patient is prone or resistant to IDH.
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Spectral analysis of heart rate variability (HRV) is a well-known

echnique for assessing information on the autonomic nervous sys-

em (ANS). The following two frequency bands are commonly studied

6]: high frequency (HF: 0.15 to 0.4 Hz) and low frequency (LF: 0.04 to

.15 Hz). The HF power component mostly reflects parasympathetic

ctivity, being influenced by respiration. The LF power component

argely reflects sympathetic modulation when normalized with

espect to LF and HF bands [6]. The ratio between the power of the

F and HF components is considered to be an index of sympatho-

agal balance [6]. Several studies have already investigated HRV

nformation in hemodialysis patients, mainly the LF/HF ratio [4,7,8].

or example, it has been observed that the LF component tends to

ominate during sessions without IDH in the sympathovagal balance

hen measuring the LF/HF ratio [9], and the power of this ratio drops

arkedly at the time of crisis in sessions with hypotension [10].

In terms of normal cardiovascular control, changes in the regula-

ion of the heart rate produced by the ANS can be expected to affect

lood pressure regulation as assessed by blood pressure variability

BPV). With respiration, arterial blood pressure typically falls on

nspiration and rises on expiration, thus affecting the HF component

f BPV. The LF component is related to variations in the sympathetic

ervous system mediated through vasoconstriction, as well as to

he interaction between vasoactive agents and hormones and the

utoregulatory processes [11]. Usually, HRV and BPV exhibit high

oherence so that baroreflex sensitivity (BRS) can be computed.
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Fig. 1. Framework.
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RS indices characterize RR interval changes induced by changes in

rterial pressure, and reflect impaired autonomic regulation [12].

RS indices have been studied before in hemodialysis patients, the

esults suggesting that such indices cannot discriminate between

DH prone and resistant patients [13].

The hypothesis of this study is that IDH is related to impaired au-

onomic regulation of the cardiovascular system. A novelty is that

nformation from both the electrocardiogram (ECG) and the blood

ressure (BP) signal is combined to assess ANS activity. As another

ovelty, only the first 30 min of the treatment are analyzed, when

ypotensive events are unlikely to occur [14], for characterizing the

NS status in prone and resistant patients.

From the ECG and BP signals, HRV, BPV and BRS related indices

re extracted and studied in terms of their power to discriminate

etween IDH prone and resistant patients, see Fig. 1. A multivariate

lassifier is designed which analyzes the signals at the beginning of

he treatment, and which makes use of information on diabetes since

NS is usually impaired in diabetic patients. A simplified classifier is

lso studied which does not require information on blood pressure,

s it is costly and cumbersome to record continuously.

. Database

Two databases have been analyzed from patients with endstage

enal failure on hemodialysis treatment thrice a week, each session

asting between 2 and 5 h. Both databases contain ECG and BP sig-

als. The continuous arterial blood pressure signal was acquired with

Finapres (Finapres Medical Systems BV, Holland) and sampled at

00 Hz with a Biopac (BIOPAC Systems Inc., USA) data acquisition sys-

em. The ECG was recorded during dialysis using the standard 12-lead

onfiguration, and sampled at a rate of 1000 Hz. Synchronization be-

ween the ECG and BP signals was performed manually, leading to

misalignment on the order of magnitude of a few ms, which has

egligible significance in the present application.

The first database consists of 28 sessions from 15 patients (the

umber of sessions for each patient varies from 1 to 4, see Table 1)

reated at Park Dialys, Lund, Sweden, and Helsingborg Hospital, Hels-

ngborg, Sweden [7]. Each patient was classified by a nephrologist as

ither resistant (R) or prone (P) to IDH based on the clinical history,

.g., the number of hypotensive events per month. The second

atabase consists of 29 sessions from 11 patients. These patients

nderwent hemodialysis treatment in Copenhagen, Denmark. Due

o poor quality of the BP signal, 5 sessions had to be excluded so that

nly 24 sessions from 9 patients were used for BPV and BRS analysis.

ased on clinical history, all patients in the second database were
able 1

tudy population characteristics.

Characteristic Resistant Prone

# Patients/# Sessions 7/11 17/41

# Ses. each patient 2,1,1,2,1,2,2 2,1,2,1,4,4,3,2,2,3,4,2,2,1,2,3,3

# Diabetic patients/# Ses. 3/4 7/17

Male/Female 6/1 9/8

Age (years) 59 ± 14 65 ± 11

Weight (kg) 87 ± 20 77 ± 20

t

3

o

t

(

d

d

d

lassified as prone to IDH. The databases were merged and a total

f 52 sessions from 24 patients were analyzed of which 21 sessions

elonged to 10 patients with diabetes, see Table 1.

. Methods

.1. Heart rate variability

The beat occurrence times tk are obtained from the ECG using

multi-lead wavelet-based detector [15]. The heart rate signal is

erived from tk using a method based on the integral pulse frequency

odulation model. This method assumes that ANS activity can be

odeled as a modulating signal m(t) which, together with a DC level,

s integrated until it reaches a threshold T, when a beat occurs and

he process is reset [16]. The threshold T represents the mean interval

ength between successive beats in the analyzed interval. From tk,

he instantaneous heart rate is obtained as [17]:

HR(t) = 1 + m(t)

T
(1)

here 1/T represents the mean heart rate and m(t)/T represents the

eart rate variability. The signal dHR(t) is sampled with a rate of Fs =
Hz to produce the discrete signal dHR(n) = dHR(t)|

t=n 1
Fs

.

.2. Blood pressure variability

The blood pressure signal is low-pass filtered with a cut-off fre-

uency of 40 Hz (forward/backward filtering) to remove noise. The

eaks of the low-pass filtered signal, s(nk) (discrete-time), are found

y locating the zero crossings of the differentiated signal, imple-

ented by the first order difference: s′(n) = s(n) − s(n − 1), where

(n) is the low-pass filtered blood pressure signal. A protective rule is

pplied to the detected peaks, imposing a refractory period to make

ure that a certain distance elapses between successive beat detec-

ions. The distance is set to 0.5 s.

Signal segments lost due to calibration of the blood pressure de-

ice need to be detected and removed from further analysis. An am-

litude threshold is used in successive 5-min segments, where a

gap” is found if there is more than 5 s without any valid peak above

he threshold. The pairs (nk, s(nk)) are interpolated using cubic splines

o generate the systolic blood pressure signal dBP(n) sampled at a

ate of 4 Hz. If the segment contains a gap, dBP(n) is obtained using

shorter segment which does not contain that gap, as long as it ex-

eeds 3 and a half minute. If shorter, the segment is removed for fur-

her analysis.

.3. Spectral indices

Classification of resistant and prone patients is based on a set

f spectral parameters determined during the first 30 min of the

reatment session. The minimum variance distortionless response

MVDR) method [18,19] is applied for estimation of power spectral

ensities since, in general, it offers higher spectral resolution than

oes the classical periodogram. The respective spectra of dHR(n) and

(n) are computed in successive 5-min segments, using a resolution
BP
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Table 2

Median ± MAD of HRV (s−2), BPV (mmHg2) and BRS (s−1/mmHg) indices for prone and

resistant patients. The symbols {∗, †, ‡} represent p-values less than {0.05, 0.01, 0.001},

respectively.

Variable Prone Resistant

PLF
HR 0.0028 ± 0.008 0.0034 ± 0.005

PHF
HR 0.0012 ± 0.002 0.0021 ± 0.004

Rn
HR 0.46 ± 0.23 ‡ 0.76 ± 0.17 ‡

RHR 1.39 ± 1.44‡ 6.12 ± 5.05 ‡

PLF
BP 0.0012 ± 0.002 0.0009 ± 0.002

PHF
BP 0.0008 ± 0.001 † 0.0006 ± 0.001 †

αLF 1.05 ± 1.63 ∗ 1.84 ± 2.32 ∗
αHF 0.85 ± 1.07 2.08 ± 3.91
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of 2048 frequency bins and a window length of 300 samples, and fol-

lowed by computation of the powers of the LF and HF bands [20].

Also, the median of the power estimates from the first six 5-min seg-

ments is computed for each band and signal type to produce robust

estimates of spectral indices in the presence of outliers. The median

absolute deviation (MAD) is computed as a measure of dispersion.

The following spectral indices of HRV and BPV are considered:

PLF
HR

, PHF
HR

, PLF
BP

and PHF
BP

, which are the spectral band power in LF and

HF bands. Also for HRV, the spectral ratio

RHR = PLF
HR

PHF
HR

(2)

and the normalized spectral ratio

Rn
HR = PLF

HR

PLF
HR

+ PHF
HR

(3)

are obtained.

The BRS indices are defined from the spectral power in the LF and

HF bands:

αLF =
√

PLF
HR

PLF
BP

, αHF =
√

PHF
HR

PHF
BP

(4)

The MVDR method is also employed for computing the mag-

nitude squared coherence function. The indices αLF and αHF are

computed only when dHR(n) and dBP(n) are linearly related within

the corresponding frequency bands. We assume that dHR(n) and

dBP(n) are linearly related at a given frequency when the value of

spectral coherence between dHR(n) and dBP(n) exceeds a threshold

ρ , determined as follows: the spectral coherence between two seg-

ments of white noise, assumed to be uncorrelated, is first computed

and then, after 1000 repetitions, the maximum coherence in each

repetition is obtained and sorted [21]. The 99th percentile is taken as

the threshold value (ρ = 0.7).

3.4. Statistical analysis

Statistical analysis is performed to determine whether the indices

differ between prone and resistant patients. The Mann–Whitney

analysis is used to test equality of population medians among groups.

Two groups are considered to be significantly different when p < 0.05.

3.5. Classifier design and evaluation

The sequential floating forward selection (SFFS) method is con-

sidered for selecting the most discriminative features for use in a lin-

ear discriminant classifier [22]. This method combines forward and

backward feature selection by removing less informative features and

reevaluating features previously removed. The method performs a

forward step followed by several conditional backward steps as long

as the accuracy of the classification decreases. For the selected fea-

tures, the linear classifier providing the best separation between the

classes was determined.

A rule of thumb for determining the number of features K in the

classifier is to use no more than
√

n f features, where nf denotes the

number of observations which belong to the smallest group [23].

As mentioned in Section 2, the database consists of 17 prone pa-

tients, and 7 resistant patients. Hence, since the resistant group is the

smaller one, the number of features should be K = 2.

Leave-one-out method was applied to feature selection: it was

performed for all sessions of all patients except for one patient whose

sessions were left out. This process was then repeated for all patients,

which lead to 24 different sets of features. The 2 most repeated fea-

tures were selected. For classifier training, the leave-one–out method
ses all patients to train the classifier but one, which is used for eval-

ation, and process is repeated such that each patient in the database

s used once as the validation data.

The performance of the classifier is measured in terms of sensitiv-

ty (Se), specificity (Sp) and accuracy (Acc), defined as:

Se = NTP

NTP + NFN

,

Sp = NTN

NTN + NFP

,

cc = NTP + NTN

NTP + NTN + NFP + NFN

here NTP, NTN, NFP and NFN denote the number of true positives, true

egatives, false positives and false negatives, respectively. Prone pa-

ients are classified as positive, while resistant patients are classified

s negative.

When taking information on diabetes into account, feature selec-

ion and classifier training are not done on the whole database, but

n the diabetic and nondiabetic subgroups. In each subgroup, feature

election is first performed and then the classifiers are trained and

valuated. Although two different classifiers are designed, they can

e viewed as a decision tree where information on diabetes decides

hich branch to activate. Hence, the two classifiers can be treated as

ne classifier with a global Se, Sp and Acc.

. Results

.1. Statistical analysis

Table 2 shows that the indices Rn
HR

and RHR are the ones which

xhibit the most significant differences between prone and resistant

atients. For the BPV indices, PHF
BP

is the one that exhibits differences

n both groups. For BRS indices, αLF exhibits a p-value below 0.05.

.2. Classification of prone and resistant patients

When classification is performed without any account for diabetes

nformation, Rn
HR

and RHR are the best to differentiate prone and resis-

ant patients, see Table 3. While the accuracy is 88.2%, the specificity

s very low, see Table 4.

When diabetes information is taken into account, the database is

plit into 2 subgroups, i.e., 10 diabetic patients (of which 7 are prone)

nd 14 non-diabetic patients (of which 10 are prone), and a subgroup-

pecific classifier is determined.

Table 3 also shows the features selected for diabetic and non-

iabetic patients. For the diabetic group, the selected features are PLF
HR

nd Rn
HR

, while for the non-diabetic group the features are Rn
HR

and
LF. The global performance is shown in Table 4, with an accuracy
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Table 3

Selected features using either all indices or only the HRV indices.

Features selected

All indices HRV indices

All patients Rn
HR, RHR Rn

HR, RHR

Diabetic Rn
HR, PLF

HR Rn
HR, PLF

HR

Non–diabetic Rn
HR, αLF Rn

HR, RHR

Table 4

Classifier perfomance using all indices and HRV indices only.

All indices HRV indices

Se Sp Acc Se Sp Acc

All patients 97.5 54.5 88.2 97.5 54.5 88.2

Using diabetes information 97.5 72.7 92.1 95 72.7 90.2
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f 92.1%. Both sensitivity and specificity improve considerably when

nformation on diabetes is included.

Although the BPV indices exhibit differences between prone and

esistant patients, cf. Table 2, none of them were selected.

.3. Classification based on HRV indices only

The results in the previous subsection shows that HRV indices

arry most of the information for discriminating IDH prone and re-

istant patients, and therefore we constrain the analysis to only HRV

ndices, with diabetes information included. In this scenario, we also

ncluded the 2 patients (both diabetic and prone) which were re-

oved due to poor quality in the blood pressure signal (see Section 2),

ince blood pressure information is not used in this case, increasing

he study population size. The selected features are shown in Table 3,

eing PLF
HR

and Rn
HR

for diabetic patients, and Rn
HR

and RHR for non-

iabetic patients. These results are very similar to the ones involving

ll types of indices where three out of four selected features were

RV-related. The performance of the HRV-based classifier is shown

n Table 4: a slight decrease in accuracy (Acc = 90.2%) is observed.

. Discussion

Hypotensive events represent a major complication during

emodialysis treatment. Since such events are associated with au-

onomic dysfunction, several ANS-related indices have been studied

ith respect to their ability to determine whether a patient is prone

o IDH. In this work, information based on HRV and BPV was extracted

rom ECG and blood pressure signals from the initial 30 min of the

ession to allow for early prediction of hypotensive events.

The HRV indices have been thoroughly studied in the past,

specially the ratio RHR since it assesses cardiovascular autonomic

egulation and reflects the activity of the sympathetic versus the

arasympathetic branch [8]. It has been shown that patients prone

o IDH exhibit a much lower ratio than do resistant patients [24].

imilar information is conveyed by Rn
HR

, since it represents the

ormalized value of the power in the LF band relative to the sum of

he LF and HF bands. Since this index also conveys information about

he balance between the two ANS branches, it is expected to exhibit

ignificant differences between the two patient groups.

Regarding BRS, αLF is significantly different between the two

roups, implying impaired regulation of the heart rate in prone

atients when a sudden drop in blood pressure occurs, i.e., at IDH.

owever, other studies have obtained conflicting results, claiming

hat the baroreflex mechanism is preserved and adequately activated

uring intradialytic hypotension [25]. An hypothesis is that even
hough the vessels have reduced parasympathetic innervation, po-

entially not affecting BPV, it still can exist a secondary modulation

iven by the HRV that implies variability in the blood volume at

he ventricles leading to variability in the BP. Precisely on one BP

arameter used in BRS, PHF
BP

, there are significant differences between

rone and resistant patients (Table 2), reflecting that the blood

ressure in prone patients is more unstable.

Robust assessment of BRS indices requires that a linear rela-

ionship between HRV and BPV exists. Two signals are assumed to

e linearly related at a given frequency when the value of spectral

oherence at that frequency exceeds a certain threshold, which

ommonly is set to 0.5. However, the estimated spectral coherence

f two realizations of white noise differs from zero and depends on

he estimator used to compute auto- and cross-spectra, and may

xhibit values above 0.5 [26]. In this work, a statistical analysis of our

pectral coherence estimates has been conducted to determine the

hreshold above which two signals can be considered linearly related

ith an error of 1%.

The preferred classification framework is to have two disjunct

roups: one for selecting the features and training the classifier, and

nother for evaluating the classifier. However, when only sparse data

s available, feature selection and classifier training can be overfit-

ed to the training data. This may not be representative enough, and

hus the classifier would not work properly for the evaluation data.

sing all data for training and evaluation leads to optimistically bi-

sed results, and thus we decided to use the k-fold crossvalidation

ethod [27]. A value of k = 1 patient leave-one-out crossvalidation

as adopted for both feature selection and classifier training.

It should be noted that the standard leave-one-out method is not

ppropriate to use on the present database. This method involves

observations” which in this study translates to “patients”. A patient

an have 1, 2, 3 or even 4 different sessions, corresponding to dif-

erent days. Different sessions from the same patient should not be

reated as independent measurements. Due to this, the leave-one-out

ethod analyzes patients instead of sessions in the present study.

Regarding classifier performance, the obtained specificity is

ower than the sensitivity, influenced by the unequal numbers of

rone and resistant patients. When taking information on diabetes

nto account, the specificity increases, and the overall accuracy

mproves. This result agrees with the hypothesis that the ANS of

iabetic patients is dysfunctional. Furthermore, this result means

hat information on diabetes should be treated as another feature

hen training the classifier.

Since almost all of the selected indices are HRV related, it was nat-

ral to investigate classification performance solely based on HRV in-

ices. Such a restriction is of interest since it has been shown that HRV

an be estimated using finger photoplethysmography [28], a technol-

gy which is easier to use than the ECG. The present results show that

ust a minor drop in accuracy is observed for an HRV-based classifier,

.e., from 92.1% to 90.2% (Table 4).

An important limitation of the present study is that the dataset is

ather small, and that the prone and resistant group are highly imbal-

nced. In order to reduce the effect of the P group being much larger

han the R group, a simple replication technique has been employed

29], with which each R session is used twice. The new database con-

ists of 41 P records and 33 R records. In this way, the classification

s repeated using only HRV parameters and taking the diabetes infor-

ation into account. Using the replication technique, an increase in

pecificity is observed (72.7 to 83.4) at the expense of a decrease in

ensitivity (95 to 87.8); the accuracy increases from 90.2 to 93.2.

Another limitation of the database is that the number of sessions

aries from patient to patient. By discarding sessions so that all pa-

ients had two sessions, the results were recomputed for the classi-

er based on HRV indices only (the discarded sessions were chosen

andomly). The sensitivity was found to decrease from 95% to 94.3%

nd the accuracy from 90.2% to 88.7%. Since the removed sessions
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are considered to be dependent measurements, the performance is

not expected to be very different. Ultimately, the classifiers need to

be tested on a much larger database, which includes information on

age.

HRV indices can be divided into linear (temporal and spectral,

the latter used in this work) and non-linear indices. Temporal HRV

indices were first also included in the analysis, but they showed a

lower discriminative power between P and R patients, and they were

removed from the study. Non-linear indices have previously shown

good capability to predict arrhythmic risk [30], but their physiological

interpretation is less clear than the one related to spectral indices. Al-

though non-linear indices are related to certain methodological con-

cerns, e.g, data length, such indices provide complementary informa-

tion which may improve the classification of P and R patients, and

therefore should be part of a future study.

Other information could also be used to improve classifier per-

formance. Some authors claim that prone patients suffer from a

decrease in peripheral vascular resistance, suggesting a possible car-

diac underfilling [31]. It has also been reported that every patient has

a relative blood volume which for prone patients is stable with low

variability [32]. Other studies suggest that the count of ventricular

premature beats and heart rate turbulence are related to IDH [8]. In

addition to that, it is important to note that these results are obtained

from a database composed of elderly renal failure patients, whose

age, pathology and medication also affect ANS regulation over the

heart.

6. Conclusions

This study presents a multivariate classifier to discriminate IDH

prone and resistant patients. The first 30 min of treatment, when IDH

is unlikely to occur, are used to extract ANS related parameters. Heart

rate variability (HRV), blood pressure variability and baroreflex sen-

sitivity are analyzed, with the normalized power in the HRV low fre-

quency band as the most discriminative index. Information on dia-

betes is also included, since diabetic patients are known to have ANS

dysfunction. Using only HRV indices, a patient can be classified as IDH

prone or resistant with an accuracy of 90.2%.
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