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Improved Heart Rate Variability Signal Analysis from
the Beat Occurrence Times According to the IPFM

Model
Javier Mateo* and Pablo Laguna

Abstract—The heart rate variability (HRV) is an extended
tool to analyze the mechanisms controlling the cardiovascular
system. In this paper, the integral pulse frequency modulation
model (IPFM) is assumed. It generates the beat occurrence times
from a modulating signal. This signal is thought to represent the
autonomic nervous system action, mostly studied in its frequency
components. Different spectral estimation methods try to infer
the modulating signal characteristics from the available beat
timing on the electrocardiogram signal. These methods estimate
the spectrum through the heart period (HP) or the heart rate
(HR) signal. We introduce a new time domain HRV signal, the
Heart Timing (HT) signal. We demonstrate that this HT signal,
in contrast with the HR or HP, makes it possible to recover an
unbiased estimation of the modulating signal spectra. In this
estimation we avoid the spurious components and the low-pass
filtering effect generated when analyzing HR or HP.

Index Terms—Heart rate variability, heart timing, IPFM model,
nonuniform sampling, spectral analysis.

I. INTRODUCTION

POWER spectral density (PSD) estimate of the heart rate
variability (HRV) is commonly used as a noninvasive test

of the neural control of the cardiovascular system, since it is
related to the sympathetic and parasympathetic regulation of
the sino-atrial node. The frequency domain analyzes have con-
tributed to improve the understanding of the HRV since last two
decades [1]–[4]. The HRV has been confirmed as a predictor
of mortality following myocardial infarction [5], it has been
studied in diabetics [6] and in cases of sudden cardiac death [7].
A review of the HRV research activity over the last two decades
was presented in [8].

The integral pulse frequency modulation (IPFM) model has
been assumed for many authors to explain the mechanisms used
by the autonomic system to control the heart rate [9]–[15]. The
IPFM model supposes a modulating signal, which when acting
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through the model generates the beat occurrence times. PSD
methods try to infer the spectrum of the modulating signal from
the beat occurrence times, usually from the Heart Rate (HR) or
the Heart Period (HP) signals or by calculating the “Spectrum
of Counts” (SPC) [13]. We will show how the HR, the HP, or
the SPC’s do not contain the same spectral information as the
modulating signal according to the IPFM model. In this work,
we introduce a new HRV time domain signal, the Heart Timing
(HT) signal, used to deduce the characteristics of the heart con-
trol modulating signal. We will demonstrate that the proposed
HT signal can be used to recover the spectrum of the modu-
lating signal with no spurious contribution and no distortion, in
contrast to the HR-, HP-, or SPC-related signals. We will ex-
tensively study these HRV-related signals as the first but funda-
mental stage in comparing the methods used in the estimation
of the PSD of the HRV.

To show experimentally the validity of the estimation
methods, and given that the spectrum of a real modulating
signal of the heart activity is unknown, we have developed a
controlled experiment with known modulating signals, .
These signals come from reported autoregressive (AR) models
representing real data [8], [16] and other computer generated
signals. These signals are used as inputs to the IPFM
model to generate beat sequences. The beat sequences are ana-
lyzed with different HRV estimation methods and the obtained
spectra are compared to the original ones of the signals.

II. THE IPFM MODEL AND THE TIME DOMAIN SIGNALS

The IPFM model is based on the hypothesis that the sym-
pathetic and parasympathetic influences on the sino-atrial node
can be represented by a single modulating signal, , and the
beat trigger impulse is generated when the integral of this func-
tion reaches a threshold [10].

The beat occurrence time series can be generated by means
of the IPFM model as

(1)

where is an integer that represents the number of theth beat
and is the occurrence time of theth beat [14]. We can see

as the instantaneous heart rate.is the mean of
the RR intervals in the analyzing period and represents
the zero-mean dynamic part. This dynamic part is usually small
as compared to the mean of heart rate . It is consid-
ered that the first beat occurs at and that is causal,
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hence, if . Another important consideration im-
posed on is that it is a band-limited signal with negligible
PSD over a frequency typically around 0.4 Hz.

The objective of HRV PSD estimation methods is to infer the
spectral properties of from the heart beat positions,. The
choice of the time domain signal that best represents this infor-
mation is the first problem in HRV analysis. So far, this problem
has been addressed through the RR intervals, known as HP sig-
nals, through the inverse of the RR intervals, known as HR sig-
nals, or through the “event series,” whose spectrum is known as
Spectrum of Counts” (SPC) [11], [13]. Moreover, we will study
the HT signal, recently proposed by us [17]. Also, we will distin-
guish between the unevenly spaced signals, measured attime
instants (time referred), and the evenly spaced sequences, mea-
sured at eachth beat (beat referred). The nonequispaced sig-
nals will be denoted in small caps and will be function of time.
A final “s” will be appended to the notation of the equispaced
signals that will be function of “beat number.” Since these sig-
nals are not linearly related to the nonequispaced counterparts,
its spectral properties are quite different. The following sections
formalize these signal definitions and introduce the generaliza-
tion of the continuous time IPFM model. This will allow the
quantification of the inherent distortion of each HRV-related
signal.

A. Continuous Time IPFM Model Generalization

The values of each time domain signal at the beat occurrence
times, , are all we know. However, we can find continuous
time signals whose samples atcoincide with these values. Of
course, there are infinite continuous time signals that meet this
requirement but we can generalize the IPFM model to define
these signals with some logic. Thus, we can rewrite (1) as

(2)

being a continuous function that solves the IPFM model
equation, and whose samples at are .

Now, we can define the different continuous signals and we
can describe how these signals are related with the modulating
signal, . We will obtain the unevenly sampled signals as
functions of or simply , and the evenly spaced sequences
will be functions of .

B. Time Domain Signals

1) The HT signal: The formulation of the IPFM model given
in (1) can be rewritten as

(3)

where defines theunevenly spaced samplesof the HT
signal and they can be easily calculated through the beat oc-
currence times [17], [18]. Each reflects the deviation
of the position of each beat from the mean RR interval. We
have emphasizedunevenly spaced samplesbecause behind this
sampled signal we can find the continuous version of the HT

signal. Using the generalization given by (2), the continuous
signal can be written as

(4)

Thus, the continuous HT signal is defined simply as the integral
of .

The signal is a straightforward HRV-related signal and,
being linearly related with , it does not bring any distorted
information with it. At this point, we should note that different
observation times, leads to different functions since the
mean heart rate and the dynamic heart rate also depend on
the analyzing time. However, the instantaneous heart rate,

, always can be obtained as

(5)

for any observation time. always must be calculated as the
mean of the RR intervals in the analyzing period.

From the spectral point of view, taking into account that
is causal and with zero-mean, its Fourier transform is

(6)

The Fourier transform of the , , is the same
as , except for the factor that comes from the
integration. If is band limited, is also band limited
and if we knew or its regularly spaced samples satisfying
the Nyquist criterion we could determine exactly that is
the focus of our interest. However, we only know the HT signal
unevenly sampled at the beat occurrence times, . All
HRV-related signals are irregularly spaced and experience this
problem. In Section III, an analysis of the irregular sampling
problem will be shown.

The corresponding sequence of the HT signal is
, and its continuous time generalization will be

(7)

It can be related with through (4) by means of the recur-
rence

(8)

We will use this kind of recursive relation to obtain an approx-
imation of from , which will be all the more accu-
rate, the more the iterative process is repeated. The initial value
of can be taken as . The recurrence expressed in
(8) converges if [19]. This condition is always
met in HRV because . If is known
then can be calculated by (4) and (8) permits us to study
the spectral properties of analytically. In the study of the
different time-domain signals these relations are useful to show
the inherent distortion of each HRV-related signal, even before
any PSD estimation method has been applied.

2) The HP Signal:The classical time-domain heart period
signal samples are defined as and following
the continuous time generalization the heart period signal can
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be defined as . The relation with the
signal and, thus, with , can be established through (4)

by the following recurrence relation:

(9)

The corresponding sequence of the heart period signal is
and its spectrum is known as “interval

spectrum” or “tachogram” [12]. Its continuous time general-
ization will be . It is related with the
heart timing sequence, using (7), by the following relation:

(10)

3) The HR Signal:Another classically used time-do-
main signal is the heart rate signal whose samples are

. The continuous heart rate signal can
be defined as . The relation with
the signal can be established by the following recurrence
relation:

(11)

The corresponding sequence of the heart rate signal is
and its spectrum is known as

“Spectrum of the Inverse Intervals” [12]. Its continuous time
generalization will be , and
using (7), it is related with the heart timing sequence by

(12)

4) The Event Series:Once the beat occurrence times,, are
known, the most intuitive function which represents this kind of
signal, is a impulse train of Dirac delta, each one placed at.
Then, the continuous function of time is

(13)

and its spectrum, known as “Spectrum of Counts” is

SPC (14)

In the Appendix, it is shown that SPC can be approximated
at the frequency band of interest as

SPC FM FM

(15)

where FM is given by

FM (16)

Interpreting (15), we see that the spectrum of is formed
by a Dirac delta impulse at zero frequency plus the modulating
signal spectrum, , plus two additional terms. The FM
term corresponds with a carrier of frequency , phase

modulated by (or, equivalently, frequency modulated by
). The convolution FM term is the spectrum

of the same carrier modulated in amplitude and in frequency
by . Once eliminated, the dc component, at the base band
the spectrum is the one of modulating signal but with added
spurious components resulting from the modulated carrier at

.
The general analysis of this spectrum is highly complicated.

The FM and FM terms tend to compensate each
other, obtaining spectral components lower than each one in-
dividually. The contaminating spectral contribution at the base
band depends on the maximum amplitude of and its spec-
tral distribution. When has a smooth spectrum, the contri-
bution usually presents a hyperbolic shape, descending from the
modulated carrier. The result is a small increment in the high fre-
quency of the HRV spectrum estimation. However, if has
a sharp spectrum or it is a multitone signal the amplitude of spu-
rious components may be comparable to those present in.

Fig. 1 shows graphically all these signals for
with 0.1 Hz and 1 s. We have

chosen an unusually large amplitude of to show clearly
the signal distortion. In this figure and throughout this paper
the units of the time domain signals are scaled according to
their relationship with the dimensionless signal. Thus,
HP-related signals are divided by, HR signals are multiplied
by , and HT signals—since they are related with the integral
of —are multiplied by in the frequency domain, giving
in all cases dimensionless magnitudes. This procedure allows
obtaining homogeneous results from different time domain
signals independentl of . Also, the mean is removed from
each time domain signal since the mean of is zero.
Regarding to the relative phase of each time domain signal
respect to , HT signals will have a 90phase shift due to
the integration, HR signals will have no phase shift, and HP
signals will be 180 out of phase due to the inversion. Thus,
in this Fig. 1 shaded areas show the difference of with
each time domain signal. Circles represent the beat occurrence
times.

C. Two-Tone Harmonic Distortion

We have made an algebraic study of the inherent distortion of
the above signals when is formed by two tones

(17)

In the case of the signal, in [9] and [20]–[22], a quan-
tification of the different spectral components is given when

is formed by a single-tone or multitone functions. Thus,
for given by (17), (13) can be given as

(18)
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Fig. 1. Time domain signals form(t) = 0:4 cos(2�f t) with
f = 0:1 Hz and T = 1 s. (a) Representsm(t). (b) Represents
x(t) = (1 +m(�)) =T � d� . (c) Representsspc(t). (d) Represents
2�f � ht(t). (e) Representshp(t)=T � 1. (f) Representshr(t) � T � 1.
(g) Represents2�f � hts(x). (h) Representshps(x)=T � 1. (i) Represents
hrs(x) � T � 1. Shaded areas show the differences between each time domain
signal andm(t) (the phase ofm(t) has been changed according to the phase
shift of each represented signal). Circles represent the beat occurrence times.

with the mean heart period, , the first kind
Bessel function of order and a complicated phase term. At
the base band the most significative terms are given by .
In this case, Table I shows the amplitude of the main spectral
components of the signal multiplied by with and

integers.
In the case of the and

, the development is truly cumbersome but the basic

TABLE I
AMPLITUDE OF THE SPECTRALCOMPONENTS OF THET � spc(t) SIGNAL

idea is simple. We will use the continuous definitions given
by (4) and (8)–(12). When the definition involves a recurrence
relation, it is developed several times. The number of times
depends on the approximation level that we want to reach but
the complexity increases considerably with each iteration. The
next stage is to develop its Taylor series expansion with respect
to the and variables, supposing . Finally, the
series is reorganized in terms of each spectral component.

Table II shows the results obtained. In the case of the HP sig-
nals the amplitudes have been divided by, and in the case of
the HR signals, they have been multiplied by. Also, the vari-
ables and have been introduced for
the sake of simplicity. Except for the , all the other signals
are nonlinearly related with . They have spectral compo-
nents at , being any pair of integers. We show
only the first significant term of the amplitude of the main spec-
tral components. In the case of signal, Table II shows the
exact amplitude of the spectral components, which correspond
exactly to the ones present in .

Fig. 2 shows the amplitude of the spectral components of the
studied signals for

and s. This figure, Table I, and Table II permit
us to extract some preliminary conclusions about the inherent
properties of the time domain signals.

• The spectrum of can be exactly recovered by
.

• All HP or HR signals attenuate the original tone ampli-
tude, all the more when its frequency increases. Thus, they
have intrinsically a low-pass filtering effect.

• The harmonics are lower in HR signals than in HP
and they are lower in and than in

and . See, also, Fig. 1.
• Except for the signal, presents the smallest

spurious contribution. However, makes a large
spurious contribution at the intermodulation frequencies,
specially at .

• The spurious contribution of has a different origin
and is noticeable at frequencies greater than .

III. T HE IRREGULAR SAMPLING

Whichever signal related with HRV is inherently irregularly
sampled. In the analysis of the HRV, three main alternatives have
been used to get around this problem: By assuming that HRV
signals are evenly sampled, by using direct spectral estimation
methods from the irregular sampled signal and by using inter-
polating methods to recover an evenly sampled signal from the
irregularly spaced samples prior to the PSD estimation.
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TABLE II
MAIN SPECTRAL COMPONENTS OF THEht (t); hts (x); hp(t)=T; hps(x)=T; T � hr(t); AND T � hrs(x) SIGNALS

Fig. 2. Amplitude of the main spectral components of the time-domain signals
for m(t) = 0:1 cos(2�f � t) + 0:1 cos(2�f � t) andT = 1 s. (f = 0.1 Hz.
f = 0.25 Hz. andf = 1=T = 1 Hz.)

A. HRV Signals Assumed to be Evenly Sampled

This is the simplest and quickest method, but the assumption
of regularly spaced samples when these are not regularly spaced,
causes distortion and generates spurious harmonics. The ob-
tained spectra will be that corresponding to the
and signals.

B. Direct Spectral Estimation Methods

When a signal is sampled, the spectrum of the sampled signal
is the result of the convolution of the original spectrum with

which is a well-known result. When is reg-
ularly spaced, this summation is a Dirac delta train spaced every

due to orthogonality of exponential functions. In this case,
if the signal satisfies the Nyquist criterion, there is no aliasing
and the spectrum of sampled signal is the periodic repetition
of the spectrum of the original signal. When the samples are
not regularly spaced, the orthogonality of exponentials is lost
and this summation is not a Dirac delta train. This summation is
the above described SPC. Thus, given a continuous time signal

( can be or ) whose spectrum is , the
corresponding direct estimated spectrum is

SPC

(19)
Leaving out the terms of minor significance , FM and

FM , in (15) the direct estimated spectrum may be
approximated as

(20)

In HRV, the second term may be significative and may
be rather different from the original one . We should
note that in HRV the position of the samples is not independent
of the signal and, thus, the same information is twice present: in
the time-domain signal, whose spectrum is , and in the
position of the samples, whose spectrum is SPC.
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C. Interpolation Methods

Spline interpolation obtains a continuous piecewise polyno-
mial reconstruction of its irregularly spaced samples [23]. From
the evenly spaced samples of the signal, a usual PSD estimation
can be carried out. Moreover, in the case of the HT signal, the
obtained spline can be algebraically differentiated and in this
way, we can obtain the instantaneous heart rate from (5).

The interpolation can be seen as a time-variant filter that
acts with different frequency response as a function of the
space between interpolated samples. Thus, the spectrum ob-
tained by means of this method is filtered with a time-variant
filter . It is true that the filter response depends on
the time distribution of the samples. However, an estimation
may be made for the filter response. The impulsive response
may be calculated by interpolating a unitary pulse at ,
preceded and followed by zeros regularly spaced at.
Intermediate points are obtained by interpolating along with
the interpolation factor. The filter response is calculated as
the spectrum of the impulsive response. This response will
affect at those interbeat areas of heart period. Since heart
period changes from beat to beat, the filtering effect changes
and becomes time varying.

Fig. 3 shows the estimated impulsive response and the spec-
trum for linear, fourth-order “cubic” spline and fourteenth-order
spline interpolation methods.

The linear interpolation has a cutoff frequency that goes from
Hz when the interpolation factor is two and goes to

0.32 Hz when the interpolation factor is 16 or higher. The
cubic spline method has a cutoff frequency of 0.44Hz and it
has a negligible dependence on the interpolation factor. Finally,
the cutoff frequency obtained for the fourteenth-order spline is
0.48 Hz. The linear method has the lowest cutoff frequency
and the highest sidelobes as expected due to its inferior perfor-
mance. Increasing the order of the spline, we establish a closer
response to an ideal filter. However, experimentally we do not
get any improvement with orders greater than fourteen, due to
the finite numerical precision and round off errors. Because the
cutoff frequency is relative to frequency, in absolute terms
of frequency, the filtering effect will be more significant when
the heart rate is low.

IV. PSD ESTIMATION METHODS OFHRV

In the study of HRV, different spectral analysis methods are
used [11]–[16]. We will show an experimental comparative
analysis of the time-domain alternatives presented in this paper
in combination with the main different PSD estimation methods
used in HRV. We have studied the following methods.

A. “Spectrum of Counts” (SPC)

This method is computed using (14) and it has been used
by many authors. Its importance is practical as an estimation
method of long-standing and theoretical for its relation with the
irregular sampling problem. We will show how its performance
is effective with HRV signals but this method introduces con-
tamination at high frequencies. Thus, if the modulating signal
has enough power at frequencies greater than , the results
present a high-frequency spurious contribution.

Fig. 3. Linear interpolation with interpolation order 16, cubic spline and
fourteenth-order spline interpolation methods. (a) Impulsive response. (b)
Frequency response.

B. Low-Pass Filtered Event Series (LPFES)

The LPFES, , is the signal obtained by low-pass
filtering the signal [10], [11]. This signal is calculated
at regular intervals of s. and then, the fast Fourier transform
(FFT) is taken to compute the spectrum. From this point of view,
the obtained spectrum would be LPFES SPC ,
where is the response of the filter. Also, the authors
[11] introduced an improvement inserting a “dummy pulse”
at the midpoint of each RR interval. In this way, the carrier
frequency involved in SPC is virtually doubled and the nonlinear
contribution resulting from the carrier modulation is minimized.
However, this pulse introduces an effect like linear interpolation
giving a low-pass filtered spectrum as we will show. This method
was originally implemented [11] dealing with real time and
hardware limitations. Originally the filter had a cosine squared
spectral response and was computed with relative low time
resolution. In this paper, this method has been implemented with
an ideal filter response with a cut off frequency of 0.5 Hz, and
with the insertion of a “dummy pulse” at the midpoint of each RR
interval. Note that without the dummy pulse the obtained results
would be essentially the same that with the SPC method.

C. DFT of the Sequences (FHP, FHR, FHT)

The power spectrum is directly computed by taking the FFT of
the different sequences or . The irregular
sampling isovercomeassumingthatHRVsignalsareevenlysam-
pled.This is thesimplestandquickestmethod,but theassumption
of regular spaced samples when these are not regularly spaced,
causes distortion and generates spurious harmonics. When the

sequence is used, this method is known as “Spectrum of
Intervals” or “Tachogram” [13], [14]. With the sequence,
this method is known as “Spectrum of Inverse Intervals” [13],
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[14]. We will also present this method applied to the
sequence to show the harmonic distortion caused by supposing
regular sampling when there was irregular.

D. Lomb Method (LHP, LHR, LHT)

The Lomb–Scargle periodogram is a direct method to cal-
culate the power spectrum of a unevenly sampled signal [20],
[24], [25]. A fast algorithm is proposed in [26], [27] to cal-
culate the Lomb periodogram. In HRV signals, the results ob-
tained by the generalized periodogram defined as

and by the Lomb method are sim-
ilar [24]. The spectrum is exactly that obtained by di-
rect estimation in (19). In this paper, the Lomb-Scargle peri-
odogram has been used as the representative of the direct spec-
tral estimation methods.

E. Berger Method (BHP, BHR, BHT)

In [14], an algorithm was presented so as to minimize the
spurious spectral components. This method generates a step-
wise heart rate signal from the instantaneous heart rate. This
signal is sampled at 4 Hz and then is convolved with a rect-
angular window of 0.5 s of duration. This method can be seen
as a zero-order hold system, whose holding times are irregu-
larly spaced at the beat occurrence times and recovers a regular
spaced signal by filtering and sampling the stepwise signal. The
obtained spectrum is then corrected by multiplying it by the in-
verse of the filtering response caused by the convolution with
the rectangular window. We extended this algorithm, originally
for the signal, to the and HRV signals to
compare it to the other methods.

F. DFT of Interpolated Signals (FHPIn, FHRIn, FHTIn)

The sequence of irregular samples is previously interpolated
at regularly spaced time intervals. Then, the FFT is used to cal-
culate the spectrum. We have used spline interpolation with dif-
ferent orders at a sampling frequency of Hz. The order of
the spline interpolation is shown by the “n” suffix, for example
FHRI4 is the abbreviation of this method for cubic interpolation
applied to HR signal.

G. AR Method of Interpolated Signals (ARHPIn, ARHRIn,
ARHTIn)

Many authors use parametric AR estimation methods of the
PSD in HRV analysis [16]. There are several methods to esti-
mate the coefficients of an AR model from the studied time
series. Thus, the Yule-Walker, Burg, covariance or modified co-
variance are different methods for estimating AR coefficients.
We used the modified covariance method but we did not observe
a significant difference with other AR methods in the HRV anal-
ysis. The order used will be indicated in the abbreviation suffix.
Thus, ARHRI9 will be a ninth-order AR estimation method ap-
plied to the HR interpolated signal. A cubic spline interpolation
at a sampling frequency of Hz was used previously to re-
construct an evenly sampled signal from the uneven samples.

V. COMPARISONBETWEEN THEESTIMATED SPECTRA

We carried out two types of experiment in order to compare
the different PSD estimates that have been proposed. We made

Fig. 4. Amplitude spectra form(t) = 0:1 cos(2� � 0:1 � t) + 0:1 cos(2� �

0:251 � t) andT = 1 s with different PSD estimates. See text for details.

different assumptions with . First, we assumed that is
formed by two-tone function whose frequencies are well known.
We intend to corroborate the theoretical results presented in this
paper.

The second kind consists of generating the series of beats
by means of realistic AR models. We have used for modeling
the signal AR models that approximately match the PSD
at supine rest and after head-up tilt described in [8]. Then, the
series of beats is generated as output of the IPFM model and the
PSD estimation achieved by the described methods.

A. Two-Tone Simulation

We carried out the same two-tone simulation presented in
this paper so as to compare experimentally the results obtained
with the previously mentioned theoretical study. In this case,
the modulating signal was

with a mean heart period of s.
We generated 1000 beats following the IPFM model equation.
We calculated the different time-domain signals and finally we
applied the PSD methods described in this paper. We slightly
increased the frequency of the second tone so as to observe the
second harmonic spurious contribution (0.502 Hz reflected to
0.498 Hz due to aliasing and with the SPC method coming from

Hz) and falling into the base band
( Hz). We chose exactly 1000 beats to have an integer
number of periods of both tones avoiding spectral leakage due
to the finite observation time [28].

Fig. 4 shows the obtained results. In this case, we have
presented the amplitude spectra to show both the incorrect
amplitude of the tones estimated and the spurious spectral
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TABLE III
COEFFICIENTS ANDNOISE VARIANCE OF THE AR MODELS

components generated. The SPC spectrum has been represented
without its unitary delta at 0 Hz. The AR spectral estimates
have not been calculated since they are not suitable for tone-like
spectral estimation [29].

B. AR Simulation

To compare the behavior of the spectra estimates to a more
realistic signal, we generate the beat series from an signal
following a typical spectrum from a real subject. We have used
for modeling the signal two AR models that approximately
match the PSD at supine rest and after head-up tilt described in
[8]. The PSD of the AR model is given by

PSD (21)

where is the variance of the driving white noise with zero
mean and is the AR polynomial of
order .

Table III shows the coefficients and the variance used for a
sampling rate of 1 Hz. The order in both cases was7. Fig. 5
shows both modeled PSD.

These PSD distributions have been tested, each one with two
mean heart periods ( s and s). We preferred to
keep constant the PSD distributions and change the mean heart
period. In relative terms to the mean Nyquist frequency, for the
same PSD when is larger, the high-frequency contribution is
larger.

In each one of the four cases, we generated 20 random
realizations of 1024 samples of the modulating signal,

(sampling frequency of 1/T Hz), following the PSD of
each AR model. Then, the sequences are interpolated
obtaining samples by means of zero padding at its
spectra. This operation keeps the spectrum and obtains enough
samples to perform the numerical integration involved in the
IPFM model. We calculate the cumulative integral of

and we obtain the beat occurrence times,, as
the instants when this integral crosses . [See
Fig. 1(b)]. Additional cubic spline interpolation is carried out
in the neighborhood of to determine the instants with
precision. Bearing in mind that the mean of is zero, we
also obtain 1024 beats at . Finally, the PSD estimation is
achieved by all the above described methods. The order of the
chosen model of the AR methods for estimation was 9
for the rest case and 15 for the tilt case following the
minimum optimal order test [8].

The spectrum of each realization of the is named “Orig-
inal spectrum” and is the objective to be estimated. Each real-
ization is considered as an independent recording to estimate
its PSD. To show clearly the global behavior of each method

Fig. 5. Modeled PSD ofm(t) for the Rest and Tilt cases.

with the frequency, we calculated the mean normalized error
MNE defined as

MNE

PSD PSD

PSD

(22)

where PSD is the PSD of theth realization of the “Original
spectrum” andPSD is the PSD estimate with each method
on the th realization. With our sign convention, when the error
is positive the power estimation is greater than the original and
vice versa. Fig. 6 shows the mean of the 20 realizations of the
“Original spectrum” (top left) and the mean of the 20 estima-
tions made with each method (rest of graphics) for the rest case
with 1.2 s. The modeled PSD is shown as a dashed line
and a systematic PSD bias error can be observed in some esti-
mation methods. However, Fig. 7 shows the MNEof each
method and it clearly reflects their behavior with the frequency.
We present this case because the PSD estimation methods be-
have worse when is larger. The results obtained with the tilt
case are quite similar and their graphs are not presented in this
paper. The methods based on the HP signal have not been shown
since they have a similar or even a worse performance than those
based on the HR signal, as can be seen in Fig. 4.

Moreover, to obtain a significant single value of the quality
of each method we integrated the absolute value of the error
in all the frequencies and we calculated the mean of the nor-
malized error powerMNEP of each method defined as

MNEP

PSD PSD

PSD

(23)
The calculated MNEP is an effective quantitative summary
of the estimation methods quality. However, in HRV the PSD
is usually divided into different frequency bands [8]. We
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Fig. 6. PSD estimation results for the Rest model andT = 1.2 s. See text for
details.

carried out the simulation with 1024 beats that approximately
represent between 13 and 20 min of electrocardiogram (ECG)
recording. We used the following bands, recommended in [8],
LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz). This choice rejects
the ULF band Hz), with uncertain information,
specially with nonstationary recordings, and the UHF band

Hz) normally involved with noise. The more usual
clinical indices are based on the power in each band relative
to the sum of the power in the three bands. We calculated
the relative power VLF/AF, LF/AF, and HF/AF where AF

VLF LF HF and VLF, LF, and HF is the power
in the corresponding band. Then, we calculated the errors

VLF AF VLF/AF, LF AF LF/AF,
HF AF HF/AF as the difference of the relative

power obtained with each method and the one obtained from
the original realization of . These errors are signed
magnitudes whose sum in the three bands is zero. If the
error is positive in one band, the relative power estimated is
excessive in this band and vice versa. Thus, the tendency of
each method to increase one band power in relation to the
others can be easily detected.

Fig. 7. PSD estimation error for the Rest model andT = 1.2 s. See text for
details.

We present in Fig. 8, at the left column the MNEP of the four
studies, at the middle column, the mean of
and at the right hand column, the standard deviation of these
errors. A logarithmic representation of the different magnitudes
has been used to represent together the magnitudes in spite of
their great differences. In this figure, the methods have been
ordered attending to their performance from the left (best) to
the right (worse). The methods with a lower performance (FHP,
FHR, FHT, and LHT) and those based on the HP signal have not
been shown [30].

VI. DISCUSSION

The above simulations permit us to reinforce the conclusions
from Section II-C and to extract some new ones:

As regards the time domain signal used, we observe that both,
the HP or the HR signal present a strong and similar low-pass
filtering effect due to the fact that the generation of these signals
involves this effect inherently (see Figs. 4, 6, and 7). Moreover,
these signals do not have a linear dependence with the modu-
lating signal and harmonics appear increasing the noise and dis-
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Fig. 8. MNEP, mean, and standard deviation of estimation errorsE ;E ; andE for each method in the four studied cases.

torting the spectra nonlinearly (see Fig. 4). This effect is more
noticeable in the HP signal than in the HR signal (see Figs. 1,
2, and 4). However, the HT signal and the Event Series do not
present the low-pass filtering effect and the distortion is very
low in the Event Series and it is null with the HT signal (see
Figs. 4, 6, and 7).

As regards the method used to estimate the PSD, with sig-
nals with smooth spectra and relative low power at high fre-
quencies, the SPC method performs well, more effectively than
the other classical methods (see Figs. 6 and 7). However, if the
spectrum is sharp, spurious components can appear at high fre-
quencies whose amplitude is very sensitive to the original spec-
tral distribution (see Fig. 4). The LPFES method introduces a
noticeable low-pass filtering effect due to the insertion of the
dummy pulse in the midpoint of each RR interval (see Figs. 6,
7). This can be seen as a process similar to linear interpolation.
The direct estimation over the sequences (FHP, FHR, FHT),
supposing that are equispaced, introduces a very important non-
linear distortion due to the artificial compression or expansion

between beats. They have a poor performance, as it was ex-
pected (see Figs. 4, 6, and 7). The direct estimation methods as
the Lomb method (LHP, LHR, LHT) also introduce significa-
tive distortion due to the convolution with SPC [See (19)
and (20)]. Moreover, if the modulating signal has very low-fre-
quency components, as usual with smooth spectra, the LHT
method becomes unusable (See Figs. 6 and 7). This is due to
the fact that has very high amplitudes
at low frequencies. When is multiplied by to re-
cover , the first term in (20) will be the correct but
the second term will be not negligible. It will have the
high amplitudes displaced due to the convolution with .
The sum of both terms increases the amplitude of the high-fre-
quency components strongly that afterwards need even be mul-
tiplied by . This can be summarized as

LHT

(24)
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The Berger method (BHP, BHR, BHT) reduces high-fre-
quency contamination of the HP, HR, or HT but it presents
an added low-pass filtering effect in all cases (see Figs. 4, 6,
and 7). This is because, even this method corrects the filtering
effect of the convolution with the rectangular window, it
cannot correct the time-variant low-pass filtering due to the
“sample and hold” process involved. Methods based on spline
interpolation present a reduced low-pass filtering effect due
to the interpolation, which has been practically eliminated by
increasing the order of the spline (see Figs. 6 and 7). The results
obtained with the AR methods present inferior performance
than those nonparametric ones in spite of the simulated signal
was generated through an AR model. The obtained mean error
of the clinical indices and the standard deviation was larger
than with the other methods (see Fig. 8). These results are in
agreement with those obtained in [31].

We demonstrated that a robust interpolation method in con-
junction with the HT signal presents the best HRV estimation.
The improvement relative to the SPC is more noticeable when
the power at high frequencies is greater, or for the same PSD dis-
tribution, when the mean heart period is larger. This condition
in the cases studied is met when 1.2 s. and effectively, in
these cases the performance of the SPC method clearly worsens
(see Fig. 8). In general, when the original PSD has higher rela-
tive power at high frequencies, more error will be introduced.

All these effects are reflected in the estimate of the clinical
indices as it is summarized in Fig. 8.

The previous cases were simulated with great precision in
the beats position . In real situations, the determination of
the fiducial point of the QRS complex position involves errors
due to noise or low sampling frequency of the ECG recording.
We made the same simulation but reducing the resolution of
the beat occurrence times. This is equivalent to add white noise
uniformly distributed over the original positions. The white
noise introduced in a time-domain signal becomes colored in
the PSD spectral estimation, increasing quadratically with the
frequency [32]. In [32], it is shown for the HP signal that a de-
creased sampling frequency in ECG increases the noise power
at high frequencies in PSD estimation. This occurs in all estima-
tion methods presented in this paper [30]. The best performance
methods (FHTI and SPC) were more sensitive to the low reso-
lution simply because these methods have no biased error, and
the methods with poorer performance did not suffer this error
appreciably because they have a significant biased estimation
error. Thus, to keep the performance of the best methods it is
needed to detect the position of each QRS complex with a pre-
cision better than 0.25 ms. This refinement can be accomplished
by interpolating the ECG on the neighborhood of each QRS.

VII. CONCLUSION

In this paper, we present a study analyzing the problems of the
application of the different time domain signals used in HRV as-
suming the IPFM model. We introduced the new HT signal that
overcomes these problems. We analyzed the irregular sampling
problem and we show that an adequate interpolation method
with appropriate frequency response is a better solution than di-
rect estimation methods as Lomb method. We carried out sim-

ulations based on AR models with PSD considered as standard
in real subjects. In these simulations we compared most of the
methods known to us. Results show how the method based on
the interpolation of the HT signal has achieved the best results
followed by the SPC method. It is needed to detect the position
of each QRS complex with a precision better than 0.25 ms. to
maintain the performance of the best methods.

In summary, we may conclude that to study HRV assuming
the IPFM model, the time-domain signal that better recovers the
modulation properties of the sino-atrial node is the HT signal.
The PSD estimation method that gives the best modulation spec-
trum estimates is the Fourier transform of the HT signal interpo-
lated by high order splines. This technique get the lower error
in the estimate of the clinical indices measured as PSD at the
VLF, LF, and HF bands as used in clinical studies. Moreover,
the practical null distortion achieved by the high order spline
interpolation of the HT signal make it suitable for a continuous
time-domain estimate of the instantaneous heart rate. This tech-
nique will allow to use time frequency methods in situations
dealing with nonstationary ECG recording, such as stress test.

APPENDIX

SPCAT THE BASE BAND

The signal represents a problem equivalent to the
problem of pulse position modulation (PPM) which appears in
modulation systems [21]. In [21], it is shown that

(25)

We can rewrite (13) using (3) as

(26)

In our case, , and .
Thus, using (25)

(27)

and the spectrum of is

SPC

(28)

The more important spectral contamination at the base band
is given by the fundamental frequency modulation, that is, for
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1. Greater values of require greater convolution orders
to reach the base band and its amplitude will be very small.
Then, at the base band the spectrum can be approximated as

SPC FM FM
(29)

where FM is given by

FM (30)
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