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Abstract
In this study, a framework for the characterization of the dynamic interactions
between RR variability (RRV) and systolic arterial pressure variability (SAPV)
is proposed. The methodology accounts for the intrinsic non-stationarity of
the cardiovascular system and includes the assessment of both the strength
and the prevalent direction of local coupling. The smoothed pseudo-Wigner–
Ville distribution (SPWVD) is used to estimate the time–frequency (TF)
power, coherence, and phase-difference spectra with fine TF resolution.
The interactions between the signals are quantified by time-varying indices,
including the local coupling, phase differences, time delay, and baroreflex
sensitivity (BRS). Every index is extracted from a specific TF region, localized
by combining information from the different spectra. In 14 healthy subjects, a
head-up tilt provoked an abrupt decrease in the cardiovascular coupling; a rapid
change in the phase difference (from 0.37 ± 0.23 to −0.27 ± 0.22 rad) and
time delay (from 0.26 ± 0.14 to −0.16 ± 0.16 s) in the high-frequency band;
and a decrease in the BRS (from 23.72 ± 7.66 to 6.92 ± 2.51 ms mmHg−1).
In the low-frequency range, during a head-up tilt, restoration of the baseline
level of cardiovascular coupling took about 2 min and SAPV preceded RRV
by about 0.85 s during the whole test. The analysis of the Eurobavar data set,
which includes subjects with intact as well as impaired baroreflex, showed
that the presented methodology represents an improved TF generalization of
traditional time-invariant methodologies and can reveal dysfunctions in subjects
with baroreflex impairment. Additionally, the results also suggest the use of
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non-stationary signal-processing techniques to analyze signals recorded under
conditions that are usually supposed to be stationary.

Keywords: cardiovascular interactions, cross time–frequency analysis,
coherence analysis, Wigner–Ville distribution, cardiovascular variability,
baroreflex
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1. Introduction

Short-term cardiovascular control involves homeostatic mechanisms for the maintenance of
blood pressure, which make the blood pressure and heart rate to continuously interact. A change
in the blood pressure causes a change in the heart rate through the feedback baroreceptor-
cardiac reflex (baroreflex), while, in turn, a change in the heart rate causes a change in the blood
pressure through feedforward mechanical effects. The assessment of baroreflex sensitivity
(BRS), i.e. the change in the RR interval following a unitary change in the blood pressure,
from non-invasive measurements is clinically relevant because a baroreflex impairment has
been suggested to have diagnostic and prognostic relevance (Di Rienzo et al 2009, La Rovere
et al 2008). Over the last 20 years, different techniques have been proposed to estimate the
spontaneous BRS (Laude et al 2004, Pagani et al 1988, Vallais et al 2009, Robbe et al 1987,
Barbieri et al 2001, Gouveia et al 2009). Among them, there is the cross-spectral analysis
of systolic arterial pressure variability (SAPV) and RR variability (RRV) (Di Rienzo et al
2009, La Rovere et al 2008). In particular, the parameter αB has been defined as the squared
root of the ratio between the powers of the RRV and SAPV series, and it is usually defined
in both the low-frequency (LF; range [0.04, 0.15 Hz]) and high-frequency (HF; range [0.15,
0.4 Hz]) spectral bands (Pagani et al 1988, Laude et al 2004). Traditionally, this parameter is
estimated whenever the spectral coherence between RRV and SAPV is higher than an arbitrary
threshold. Although the first methodologies to estimate spontaneous BRS are not recent (Robbe
et al 1987, Pagani et al 1988, Mainardi et al 1997), over the last few years, the interest in
improved methods has increased. Recently, much effort has been put into improving two
issues: the capability of following changes under non-stationary conditions and the assessment
of the causality between RRV and SAPV. However, only a few methodologies that combine
non-stationary analysis and the assessment of causality have been applied in the study of
cardiovascular interactions (Chen et al 2011). Non-stationary processing is important because
in the cardiovascular system, stationarity is a rare exception rather than the rule. Recent non-
stationary methods for the analysis of cardiovascular interactions are based on time-varying
autoregressive models (Xiao et al 2005, Chen et al 2011), continuous and discrete wavelet
transform (Kashihara et al 2009, Keissar et al 2010, Nowak et al 2009, Wiklund et al 2002)
and empirical mode decomposition (de Souza Neto et al 2007, Gallet et al 2011).

The assessment of the causality is relevant because it can be used to infer which mechanism
is primarily responsible for the changes observed in the signals and is necessary to assess
spontaneous BRS (Porta et al 2011). To determine the prevalent direction of the coupling
between RRV and SAPV (Nollo et al 2009), cross-spectral analysis has been traditionally
used (Cooke et al 1999, Li and Jung 2000). Recently, parametric modeling (Nollo et al 2005,
Chen et al 2011) and nonlinear indices (Porta et al 2011, Javorka et al 2011) have also been
proposed to assess causality (Nollo et al 2009).
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The main purpose of this paper is to present a methodology to characterize the dynamic
interactions between RRV and SAPV, which includes the assessment of both the strength and
the prevalent direction of local coupling. This methodology is based on the smoothed pseudo-
Wigner–Ville distribution (SPWVD) and provides time–frequency (TF) representations of the
signal power spectra, spectral coherence and phase differences with fine joint TF resolution. It
also allows estimating the time course of the local coupling, phase differences and time-delay
between the LF and HF spectral components of the two signals. Robust estimates of the BRS
are obtained owing to the localization of TF regions characterized by statistically significant
coherence and in which the SAPV leads the RRV signal.

The capability of reliably estimating fast changes in these dynamic interactions is assessed
in a simulation study involving data recorded from healthy subjects.

A physiological study is carried out to characterize the cardiovascular dynamics during
the head-up tilt table test (Freeman 2006, Mainardi et al 1997, Cooke et al 1999, Westerhof
et al 2006, Porta et al 2011), and the Eurobavar data set (EDS) (Laude et al 2004, Westerhof
et al 2004, Gouveia et al 2009) is analyzed to assess whether the presented methodology
can be considered as the generalization of traditional time-invariant methods. To highlight the
importance of non-stationary signal processing in the assessment of short-term cardiovascular
control, a test of stationarity (Borgnat et al 2010) is applied to the signals analyzed in this
paper.

2. Methods

2.1. Assessment of non-stationarity

Stationarity is usually assumed based on some arbitrary considerations. Recently, Borgnat
et al (2010) proposed an operational framework for statistically testing stationarity relatively
to an observation scale. The test is based on the comparison between global and local TF
features. Stationarity occurs if the local spectra, evaluated at different time instants, are
statistically similar to the global spectrum obtained by marginalization (details about how this
test has been used are available at stacks.iop.org/PM/33/315/mmedia). The test was applied to
the signals analyzed in this study.

2.2. TF representations

2.2.1. TF power spectra. Auto and cross TF spectra Sxy(t, f ) are estimated by the SPWVD, a
member of the Cohen’s class, characterized by the independent filtering in time and frequency.
It is defined as (Hlawatsch and Boudreaux-Bartels 1992)

Sxy(t, f ) =
∫ +∞∫
−∞

�(τ, ν)Axy(τ, ν) e j2π(tν−τ f ) dν dτ (1)

Axy(τ, ν) =
∫ ∞

−∞
x
(

t + τ

2

)
y∗

(
t − τ

2

)
e− j2πνt dt. (2)

In these expressions, Axy(τ, ν) is the cross-ambiguity function. Separable smoothing is
performed by an exponential kernel function, defined in the ambiguity function domain as
�(τ, ν), and in the TF domain as φ(t, f ):

�(τ, ν) = exp
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⎩−π

[(
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)2

+
(

τ
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]2λ
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The iso-contours of �(τ, ν) are the ellipses whose eccentricities depend on the parameters ν0

and τ0 (Costa and Boudreau-Bartels 1995). The parameters ν0 and τ0 are used to determine
the degree of time and frequency filtering, respectively, while λ sets the roll-off of the kernel.

The resolution of the SPWVD is given by the shape of the kernel function. Time resolution
is quantified by the full-width at half-maximum of φ(t, 0), i.e. (	t), while frequency resolution
is quantified by the full-width at half-maximum of φ(0, f ), i.e. (	f) (Orini et al 2011). These
quantities measure the degree of spreading of a line in the TF domain: 	t and 	f are equal
to the full-width at half-maximum of the SPWVD of a Dirac impulse, evaluated along t, and
of a sinusoid, evaluated along f , whose ideal TF representations would be, in the absence of
smoothing, straight lines.

2.2.2. TF coherence. TF coherence (TFC) measures the degree of local coupling between
two signals and is given by (Matz and Hlawatsch 2000, White and Boashash 1990, Orini et al
2011)

γ (t, f )= |Sxy(t, f )|√
Sxx(t, f )Syy(t, f )

; γ (t, f ) ∈ [0, 1]. (4)

Auto- and cross-spectra by the SPWVD are not always positive, and negative values are
related to the presence of residual interference terms (Hlawatsch and Boudreaux-Bartels
1992). These terms may cause γ (t, f ) to take values outside the range [0,1], thus losing
its physical interpretation. To obtain meaningful TFC estimates, the filtering provided by
�(τ, ν) should completely suppress the interference terms (Matz and Hlawatsch 2000). The
appropriate degree of TF smoothing is determined by fixing a desired TF resolution and by
iteratively increasing the degree of smoothing by changing parameters τ0 and ν0, until reaching
γ (t, f ) ∈ [0, 1]. The results of this numerical process will be shown in section 4.

A statistical test is necessary to assess the coherence estimates, because, similar to
stationary spectral coherence, TFC estimates depend on the parameters used in their calculation
(Orini et al 2011). More specifically, the finer the TF resolution is, the higher should be the
TFC estimates to be considered as statistically significant (Orini et al 2011). The TF regions
where spectral coherence is significant are localized by a hypothesis test. The test is based on
the comparison of γ (t, f ) with a threshold function γTH(t, f ) obtained as the 95th percentile
of the statistical distribution �(t, f ) = {γ1(t, f ), . . . , γj(t, f ), . . .}, where γj(t, f ) is the TFC
between the jth realization of two complex white Gaussian noises (Orini et al 2011). The
region where γ (t, f ) is significant is defined in each band B ∈ {LF, HF} as

�B ≡ {(t, f ) ∈ (R+ × B) | γ (t, f ) > γTH(t, f )}. (5)

2.2.3. TF phase-difference spectrum. The TF representation of the phase differences between
the spectral components of two signals can be obtained by estimating the phase of Sxy(t, f ).
The TF phase-difference (TFPD) spectrum is given by

(t, f )=arctan

[ �[Sxy(t, f )]

�[Sxy(t, f )]

]
, (t, f ) ∈ [−π, π ]. (6)

Analytical expressions of the TFPD spectrum for linear chirps are available at
stacks.iop.org/PM/33/315/mmedia.

2.3. Time course of the physiological indices

The time course of the indices characterizing the dynamic interactions between cardiovascular
signals is estimated in specific TF regions. The localization of these regions is necessary to
obtain robust and reliable estimates.
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In the following paragraphs, the TF region from which the time course of a general index
IB(t) ∈ {γB(t), θB(t),DB(t), αB(t)} is extracted is called �

(I)
B , with B ∈ {LF, HF}.

2.3.1. Band coherence. The instantaneous frequencies of the spectral components of
|Sxy(t, f )|, f (xy)

B (t), are estimated by localizing the corresponding instantaneous spectral peaks.
Time-varying spectral bands centered around f (xy)

B (t) are defined as

�
(γ )

B ≡
{
(t, f ) ∈ (R+ × B)

∣∣ f = f (xy)

B (t) ± 	f

2

}
(7)

where 	f is a term related to the frequency resolution (see the previous section). The time
course of the band coherence is then obtained by averaging γ (t, f ) in �

(γ )

B :

γB(t) = 1

	f

∫
�B

(γ )

γ (t, f ) d f . (8)

2.3.2. Phase difference and time delay. The time course of the phase difference between each
spectral component of the two signals, i.e. θB(t), is estimated in a TF region �

(θ)
B centered

around f (xy)

B (t) and where the coherence is statistically significant. These conditions are
necessary because, in this context, the estimation of a phase difference is relevant only in time
intervals in which the signals are approximately sharing the same instantaneous frequency.
The region �

(θ)
B is defined as

�
(θ)
B ≡ {

�
(γ )

B ∩ �B
} ◦ R(t, f ) (9)

where R(t, f ) is a rectangle of sides 2s × 	f
2 Hz and ◦ denotes the opening (processing

technique that involves erosion and dilation). The opening excludes from {�(γ )

B ∩ �B
}

the
portions of the TF domain, which are smaller than R(t, f ), thus adding robustness to the final
estimates. The indices θB(t) and DB(t) are estimated (in radians and seconds, respectively) as

θB(t) =
[∫

�
(θ)
B

(t, f ) d f

]/ [∫
�

(θ)
B

d f

]
, DB(t) = θB(t)

2π f (xy)

B (t)
. (10)

Analytical expressions for indices θB(t) and DB(t) for linear chirps are available at
stacks.iop.org/PM/33/315/mmedia.

2.3.3. Baroreflex sensitivity. The index αB(t), which measures the changes in the spontaneous
BRS, is estimated in a TF region �

(α)
B centered around f (xy)

B (t), where coherence is statistically
significant and where a change in the SAPV signal precedes a correlated change in the RRV
signal:

�
(α)
B = {

(t, f ) ∈ �
(θ)
B | (t, f ) < 0

}
. (11)

According to the described framework, if we associate x(t) and y(t) with the RRV and SAPV
signals, respectively, when a change in the arterial pressure precedes a corresponding change
in the heart period, the phase of Sxy(t, f ) is negative, i.e. (t, f ) < 0 (see expressions available
at stacks.iop.org/PM/33/315/mmedia). The time course of the BRS is then estimated as

αB(t) =
√∫

�
(α)
B

Sxx(t, f ) d f

/ ∫
�

(α)
B

Syy(t, f ) d f . (12)
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3. Material and study populations

The presented methodology was assessed in a simulation study and was used to analyze
cardiovascular interactions in two different data sets.

3.1. Simulation study

A simulation study was carried out with the purpose of validating the proposed methodology.
The signals used in these simulations were the modified versions of the RRV signals recorded
during the tilt table test described in the following section. They were obtained as

x(t) = aRRV(t) + wx(t), y(t) = [γ0(t)α0(t)exp( jθ0(t))]aRRV(t) + wy(t) (13)

where aRRV(t) is the complex analytic signal representation of the RRV signal, and wx(t) and
wy(t) are the white Gaussian noises associated with SNR = 10 dB. The indices γ0(t) ∈ {0, 1},
θ0(t) ∈ [−2.2,−0.8] rad and α0(t) ∈ [5, 20] ms mmHg−1 represent the reference time
course of the local coupling, phase difference, and BRS (time courses are shown in figure 3).
The reasons that make the estimation of these indices challenging are as follows. The TF
structure of the signals reflects the complexity of real non-stationary biomedical signals;
the presence of epochs, the shortest lasting for 30 s, during which signals are not locally
coupled and during which θB(t) and αB(t) should not be estimated; the phase difference
varies nonlinearly with time; the BRS first undergoes stepwise changes and then recovery
toward higher values following a nonlinear timecourse; the noise is added; and finally, all
these patterns imply simultaneous amplitude and frequency modulation of the signals.

3.2. Tilt table test analysis

Fourteen subjects (aged 29 ± 3 years) underwent a tilt table test with the following protocol:
4 min in early supine position (Tes), 5 min head-up tilted to an angle of 70◦ (Tht), and 4 min
back to later supine position (Tls) (Mincholé et al 2011). The automatic bed took about 18 s to
move from 0◦ to 70◦. The ECG signals were recorded using the BIOPAC MP 150 system with
a sampling frequency of 1 kHz. The temporal location of the nth QRS complex in the ECG, i.e.
tQRS
n , was automatically determined using the algorithm described by Martinez et al (2004).

The RR series was estimated as xRR(n) = tQRS
n+1 − tQRS

n , and the value xRR(n) was associated
with the time instant tQRS

n . The effect of abnormal RR intervals was corrected by applying a
methodology described by Mateo and Laguna (2003). The pressure signal was recorded at the
finger by the Finometer system with a sampling frequency of 250 Hz and without correction for
the hydrostatic gradient change during tilt. The systolic arterial pressure series was obtained
as the maximum of the pressure signal within a short interval following tQRS

n . During the
procedure, the Finometer was recalibrated at the beginning of Tht and Tls. The recalibration
took a few seconds and introduced artifacts that were corrected by interpolation. The time
series were subsequently interpolated by a fifth-order spline with a sampling frequency of
4 Hz, and the RRV and SAPV signals, namely xRRV(t) and xSAPV(t), were obtained by high-
pass filtering with a cut-off frequency of 0.03 Hz.

3.3. Eurobavar study

The experimental setting is described in detail by Laude et al (2004). Briefly, 21 subjects
(aged 38.4 ± 3.3 years) were included in the study. The subjects were comprised of 4 healthy
volunteers, 12 normotensive outpatients, 3 hypertensive patients (1 untreated), 1 diabetic
patient with cardiac autonomic neuropathy (DAN), and 1 subject who recently underwent heart
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Figure 1. Circles represent the TF resolution obtained by tuning the parameters of the kernel in (3).
The kernels that gave γ (t, f ) ∈ [0, 1] for the entire data set described in section 3.2 are indicated
in black, and those that gave γ (t, f ) /∈ [0, 1] for at least one subject are denoted in gray. The cross
represents the resolution of the kernel used in this study.

transplantation (HTR). ECG and pressure signals were acquired with a sampling frequency of
500 Hz in supine and standing positions (about 10 min, respectively).

4. Results

Although the SPWVD gives the possibility of using an independent filtering in time and
frequency, the constraint of having γ (t, f ) bounded between 0 and 1 imposes a sort of trade-
off between time and frequency resolutions, which cannot be simultaneously and arbitrarily
fine. For a given set of signals, different combinations of time and frequency resolutions fulfill
the condition γ (t, f ) ∈ [0, 1]. In figure 1, black circles represent the available choices of TF
resolutions offered by the kernel in (3) that, for the whole data set described in section 3.2,
gave γ (t, f ) ∈ [0, 1]; gray circles represent the TF resolutions that led to γ (t, f ) /∈ [0, 1] for
at least one subject. The closer a point is to the origin of the axes, the finer is the TF resolution.
Thus, the most interesting combinations of TF resolutions are those indicated with the dashed
line. In the following, the kernel �(τ, ν) that gave {	t,	f} = {10.95 s , 39.2 mHz} was used
(see the cross mark in figure 1).

4.1. Assessment of non-stationarity

In both the data sets, the hypothesis of stationarity was assessed via the statistical framework
described, available at stacks.iop.org/PM/33/315/mmedia (Borgnat et al 2010). Figure 2 shows,
for a given scale of observation, the relative number of signals that were considered non-
stationary by the test. The scale of observation is given as Th/T ∈ [0.05, 0.5], where Th is the
length of the window of the spectrogram and T is the length of the signals. Depending on the
signal, Th varies from 30–40 s to 5–7 min.

http://stacks.iop.org/PM/33/315/mmedia
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considered non-stationary. Signals recorded during the tilt table test are denoted by square marks.
Signals from the EDS recorded in supine and standing position are represented by gray and black
circles, respectively.

All the SAPV signals recorded during the tilt table test were considered non-stationary
at every time scale, while 1 over 14 RRV signals was considered, for each Th/T , stationary.
Interestingly, more than 50% of the signals from the EDS were considered non-stationary,
despite the fact that they were recorded in resting conditions. In figure 2(a), it is shown that for
xRRV(t), the typical scale of non-stationarity (Borgnat et al 2010), at which it is more likely to
reject the null hypothesis of stationarity, corresponds to Th/T = 0.1–0.2 (about 1–2 min). In
addition, it is also shown that the number of non-stationary RRV signals was higher in supine
than in the standing position. In the supine position, for Th/T < 0.4, the non-stationary testing
was positive for more than 80% of the signals, and for Th/T = 0.2, stationarity was rejected
in all the signals. In figure 2(b), it is shown that at about the same scale of observation, about
80% of the SAPV signals were considered non-stationary, regardless of the position of the
subjects.

4.2. Simulation study

In the simulation study, from each of the 14 RRV signals, 50 couples of modified signals
were generated. For every couple of signals, the general index I(t) ∈ {γ (t), θ (t), α(t)} was
estimated in the TF regions �

(I)
B , and the time course was I(t) = (ILF(t) + IHF(t))/2. The

results are shown in figure 3. Figure 3(a) depicts the results of coherence analysis. The mean
threshold γTH ≈ 0.85 is reported by a dashed line. Epochs of decorrelation and correlation
were localized with a high temporal resolution. As shown in this illustration, the difference
t0 − t̂0 between the occurrence of an abrupt change of γ0(t) and the time instant at which the
median time course of γ (t) matches the threshold value (γ m(t̂0) = γTH) was 0, 1.5, and 2.25 s,
respectively. It can be noted that the minimum level of coherence was higher than 0 due to
the effect of the kernel, while the maximum level of coherence was lower than 1 due to the
effect of the phase differences and due to the noise. The decrease in γ (t) observed at around
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t = 240 s was due to the stepwise decrease in α0(t) (see figure 3(c)). Figure 3(b) shows that the
phase-difference estimator (10) gave an accurate tracking of the time course of θ0(t). As �

(θ)
B

includes only regions where γ (t, f ) is significant, estimates were given only in TF regions
where the signals were locally coupled. In figure 3(c), it is shown that the time course of α(t)
was estimated with high accuracy. The stepwise decrease in α(t) from 20 to 5 ms mmHg−1

was approximated by a sigmoid-like pattern. Again, the coherence analysis prevented from
including the interval where signals were uncoupled in the analysis.

4.3. Tilt table test

The TF representations obtained from the analysis of RRV and SAPV of one subject (male,
30 years old) are shown in figure 4. In the auto-spectra, shown in figures 4(a) and (b), the power
of the HF modulation was higher than that of the LF one. During the head-up tilt, the powers
of xRRV(t) and xSAPV(t) decreased and increased, respectively. The instantaneous frequencies
of the HF component of both the signals, as well as those of the cross-spectrum (see �

(γ )

B in
figure 4(c)), reflect the high variability of the respiratory rate, which fluctuated between 0.15
and 0.25 Hz. Despite the non-stationary structure of the signals, the regions in which the local
coupling was statistically significant were localized by the TFC analysis (see figure 4(c)).
The head-up tilt caused the TFPD spectrum (t, f ), shown in Fig 4(d), to change quickly,
especially in the HF range. In figures 4(c) and (d), the regions �

(γ )

B and �
(θ)
B are encircled

by white contours. By averaging in traditional spectral ranges, instead of using these specific
regions, one would have estimated a much lower coherence in the HF range and erroneously
detected abrupt changes of phase difference in correspondence with those TF regions in which
the signals were not locally coupled (as in the LF at t ≈ 240 s and t ≈ 600 s).

The time course of the physiological indices derived from the spectra of figure 4, as
well as the global results, is shown in figure 5, while the numerical results are given
in table 1. In the calculation of these values, the first and last 2	t have been excluded
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Figure 5. Indices during the tilt table test: (a)–(d) local coupling γB(t) as in (8); (e)–(h) phase
differences θB(t) as in (10); (i)–(l) time delay DB(t) as in (10); and (m)–(p) BRS αB(t) as in
(12). First and third columns: results from the subject whose TF representations are shown in
figure 4. Second and fourth columns: global results shown as median (black lines) and interquartile
range (shadowed areas) of the time courses from all the subjects. The vertical lines denote supine
positions and head-up tilt.

from each of the three epochs. The Wilcoxon rank sum test was applied to statistically
compare the temporal mean values of the indices estimated in each of the three conditions,
i.e. {IB,1(t ∈ Tk), . . . , IB,L(t ∈ Tk)} and {IB,1(t ∈ Tl), . . . , IB,L(t ∈ Tl)}, where Tk �= Tl ∈
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Table 1. Global results of the tilt table test, reported as the average of the median trends shown
in figure 5, evaluated in epochs Tes, Tht, and Tls (first and last 2	t have been excluded from the
analysis). ‘†’ denotes that the mean values of a given index are statistically significant with respect
to those estimated during the head-up tilt Tht (P < 0.05).

�LF �HF

Index Tes Tht Tls Tes Tht Tls

γB(t) (n.u.) 0.93 ± 0.02 0.95 ± 0.04 0.89 ± 0.08† 0.95 ± 0.02 0.93 ± 0.03 0.94 ± 0.01
θB(t) (rad) −0.59 ± 0.16 −0.59 ± 0.15 −0.61 ± 0.23 0.37 ± 0.23† −0.27 ± 0.22 0.14 ± 0.38
DB(t) (s) −0.85 ± 0.29 −0.86 ± 0.22 −0.84 ± 0.40 0.26 ± 0.14† −0.16 ± 0.16 0.08 ± 0.24
αB(t) 19.77 ± 4.51† 8.62 ± 1.21 17.87 ± 4.44† 23.72 ± 7.66† 6.92 ± 2.51 18.24 ± 4.09†

(ms mmHg−1)

{Tes, Tht, Tls} is the index of the epochs and L � 14 are the subjects (subjects for which I(t)
was not estimated for more than half the duration of the tilt table test were excluded from the
statistical analysis).

In figure 5(b), it is shown that during the position changes, Tes → Tht and Tht → Tls, the
time course of γLF(t) is characterized by two patterns, a first abrupt decrease and a subsequently
slower increase. During the head-up tilt, restoration of baseline values took about 2 min, and
about 1 min later, the median γLF(t) reached values as high as 0.99. After coming back to
the supine position, γLF(t) maintained lower values than during the early supine position. In
HF, γHF(t) fluctuated around 0.93 ± 0.02 and did not decrease during the position change
from Tht → Tls. In the LF range, the phase differences θLF(t) were about −0.60 ± 0.11 rad
(DLF were about 875 ± 190 ms), thus revealing that a change in the LF oscillation of xSAPV(t)
preceded a correlated change in the LF oscillation of xRRV(t). In the HF range, the head-up
tilt provoked a decrease in θHF(t) from positive to negative values, thus showing a change
in the prevalent direction of the local coupling between the respiratory-related oscillations
of xSAPV(t) and xRRV(t). The index αB(t) was estimated only in the regions centered around
f (xy)

B (t), where the local coupling was significant and the phase difference was negative. These
conditions determined, for the subject whose TF representations are shown in figure 4, the
patterns observed in figures 5(m) and (o). Globally, as shown in figures 5(n) and (p), αB(t)
decreases from about 20 ms mmHg−1 during Tes and Tls, to less than 9 ms mmHg−1 during
Tht. Interestingly, the decrease in both αLF(t) and αHF(t) due to the head-up tilt took a few
seconds, while the following increase due to coming back later to the supine position was
remarkably slower.

4.4. Eurobavar data set

To assess whether the presented framework can be considered as a generalization of traditional
analysis, the EDS was processed by both stationary framework (SF) and non-stationary
framework (NS), and the results were compared to those presented by Laude et al (2004).
In the SF, indices were obtained by temporal averaging of the TF distributions described in
section 2.2, thus representing stationary analysis (marginal spectra were used to obtain power
and coherence estimates). In the NF, for every subject, the temporal mean of the non-stationary
indices described in section 2.3 was estimated. The results of the NF and SF are illustrated in
the graphics on the left and right sides of figure 6, respectively. In figures 6(a)–(d), circles and
bars represent the mean and the standard deviation of local coupling and phase differences of
the subjects without baroreflex impairment, while in figures 6(e)–(f), circles and bars represent
the mean and the standard error of the BRS for the same subjects. (The standard error was
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Figure 6. Eurobavar data set. (Left) The results obtained by the presented NF. (Right) The results
obtained by the SF, as defined in section 2.2. Markers + and × represent diabetic patient with
cardiac autonomic neuropathy (DAN) and HTR, respectively. Circles represent the rest of patients
(PAT). (a), (b) The mean ± standard deviation of coherence across subjects. (c), (d) The mean ±
standard deviation of phase difference across subjects. (e), (f) The mean ± standard error of BRS
across subjects. Note that in the NF, phase differences were estimated only for subjects for which
coherence estimates were significant for more than 95% of the total length of the recording, while
BRS was reported only if phase-difference estimates were negative.

estimated for comparison with that of Laude et al (2004).) In these graphics, markers + and
× represent the DAN and the HTR patient, respectively. The presented methodology (NF)
gave higher coherence estimates than the SF. Moreover, coherence estimates obtained by the
NF were higher in the HF than in the LF. These differences were due to the use of �

(γ )

B .
In �

(γ )

LF , the coupling of the signals from the HTR and DAN patients was not significant for
more than 95% of the total length of the recording. Because of the absence of local coupling,
in HTR and DAN, the phase differences θLF(t) and BRS αLF(t) were not assessed. Without
performing the statistical analysis on the coherence estimates, one could erroneously conclude
that in the HTR patient, θLF(t) > 0. For subjects without baroreflex impairment, estimates
of the BRS obtained by both SF and NF were consistent with those obtained by traditional
time-invariant methodologies (Laude et al 2004, Westerhof et al 2004). In the SF, for subject
without baroreflex impairment (see figure 6(f)), αLF(t) was 14.07±2.88 ms mmHg−1 (supine)
and 7.58±0.96 (standing) ms mmHg−1, while αHF(t) was 18.66±3.23 ms mmHg−1 (supine)
and 8.00 ± 1.36 ms mmHg−1 (standing). The supine to standing ratio was 1.86 and 2.33 in LF
and HF ranges, respectively, which is in line with that obtained in Laude et al (2004). By using
the presented framework, evidences of the baroreflex impairment of DAN and HTR patients
were given by high θHF(t), by the persistent absence of coupling between the signals in LF,
and highlighted by the fact that no α(t) index could be estimated.
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5. Discussion

5.1. The cross TF framework

The main purpose of the presented framework is to propose a methodology for the
characterization of the dynamic interactions between RRV and SAPV, which accounts for
the intrinsic non-stationarity of the cardiovascular system, and which includes the assessment
of both the strength and the prevalent direction of the coupling. The analysis is composed of
the following steps. (i) Choice of the parameters of the kernel of type (3) for the estimation of
the SPWVD. Among those kernels that can be used in coherence analysis, the one that gives
the more appropriate TF resolution should be used (see figure 1). (ii) Estimation of the TF
power, coherence, and phase-difference spectra. (iii) Localization of specific TF regions from
which the indices that describe the cardiovascular interactions are extracted. (iv) Estimation
of indices that quantify the strength of the local coupling γB(t), the degree of synchronization
θB(t), the latencies DB(t), and the BRS αB(t).

The advantage of the SPWVD over other TF distributions, such as wavelet and
spectrogram, is that it offers the possibility of determining the shape of the smoothing
function both in time and frequency, which in turn allows for more accurate localization
of cardiovascular dynamics (Orini et al 2011). The quantification of the TF resolution of the
SPWVD by 	t and 	f, which is crucial to correctly interpret the results, can also be used to
compare the resolution of the SPWVD with that of other types of distributions.

The analysis of the phase differences between xRRV(t) and xSAPV(t) is used to infer the
prevalent direction of the coupling and the time delay, which characterize the system. This
is necessary to accept the hypothesis of the involvement of the baroreflex in the observed
changes. Such a sensitive issue requires robust and accurate estimates. In our framework,
robustness and accuracy are ensured by the fact that phase differences are estimated only in
TF regions where the local coupling is statistically significant. These regions have a relatively
small frequency width 	f, and a further control over their size is done by the opening.

Despite the great number of methodologies proposed for the assessment of the baroreflex,
only a few combine non-stationary processing, statistical coherence analysis and assessment of
the prevalent causal direction of local coupling. In this methodology, the interactions between
the TF structure of the signals are characterized without imposing any assumption or model
to the signals. Furthermore, neither coefficient identification nor parameter initialization is
needed. Although the linear synchronization indices used in this framework give a rather basic
description of the interaction between complex systems (Xiao et al 2005), they have a clear
physical interpretation: γ (t, f ) quantifies the strength of the local coupling, thus allowing to
localize TF regions where signals share approximately the same instantaneous frequency, while
(t, f ) quantifies the phase differences, thus allowing to estimate the time delays between
changes in the spectral components of two signals and determine, in specific TF regions, which
signal is leading which.

The SPWVD, whose main property is the independent TF filtering giving high resolution,
has never been used to estimate the BRS as well as the phase differences between cardiovascular
signals. Recently, other methods for the estimation of phase differences in the joint TF domain,
based on Rihaczek (Aviyente et al 2010), wavelet (Cnockaert et al 2008, Lachaux et al 2002)
and reduced interference (Shin et al 2005) transforms, have been proposed. Contrary to
synchronization indices based on the Hilbert transform (Ocon et al 2011), the presented
methodology offers the possibility of separately assessing the degree of synchronization
between LF and HF spectral components. Concerning the estimation of TF coherence by
the SPWVD, the most important issue is the definition of a kernel that completely suppresses
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the interference terms inherent to the Wigner–Ville distribution. A sufficient smoothing would
ensure both positivity of the spectra and boundness of the TF coherence (Matz and Hlawatsch
2000). Kernels of type (3) have been shown to provide such a smoothing and have been
recently used in the cross TF analysis of cardiovascular signals (Gil et al 2010, Orini et al
2011).

The results of the simulation study show that this framework is robust and accurate.
To provide a more comprehensive characterization of the cardiovascular interactions, other

important physiological parameters, such as respiration, may be included in further studies.

5.2. Response to the head-up tilt

Mechanisms regulating the cardiovascular response to a passive head-up tilt are predominantly
studied (Freeman 2006, Mainardi et al 1997, Cooke et al 1999, Nollo et al 2005, Westerhof
et al 2006, Porta et al 2011, Ocon et al 2011). Our results show that the local coupling between
RRV and SAPV is statistically significant both in the LF and HF during most part of the test,
even at rest in the supine position. During the position changes, the level of coherence abruptly
decreased. The time taken by the signals to resynchronize, i.e. to restore significant level of
coherence, characterizes the temporal pattern of response of the short-term cardiovascular
regulation to an external perturbation.

The results shown that in the LF range, SAPV led RRV during the entire test. In the
HF range, SAPV led RRV only during the head-up tilt. These results are in line with those
observed in other studies (Cooke et al 1999, Nollo et al 2005, Porta et al 2011). Owing to
the periodicity of the phase differences, it may be possible that instead of the fact that in
the LF range, xSAPV(t) was leading xRRV(t) with |θLF(t)| ≈ 0.6 rad, xRRV(t) was actually
leading xSAPV(t) with |θLF(t)| ≈ 5.7 rad. However, this last possibility, which would imply,
for fLF = 0.09 Hz, a time delay of about 10 s, is unlikely, not only because it largely exceeds
the range of baroreflex latency ([0.24, 3] s) (Cooke et al 1999), but also because in this NF,
such a time delay (close to 	t) would not be consistent with the level of local coupling as high
as γLF(t) ≈ 0.99.

The time course of the BRS αB(t) followed similar patterns both in �
(α)
LF and �

(α)
HF ranges.

In the supine position, the high variability of αHF(t) was due to the fact that it was estimated in
a few subjects, because in most of them θHF(t) > 0. As expected, the BRS was higher during
the supine position and lower during the head-up tilt. During the position changes, the index
αB(t) was characterized by two different dynamics: when subjects were passively moved from
the supine to the standing position, αB(t) decreased in a few seconds, while when subjects
were moved from the standing to the supine position, αB(t) increased gradually.

5.3. Eurobavar data set

The study of the EDS showed that (i) non-stationary signal processing should be preferred
to study the biomedical signals even when they are acquired in conditions that are usually
assumed as stationary and (ii) the proposed framework can be considered as an improved TF
generalization of traditional spectral methods of analysis.

It is widely accepted that biomedical signals are intrinsically non-stationary. The outcomes
of the test proposed by Borgnat et al (2010) confirm that the hypothesis of stationarity is often
rejected even for signals recorded during rest. Moreover, it was shown that signals were more
likely considered non-stationary for a temporal scale of observation of about 1–2 min.

To compare the results provided by the presented methodology with those obtained
by traditional time-invariant ones, we used the results obtained by marginalizing the TF
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representations given by the SPWVD as reference. The results given by this SF are within the
variability of those obtained with different techniques of the time-invariant analysis (Laude
et al 2004). Although the mean results obtained by the presented NF are different, they are in
line with those obtained by the SF and with those observed by Laude et al (2004). Our results
show that in the diabetic subject with neuropathy and in the short-term transplanted patient, the
baroreflex is not active. This implies a lack of coupling in the LF range and a causal direction
from RRV to SAPV in the HF range. These results are in agreement with those observed by
Porta et al (2011) and show that the presented methodology correctly detects impairments of
the baroreflex.

5.4. Further considerations on the cross TF analysis of cardiovascular signals

In the cross TF analysis, the processing that leads to the estimation of the RRV and SAPV
signals, xRRV(t) and xSAPV(t), is of crucial importance because it affects the estimation of the
phase differences and latencies between them. For instance, it is worth noting that the results
obtained by analyzing the RRV and SAPV cannot be directly extended to the interactions
between the heart-rate variability and SAPV signals, because the phase differences between
x(t) and y(t) are not equal to those between x(t) and 1/y(t).

Furthermore, in the estimation of the RRV signal, three issues should be carefully taken
into account. (i) The choice of the representations of the RRV signal, which can be based on
the interpolation of the RR intervals, as done in this study, or on some other model (Sörnmo
and Laguna 2005, Mateo and Laguna 2003, Chen et al 2011). (ii) The arbitrary assignation
of a given heart period interval to a given temporal instant. The physiological phenomena
that determine the duration of tQRS

n+1 − tQRS
n do not occur at time tQRS

n neither at tQRS
n+1 , but they

may be seen as continuous phenomena that are characterized based on information sampled
at tQRS

n and tQRS
n+1 . In this study, we used a non-causal representation of the heart period, i.e.

we associated (tQRS
n+1 − tQRS

n ) with tQRS
n . If we had used a causal representation of the heart

period (Sörnmo and Laguna 2005), we would have obtained more negative phase differences
between the spectral components of the signals, which in Tes and Tls of the tilt table test may
have allowed the estimation of αHF(t) for more subjects and longer intervals.

The estimation of the SAPV signal can also affect its degree of synchronization with
the RRV signal. The main issue is the place where the arterial pressure is measured and the
inclusion of the pulse transit time (PTT) in the estimation of the latencies (Gil et al 2010).
Even in the ideal case in which changes in the SAPV and RRV are simultaneous, if the arterial
pressure is measured at the finger and RR in correspondence with the heart beat, we would
observe a delay related to the PTT.

These technical issues, which neither affect the relative changes of the indices nor the
power estimates or the measures derived from them, should be carefully taken into account in
the physiological interpretation of the phase differences and latencies.

6. Conclusions

In this paper, we present a TF framework to assess the dynamic interactions between RRV
and SAPV, which accounts for the intrinsic non-stationarity of the cardiovascular system and
includes the assessment of both the strength and the prevalent direction of local coupling. The
cross TF analysis is appropriate since, as shown in this paper, cardiovascular signals are often
non-stationary, coherence between them is intermittent and the direction of the coupling is not
always consistent with the involvement of the baroreflex. Time-varying indices of coherence,
phase difference and BRS were used to track changes provoked by the head-up tilt with fine
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resolution, and they could be used to identify subjects with previously documented baroreflex
impairment.

Most of the algorithms described in this paper can be freely downloaded at:
http://www.micheleorini.com/.

The test of stationarity can be freely downloaded at: http://perso.ens-lyon.fr/
patrick.flandrin/stat_test.html
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