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Abstract Standard methodologies of heart rate variabil-
ity analysis and physiological interpretation as a marker
of autonomic nervous system condition have been largely
published at rest, but not so much during exercise. A
methodological framework for heart rate variability (HRV)
analysis during exercise is proposed, which deals with the
non-stationary nature of HRV during exercise, includes res-
piratory information, and identifies and corrects spectral
components related to cardiolocomotor coupling (CC). This
is applied to 23 male subjects who underwent different
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tests: maximal and submaximal, running and cycling; where
the ECG, respiratory frequency and oxygen consumption
were simultaneously recorded. High-frequency (HF) power
results largely modified from estimations with the standard
fixed band to those obtained with the proposed methodol-
ogy. For medium and high levels of exercise and recovery,
HF power results in a 20 to 40% increase. When cycling, HF
power increases around 40% with respect to running, while
CC power is around 20% stronger in running.

Keywords Cardiolocomotor coupling · Stride cadence ·
Pedalling cadence · Non-stationary analysis

1 Introduction

Heart rate variability (HRV) is considered a non-invasive
method to evaluate the condition of the autonomic nervous
system (ANS) and its regulation over the heart. Spectral
analysis of HRV at rest unveils at least two main com-
ponents, which are located in a low-frequency (LF) band
(0.04–0.15 Hz) and in a high-frequency (HF) band (usu-
ally measured at 0.15–0.4 Hz). Power in the LF band is
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affected by both sympathetic and parasympathetic modula-
tions together with other regulatory mechanisms such as the
renin-angiotensin and baroreflex systems. Power in the HF
band is synchronous with respiration and mainly influenced
by the parasympathetic system. The ratio between the power
in the LF and HF bands has been proposed to assess the
sympathovagal balance controlling the heart rate (HR) (see
Working Group of ESC [35] and Rajendra et al. [29]).

Standards of spectral analysis of HRV measurements,
physiological interpretation and clinical use have largely
been published at rest. However, HRV analysis during exer-
cise testing is also appealing in sports sciences. Sports
physiologists and trainers use HRV to understand autonomic
changes due to exercise training and the cardiovascular
response to the stress of exercise (Borresen et al. [7]), as
well as a marker of overreaching or overtraining (Hottenrott
et al. [15]). For physicians, HRV analysis during exercise
allows to detect ANS alterations which may not be visible
at rest, or that are more evident in those conditions, such as
those induced by ischemia (Bailón et al. [5]). HRV analysis
during recovery after exercise has also been used to predict
risk of mortality (Pradhapan et al. [28]).

During an graded exercise test, HR and oxygen consump-
tion rapidly increase in the beginning, following a slower
increment afterwards. The increase in HR is the result of
vagal withdrawal and sympathetic excitation (Sarmiento et
al. [33]). There is also a significant drop in HRV in both
LF and HF bands. As reported in Cottin et al. [9, 10] and
Bailón et al. [1, 3], there is a reduction in the LF power with
exercise. Power in HF band also decreases during moderate
exercise [10], but during heavy exercise, HF power is said to
be related to the mechanical effect of breathing on the sinus
node, with increasing power with higher intensities of exer-
cise (see Cottin et al [9, 11] and Blain et al. [6]). Still, HRV
analysis and interpretation during exercise is challenging
and a matter of debate.

One of the challenges in exercise HRV analysis is obtain-
ing a reliable and robust QRS detection, mainly due to the
significant noise levels observed in this context (Llamedo
et al. [17]) and changes in beat morphology during exer-
cise (Drezner et al. [12]). Several approaches have been
proposed to deal with the non-stationary nature of HRV
during exercise, like quadratic time-frequency representa-
tions, including the Wigner-Ville distribution and its filtered
versions (Mainardi [18]; Orini et al. [26]). In order to sep-
arate changes in ANS stimulation from changes in mean
HR, which greatly varies in exercise testing, a correction of
HRV parameters with time-varying mean HR should be per-
formed (see Bailón et al. [3], Meste et al. [23], and Sacha et
al. [30, 32]). Respiratory rate also increases with increasing
loads of exercise and can reach frequencies above the clas-
sic HF band, thus making necessary to redefine this band as
shown in Bailón et al. [2], or adding respiratory frequency

information directly to the time-frequency estimation of
HRV spectrum as shown in Bailón et al. [4]. Lastly, besides
the LF and HF components, another component can appear
in the HRV spectrum, which is synchronous with stride
or pedalling frequency. This component can cause aliasing
and may overlap with LF and HF bands, misleading their
interpretation in terms of sympathetic or parasympathetic
activation.

All these methodological issues have never been
approached in an integrated manner. In this paper, we pro-
pose an integrated methodological framework for a robust
HRV analysis during exercise. This framework will take
into account all the former issues: correction by mean heart
rate, time-frequency spectral analysis, redefinition of HF
band based on respiratory frequency, and attenuation of the
cardiolocomotor coupling. Then, ANS response to exercise
will be study through HRV analysis in different types of
exercise, namely, maximal and submaximal, running and
cycling.

2 Methods

2.1 Study population and experimental protocol

The database consists of 23 male volunteers. All of them
were apparently healthy, they were not taking medications
and they had normal blood pressure levels and electrocar-
diographic patterns. They regularly participated in sports
activities, doing at least 3 days/week of regular aerobic
training. Written informed consent was obtained from each
subject. The study protocol was approved by the institu-
tional ethics committee and was in accordance with the
Declaration of Helsinki for Human Research of 1974 (last
modified in 2013). Table 1 shows the study population
characteristics.

All the subjects completed three sessions in consecutive
weeks: a maximal test (on a treadmill) and two submaximal
tests (on a treadmill and on a cycle ergometer), denoted as
MaxT, SubT and SubC, respectively. The volunteers were
asked to (1) wear comfortable, loose-fitting clothing; (2)
drink plenty of fluids over the 24-h period preceding the test;

Table 1 Study population characteristics (23 male volunteers): age,
height, mass, body mass index and maximum oxygen consumption
(V̇ O2 max). Mean ± standard deviation

Age (years) 34.8 ± 5.0

Height (cm) 178.4 ± 5.7

Mass (kg) 74.8 ±7.8

Body mass index (kg · m−2) 23.5 ± 2.5

V̇ O2 max (mlO2· min−1) 4216.6 ± 453.7

V̇ O2 max · kg−1 (mlO2· min−1· kg−1) 56.4 ± 6.2
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(3) avoid food, tobacco, alcohol and caffeine for 3 h prior to
the test; (4) avoid exercise or strenuous physical activity on
the day of the test and (5) get an adequate amount of sleep
(6–8 h) the night before the test, as proposed by Wasserman
[34].

All tests were divided into three different phases: resting,
exercise and recovery phase. The resting phase was common
to all tests: the subjects were monitored seated for 5 min at
rest, without any movement or talking, to measure resting
cardiorespiratory variables.

For the exercise phase during MaxT test, the sub-
jects performed an incremental maximal test to exhaustion
on a motorized treadmill (Quasar Med 4.0, h/p/cosmos,
Nussdorf-Traunstein, Germany). They began running with
an initial speed of 8 km · h−1 and increased 1 km · h−1 every
minute until the subjects stopped due to volitional exhaus-
tion. From this test, the maximum HR and V̇ O2 were noted
for each subject. A physician was present during the whole
session supervising the test.

For the SubC test, the exercise started at 75 W on the
cycle ergometer, increasing 25 W · min−1. The cadence fre-
quency was fixed at 80 rpm. This phase continued until the
subject reached his 90% maximum HR previously deter-
mined at the MaxT test, after that the load was kept for two
more minutes. For the SubT test on the treadmill, the pro-
cedure was similar to the MaxT test, until they reached the
90% maximum HR, then they kept running two more min-
utes at that speed. Besides, in the SubT test, the running
stride was fixed at 80 strides · min−1.

Recovery phase lasted between 3 and 5 min, where sub-
jects were required to remain running at 8 km · h−1 (on the
treadmill) or pedalling at 75 W (on the cycle ergometer).
However, subjects did not behave in a consistent way after
the stress peak, especially in the MaxT test. Some subjects
continued running at a slower speed but others completely
interrupted the exercise and took some seconds until they
could continue. For this reason, the first 30 s in this phase

will not be analysed. Figure 1 shows a flowchart for the
experimental protocol.

2.2 Data acquisition and pre-processing

Information about respiratory frequency and oxygen con-
sumption (V̇ O2) were obtained by an open-circuit sampling
system (Oxycon Pro, Jaeger-Viasys Healthcare, Hoechberg,
Germany). The metabolic cart was calibrated with a known
gas mixture (16% oxygen, O2, and 5% carbon dioxide,
CO2) and volume prior to the first test each day as rec-
ommended by the company. Both respiratory frequency and
V̇ O2 data were interpolated at 4 Hz and low-pass filtered
with a cut-off frequency of 0.01 Hz to obtain fR(n) and
dV̇O2

(n) series, respectively.
The ECG was recorded using a high-resolution Holter

(Mortara 48-hour H12+, Mortara Instrument, Milwau-
kee,Wisconsin) with a sampling frequency of 1000 Hz. For
each subject, the QRS detection marks were extracted from
the ECG using a multi-lead approach by a wavelet-based
detector described in Martı́nez et al. [20] with optimized
parameters for noisy environments described in Hernando
et al. [14], and each detection was manually verified by an
operator with a dedicated interface. RR intervals from the
ECG were obtained as the difference of each consecutive
beat occurrences.

Thanks to a cadence sensor attached to the subject’s shoe
(Polar s3 Stride Sensor, Polar Electro, Finland), the running
stride frequency, fC(n), was obtained in the MaxT test, after
low-pass filtering the raw data with a cut-off frequency of
0.01 Hz. In the submaximal tests, this component was fixed
to the requested cadence (80 rpm = 4

/
3 Hz).

Five intervals were established for each RR series for fur-
ther analysis. In addition to the basal interval (IB), which is
associated to the resting phase (5 min prior to the exercise),
the dV̇O2

(n) signal from the MaxT test was used to estab-
lish three intervals during the exercise: 0–60%, 60–80% and

Fig. 1 Flowchart for the experimental protocol
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Fig. 2 Example of oxygen
consumption signal in MaxT
(upper panel) and SubT (lower
panel) in intervals IB, I60, I80,
I100 and IR (basal phase,
0–60%, 60–80% and 80–100%
of dV̇O2

(n) defined by MaxT,
respectively, and recovery
phase) for one subject

80–100% of the variation between the basal (V̇ O0
2 ) and the

maximum value (V̇ O100
2 ) of dV̇O2

(n) during exercise for

each subject (see Fig. 2, upper panel). V̇ O0
2 was obtained as

the mean value of dV̇O2
(n) during the resting phase, while

V̇ O100
2 was found at the peak of dV̇O2

(n), both defined at the
MaxT test. These intervals were denoted as I60, I80 and I100

respectively. The V̇ O2 threshold values found in the MaxT
test were used also in the SubT and SubC tests to establish
the intervals (see Fig. 2 (lower panel)). Since dV̇O2

(n) in

SubT and SubC do not reach V̇ O100
2 , the last interval (usu-

ally I100) lasts until the exercise phase ends. In four subjects,
there is no I100 in SubC and their last interval is I80. Note
that each interval has different time length among the sub-
jects. Additionally, the recovery interval (IR) starts 30 s after
the peak of exercise and lasts for 1 min.

2.3 Heart rate variability estimation

The instantaneous heart rate signal, dHR(n), is derived from
the QRS detection marks, following a method based on the
integral pulse frequency modulation (IPFM) model, which
also accounts for the presence of ectopic beats (Mateo et al.
[21]). This method assumes that ANS activity can be mod-
elled as a modulating signal m(n) which, together with a DC
level, is integrated until it reaches a threshold T , when a beat
occurs and the process is reset. The threshold T represents
the mean interval length between successive beats when the
DC level is set to one. The signal dHR(n) is sampled at 4 Hz.

A low-pass filter is used to obtain the time-varying mean
HR, dHRM(n), which contains the very low-frequency com-
ponents, up to 0.04 Hz. Then, the HRV signal dHRV(n) can
be obtained as follows:

dHRV(n) = dHR(n) − dHRM(n) (1)

Still, dHRV(n) is affected by changes in m(n) as well as
in dHRM(n). To avoid measuring changes in dHRV(n) which
are due to changes in mean HR rather than to changes in the
ANS modulation, the HRV signal has been proven to require
a normalization by the time-varying mean HR (see Bailón
et al. [3]), obtaining an estimation of the modulating signal,
m̂(n), as follows:

m̂(n) = dHRV(n)

dHRM(n)
(2)

2.4 Spectral components’ definition

The smoothed pseudo Wigner-Ville distribution (SPWVD)
is applied to m̂(n) to estimate the instantaneous power spec-
trum of the HRV signal (Martin et al. [19]). To attenuate
the interference terms, both time and frequency smoothing
windows were chosen to be Hamming windows of length
2N -1 = 203 (about 50 s) and 2K-1 = 513 samples (about
128 s), respectively (Bailón et al. [1]).

There are three main spectral components which will
be analysed. First, the instantaneous power in the LF band
is extracted throughout the entire exercise test, denoted as
PLF(n), integrating the instantaneous power of the time-
frequency spectrum of m̂(n) in the range from 0.04 to
0.15 Hz. Second, PHF(n) is obtained using a time-varying
HF band: this band is centred on fR(n) with a bandwidth
of 0.125 Hz; in this database, this HF band has resulted to
be always above 0.15 Hz (no overlapping with the LF band)
and below half the mean HR rate, (no aliasing is produced)
(see Laguna et al. [16]).

Lastly, the third spectral component, PCF(n), is related
to the cadence frequency component (CF). The band for



Med Biol Eng Comput (2018) 56:781–794 785

this component is centred at the running stride or ped-
alling frequency, fC(n), with a bandwidth of 0.125 Hz, its
upper bound limited by half the mean HR. This frequency is
fixed at 80 strides · min−1 for the SubT test and at 80rpm for
the SubC test, and varying in the MaxT test, as explained before.

The intrinsic sampling frequency of HRV is the HR.
Whenever the CF component exceeds half the mean HR,
aliased components appear in the visible part of the spec-
trum and can overlap with other bands (Bailón et al. [1]).
Moreover, if the CF component is not a perfect sinusoid,
it will contain armonics in the multiples of the frequency
where CF appears. These armonics also produce alias.
Two main aliased components appear in this database (see
Fig. 3a). The aliased components are denoted as AF1 and
AF2, and their powers are denoted as follows:

– PAF1(n): in a band centered at dHRM(n) − fC(n) with a
bandwidth of 0.125 Hz.

– PAF2(n): in a band centered at −dHRM(n) + 2 · fC(n)

with a bandwidth of 0.125 Hz.

Note that PCF(n) is obtained integrating the instanta-
neous power of the spectrum of m̂(n) in the band centered
at fC(n), but only up to half the mean HR rate. When fC(n)

exceeds it (PAF1(n) appears in the visible spectrum), PCF(n)

is considered to be 0. In the same way, when fC(n) is below
half the mean HR rate, AF1 component does not appear.

Figure 3b shows an example of a time-frequency map
showing some of the spectral components of HRV (HF, CF,

a)

b)

Fig. 3 Spectral components

AF1 and AF2), as well as an overlapping between HF and
AF1 and AF2.

2.5 Overlapping effect attenuation

While measuring the HF power, there may be overlapping
zones with other components, as seen in Fig. 3b. If an
overlapping happens, the measured power reflects an arti-
ficial increase which should be corrected. Hence, several
parameters are proposed to quantify the overlapping:

αA,B(n) = PB(n)

PA(n)+PB(n)
, A,B∈{HF,AF1, AF2}(3)

pA,B(n) = �A,B(n)

�B(n)
, A,B ∈ {HF,AF1, AF2} (4)

Where parameter αA,B(n) represents the dominance of
PB(n) with respect to PA(n), while parameter pA,B(n)

measures the ratio between the overlapped bandwidth
between spectral components A and B (�A,B(n)) and the B
bandwidth (�B(n)). The subindices A and B represent the
components HF, AF1 and AF2. LF is not considered since
αLF,B(n) is always nearly zero. This means that the consid-
ered aliased components have much less power than the LF
component; thus, the LF correction is not necessary.

Whenever there is an overlapping between spectral com-
ponents, which is measured by parameter pA,B(n), αA,B(n)

is used to compare both powers during 1 min prior to the
overlapping. Hence, a time-varying M-sample mean signal,
αA,B(n), is defined as follows:

αA,B(n) =
⎧
⎨

⎩

1

M

n∑

k=n−M+1
αA,B(k) if pA,B(n) = 0

αA,B(n − 1) if pA,B(n) �= 0
(5)

with M being the number of samples equivalent to 1 min
(M = 240 samples). Whenever an overlapping happens
(pA,B(n) �= 0), this dominance parameter does not update,
maintaining the previous value, and thus avoiding errors in
dominance estimation due to the overlapping. Note that this
formula is valid if the overlapping happens at least 1 min
after the beginning of the recording, which is always the
case in this database.

Then, the corrected power is estimated as follows:

P̂A(n) = PA(n) −
∑

B �=A
αA,B(n) · pA,B(n) · PB(n) (6)

Figure 4 shows an example of HF power correction.
Panel a shows PHF(n) (blue) and PAF2(n) (black), with
the overlapping area marked with red dotted lines. Panel
b shows αHF,AF2(n). Panel c shows αHF,AF2(n) (blue) and
pHF,AF2(n) (red). With these parameters, P̂HF(n) is obtained
and showed in panel a (dashed blue).

Two more parameters, Tov and Sov, are defined to mea-
sure the duration and severity of an overlap for each subject
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Fig. 4 a PHF(n) (dashed),
PAF2(n) and P̂HF(n) (dotted). b
αHF,AF2(n). c) αHF,AF2(n) and
pHF,AF2(n) (dashed). Vertical
dotted lines delimit the
overlapping area in all panels
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and for each type of test. First, TA,B and SA,B are defined:
TA,B measures the fraction of time that an overlap between
the A and B components lasts (pA,B(n) �= 0), and SA,B
measures the severity of an overlap between the A and B
components and is obtained as follows:

SA,B = 1

NA,B

∑

n

αA,B(n) · pA,B(n) (7)

where NA,B denotes the length (in samples) of the overlap.
Then, Tov and Sov are obtained as the mean value of TAF1,HF

and TAF2,HF, and SAF1,HF and SAF2,HF, respectively, for each
subject.

2.6 Physiological indices

To denote the power related to cardiolocomotor coupling
(CC) in a general way, we will use P̂CC(n) from here
onwards. This is obtained as follows:

P̂CC(n) = PCF(n) + P̂AF1(n) + P̂AF2(n) (8)

Fig. 5 Median and MAD of

P
I
LF (left panel) and P

I
HF (right

panel) in intervals IB, I60, I80,
I100 and IR (basal phase,
0–60%, 60–80% and 80–100%
of dV̇O2

(n), respectively, and
recovery phase) for the MaxT
test. Brackets denote significant
differences (p value < 0.05)
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Fig. 6 Median and MAD of

P
I
LF (upper panel) and P

I
HF

(lower panel) in intervals IB,
I60, I80, I100 and IR (basal
phase, 0–60%, 60–80% and
80–100% of dV̇O2

(n) defined by
MaxT, respectively, and
recovery phase) for the MaxT,
SubT and SubC tests. Brackets
denote significant differences (p
value < 0.05)

Due to the large changes of the total power for all bands,
each instantaneous power is normalized by the instanta-
neous total power, which is defined as follows:

PTOT(n) = PLF(n) + P̂HF(n) + P̂CC(n) (9)

Then, the studied power parameters are as follows:

P
I
A = 1

NI

∑

n∈I

P̂A(n)

PTOT(n)
, I ∈ {IB, I60, I80, I100, IR} (10)

where NI denotes the length of the interval I , and the
subindex A indicates the chosen spectral component. Note

that P
IR
CC is an exception and is not defined, since at rest

there is no power related to cardiolocomotor coupling.
The mean values of dHRM(n), fR(n) and dV̇O2

(n) are also
obtained for each interval as follows:

d
I
HRM = 1

NI

∑

n∈I

dHRM(n), I ∈ {IB, I60, I80, I100, IR} (11)

Fig. 7 a Median and MAD of

P
I
CC in intervals IB, I60, I80,

I100 and IR (basal phase,
0–60%, 60–80% and 80–100%
of dV̇O2

(n) defined by MaxT,
respectively, and recovery
phase) for the MaxT, SubT and
SubC tests. Brackets denote
significant differences (p value
< 0.05). b Median and MAD of
Sov (left), Tov (middle) and the
product Sov · Sov (right) for the
SubT and SubC tests

b)

a)
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b)

a)

Fig. 8 a Median and MAD of the evolution of P
I,S
HF for the SubC test.

Three different scenarios are shown: S0 (classical HRV analysis), S1
(S0 + redefinition of HF band based on fR(n)) and S2 (S1 + mean HR

correction). b Median and MAD of P
Iov
HFnx

(pre overlapping correc-

tion) and P̂
Iov

HFnx
(post overlapping correction) for the SubC test when

CC components are considered. Two different normalizations are pre-
sented: only LF and HF components (HFn1), and total power including
CC components (HFn2). Intervals IB, I60, I80, I100 and IR refer to
basal phase, 0–60%, 60–80% and 80–100% of dV̇O2

(n) defined by
MaxT, respectively, and recovery phase. Brackets denote significant
differences (p value < 0.05)

f
I
R = 1

NI

∑

n∈I

fR(n), I ∈ {IB, I60, I80, I100, IR} (12)

d
I
V̇O2

= 1

NI

∑

n∈I

dV̇O2
(n), I ∈ {IB, I60, I80, I100, IR} (13)

2.7 Statistical analysis

The Kolmogorov-Smirnov test showed that all P
I
A, d

I
HRM,

f
I
R and d

I
V̇O2

did not follow a normal distribution. There-
fore, a Friedman test is applied for every parameter, fol-
lowed by post hoc comparisons to study the differences
between the different intervals within the same test, and
between different tests. The difference is considered to be
significantly different from zero when p < 0.05. Results in
Figs. 5, 6, 7 and 8 are shown as median plus median absolute
deviation (MAD) values.

3 Results

3.1 Characterization of the analysed intervals

Table 2 shows the mean and standard deviation of mean
heart rate (d

I
HRM), respiratory frequency (f

I
R) and oxygen

consumption (d
I
V̇O2

) in the different intervals for the three
tests. Significant differences were found in I100 between

MaxT and SubT in d
I
HRM and f

I
R, and between SubT

and SubC in f
I
R. In IR, significant differences were found

between MaxT and SubT in d
I
HRM and f

I
R, and between

SubT and SubC in all the three parameters.
Table 3 shows the mean values of P̂HF and PTOT in

each interval and for each test in absolute units, i.e. with-
out any normalization by PTOT. A decreasing tendency can
be observed in both powers with increasing intensities of
the exercise (up to I100) and then they increase again in IR.
P̂HF, however, is slightly higher in I100 compared with I80

in MaxT and SubT.

3.2 Characterization of HRV indices in a maximal test

As it can be seen in Fig. 5, P
I
LF increases at the begin-

ning of the exercise (I60) with respect to the basal phase
(IB), then it decreases again when the exercise load gets
more intense, and increases in the recovery phase. Statistical
analysis reveals that all intervals show significant differ-

ences with respect to P
IB
LF and P

I60
LF (see the brackets in

Fig. 5). The opposite behaviour can be observed in P
I
HF:

it gets reduced at P
I60
HF and then it increases. However, it

increases in the recovery phase. Significant differences can
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Table 2 Mean and std for mean heart rate (d
I
HRM), respiratory frequency (f

I
R) and oxygen consumption (d

I
V̇O2

) for the three tests: MaxT for
maximal test on treadmill, SubT for submaximal test on treadmill and SubC for submaximal test on cycle ergometer

MaxT IB I60 I80 I100 IR

d
I
HRM (s−1) 1.09 ± 0.14 1.98 ± 0.19 2.51 ± 0.17 2.85 ± 0.14 2.71 ± 0.18

f
I
R (Hz) 0.24 ± 0.05 0.38 ± 0.08 0.51 ± 0.14 0.69 ± 0.14 0.67 ± 0.21

d
I
V̇O2

(ml O2· min−1) 389.2 ± 50.2 1502.7 ± 390.1 2989.2 ± 298.5 3841.0 ± 442.6 3136.4 ± 880.3

SubT IB I60 I80 I100 IR

d
I
HRM (s−1) 1.04 ± 0.15 1.91 ± 0.15 2.40 ± 0.12 2.72 ± 0.12 * 2.56 ± 0.10 *,†

f
I
R (Hz) 0.25 ± 0.04 0.40 ± 0.08 † 0.51 ± 0.12 † 0.65 ± 0.16 *,† 0.61 ± 0.14 *,†

d
I
V̇O2

(ml O2· min−1) 418.1 ± 66.0 1643.0 ± 439.4 3059.4 ± 293.9 3805.1 ± 435.7 3406.3 ± 703.7 †

SubC IB I60 I80 I100 IR

d
I
HRM (s−1) 1.06 ± 0.18 1.86 ± 0.16 2.39 ± 0.17 2.70 ± 0.18 2.46 ± 0.11

f
I
R (Hz) 0.25 ± 0.07 0.36 ± 0.05 0.47 ± 0.08 0.58 ± 0.11 0.55 ± 0.15

d
I
V̇O2

(ml O2· min−1) 423.3 ± 69.9 1637.2 ± 197.3 2964.6 ± 307.0 3612.4 ± 325.0 2573.2 ± 485.7

Different intervals are based of the oxygen consumption (V̇ O2): IB, I60, I80, I100 and IR for the basal phase, 0–60%, 60–80% and 80–100% of
dV̇O2

(n) defined by MaxT, respectively, and recovery phase. * and †denote significant differences between MaxT and SubT, and between SubT
and SubC, respectively (p value < 0.05)

be observed between P
IB
HF and P

I60
HF, P

I60
HF and P

I100
HF , P

I60
HF

and P
IR
HF, P

I80
HF and P

I100
HF , and P

I80
HF and P

IR
HF.

3.3 Comparison between HRV indices
in the submaximal tests and the maximal test

Figure 6 shows P
I
LF and P

I
HF for the three tests in all inter-

vals. The trending is similar for all the tests. Significant

differences can be found in P
I100
LF in SubC test with respect

to the other two tests. P
I
HF in SubC also shows differences

with respect to SubT test during the exercise (I60 to I100)
and with respect to MaxT in I80 and I100. No significant
differences were found in IR.

3.4 Characterization of the cardiolocomotor coupling

Figure 7a shows P
I
CC for the three tests in the exercise inter-

vals (P
IB
CC is not defined). At the beginning of the exercise,

P
I
CC represents less than 10% of the total power. In the last

two intervals of exercise, it reaches 20–30% of the total
power. In the recovery phase, it represents about 10% of

the total power. P
I
CC in SubC is significantly different from

SubT and MaxT in I80 and I100. No differences were found
in I60 and IR.

Figure 7b shows different parameters to measure the
severity of the overlaps. Only the two submaximal tests are
compared (SubT and SubC), where fC(n) was forced to be
constant. Sov is higher in SubT than SubC, which means
that the power of the aliased components are higher in SubT
with respect to the power in the HF band. Tov is higher in
SubC than SubT, which means that in SubT, the overlap-
pings happen for a longer time than in SubC. Figure 7b also
shows the product of Sov and Tov, which is very similar
in both tests. No significant differences are found in those
parameters.

Table 3 Mean values of P̂HF
and PTOT in each interval and
for each test in absolute units
for the three tests: MaxT for
maximal test on treadmill,
SubT for submaximal test on
treadmill and SubC for
submaximal test on cycle
ergometer

MaxT IB I60 I80 I100 IR

P̂HF (x10−5) (a.u.) 192.22 9.34 1.02 1.74 2.21

PTOT (x10−5) (a.u.) 509.38 64.91 11.02 3.82 11.35

SubT IB I60 I80 I100 IR

P̂HF (x10−5) (a.u.) 234.05 5.10 1.36 1.59 1.71

PTOT (x10−5) (a.u.) 624.18 125.17 5.73 3.88 9.62

SubC IB I60 I80 I100 IR

P̂HF (x10−5) (a.u.) 261.33 6.47 1.67 1.51 3.40

PTOT (x10−5) (a.u.) 745.34 37.19 5.33 2.64 14.98

Different intervals are based of the oxygen consumption (V̇ O2): IB, I60, I80, I100 and IR for the basal phase,
0–60%, 60–80% and 80–100% of dV̇O2

(n) defined by MaxT, respectively, and recovery phase
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3.5 Influence of each methodology step

Three main methodology aspects have been included in this
work to address the problems due to the characteristics of
exercise test HRV: (a) redefinition of HF band based on
respiratory frequency, (b) mean HR correction of the HRV
signal and (c) correction of the overlapped aliasing compo-
nents related to CF. To study the influence of each of these
methods, the evolution of normalized HF power was studied
in different scenarios (reported here only for SubC), where
different methodologies are applied step by step.

– Scenario 0 (S0): Classical HRV analysis is applied, i.e.
HF band is fixed from 0.15 to 0.4 Hz, there is no mean
HR correction and CF component is not considered.

– Scenario 1 (S1): The HF band is redefined based on fR(n).
– Scenario 1 (S2): In addition to S1, the mean HR correc-

tion is applied.
– Scenario 1 (S3): In addition to S2, the aliased compo-

nents related to CF are attenuated. This is the frame-
work used in the rest of the work.

Only the HF component is shown since LF does not
change in S1 and S3. Moreover, since in S0–S2 the CF com-
ponent is assumed not to exist, they will be studied separated
from S3. Figure 8a shows the evolution of normalized HF
power in S0 to S2. It is important to note that, only for this
analysis, normalized power is obtained as follows:

P
I,S
HF = 1

NI

∑

n∈I

PHF(n)

PLF(n) + PHF(n)
, S ∈ {S0, S1, S2} (14)

since the CF component is not taken into account in the
analysis, and thus, the measured powers are not comparable
with those which are normalized by PTOT(n). Significant
differences can be found in S1 for all exercise intervals, and
in S2 in I60 (always with respect to the previous scenario).

Regarding the S3 scenario, CF component is identified,
as well as its alias and the overlapping zones between CC

and HF components. In this scenario, P
I
HF is going to be

redefined based on two different normalizations: only LF
and HF components (HFn1), and total power including CC
components (HFn2). The series PHFn1(n) and PHFn2(n), and
their corrected versions P̂HFn1(n) and P̂HFn2(n), are obtained
as follows:

PHFn1(n) = PHF(n)

PLF(n) + PHF(n)
(15)

P̂HFn1(n) = P̂HF(n)

PLF(n) + P̂HF(n)
(16)

PHFn2 (n) = PHF(n)

PLF(n) + PHF(n) + PCF(n) + PAF1(n) + PAF2(n)
(17)

P̂HFn2 (n) = P̂HF(n)

PLF(n) + P̂HF(n) + PCF(n) + P̂AF1(n) + P̂AF2(n)
(18)

Then, the mean value is obtained in each interval, taking
into account only the overlapping zones:

P
Iov
HFnx

= 1

NIov

∑

n∈Iov

PHFnx (n) (19)

P̂
Iov

HFnx
= 1

NIov

∑

n∈Iov

P̂HFnx (n) (20)

where the subindex HFnx denotes both normalizations
HFn1 and HFn2, Iov denotes the overlapping zones within
each interval I (I ∈ {I60, I80, I100, IR}) and NIov denotes
the length of the overlapping zones in the interval I .

Figure 8b shows changes in HF power during the over-
lapping zones in each interval, after attenuating any aliased
components related to CF. Both normalizations are pre-
sented. In the first normalization, there are no significant

differences after correction, with P̂
Iov

HFn1
being slightly lower

than P
Iov
HFn1

in I80 and I100. In the second normalization,

P̂
Iov

HFn2
is significantly higher than P

Iov
HFn2

also in I80, I100 and
IR, mainly because of the correction of the CC components.
No differences are found in I60.

4 Discussion

4.1 Methodological aspects

This work deals with analysing HRV in an exercise test
database. Standard spectral analysis may fail to properly
provide ANS information during exercise; hence, extra
methodological steps should be taken into account. Most
important challenges include a reliable and robust QRS
detection, a proper method to deal with the non-stationary
nature of HRV during exercise, removing the influence of
the time-varying mean heart rate, adapting the HF band to
the respiratory frequency, as well as taking care of addi-
tional spectral components which may interfere with the
measurements.

The use of detector parameters optimized to noisy envi-
ronments showed in [14] an improved combined perfor-
mance (up to 19.36%) including sensitivity, positive predic-
tivity and detection alignment when evaluating in a stress
database.

The non-linear relation between heart rate and HRV has
been previously addressed by mathematical models, in vivo
experiments and animal models, and it has been proven
than even in an innervated heart, there is a unique exponen-
tial decay-like relationship between HRV (measured by the
SDNN) and intrinsic heart rate (see Monfredi et al. [25]).
During an exercise test, there is a gradual dynamic change
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in the mean heart rate which affects the LF and HF compo-
nent estimation, as seen in Bailón et al. [3]. This dynamic
mean heart rate may not correspond exactly with the intrin-
sic cardiac frequency but, we assume, is a valid surrogate
of it. We use it to account for the mean heart rate influence
on the LF and HF component estimation, in order not to
overestimate or underestimate sympathetic and parasympa-
thetic modulations, typically associated to the LF and HF
bands, and thus have valid ANS markers irrespective of the
heart rate. TVIPFM model, previously applied to heart rate
variability analysis during exercise stress testing by Bailón
et al. [1], is the underlying model used here to remove this
mean heart rate influence. In this way, a continuous cor-
rected HRV series can be obtained and HRV measurements
at different mean heart periods can be safely compared.
Chiu et al. [8] and Meste et al. [22] deal with this problem
using a different methodology named the pulse frequency
modulation model, which was also applied to obtain the
continuous modulating signal. Sacha et al. [32] also address
this problem and propose a method to weaken the influ-
ence of HR (Sacha et al. [30]) by dividing the RR interval
tachograms or HRV spectra by the corresponding average
RR intervals. This correction, however, should be performed
not with the total average but with local averages in order
not to lose the dynamic changes in an exercise test (Sacha et
al. [31]).

Regarding the non-stationary nature of HRV during exer-
cise, several tools have been proposed (see Mainardi [18]),
such as short-time Fourier transform, time-varying autore-
gressive analysis and time-frequency representations. In this
work, one of the existing time-frequency representations has
been chosen, the smoothed pseudo Wigner-Ville distribution
(SPWVD). Other studies (M. Orini et al. [27] and Chan et al.
[8]) have validated the capability of this method to quantify
HRV patterns in non-stationary conditions. The advantage
of these methodologies is that they allow to define time-
varying bands for the different spectral components. HF
band has been defined centered at respiratory frequency
since respiratory frequency increases with exercise inten-
sity and can exceed the upper limit of classical HF band
(0.4 Hz). HF bandwidth might be also dependent on respi-
ratory spectra but in this work, a fixed band of 0.125 Hz
has been used, since respiration spectra showed a very well
defined and narrow peak around respiratory frequency.

The appearance of spectral components related to car-
diolocomotor coupling may lead to wrong interpretations
of the state of ANS. Bailón et al. [1] already studied this
component in the MaxT test with similar reports: it can
reach around 30% of the total power. In a previous work,
Hernando et al. [13] proposed a method to remove this
component in the submaximal tests. This work proposes
a generalization of that method to correct more than one
overlapping zones between any two different components.

Regarding each methodological approach, four different
scenarios have been studied: classical HRV analysis, the
redefinition of HF band based on fR(n) is added, the mean
HR correction is added, and the attenuation of aliased com-
ponents is added (see Fig. 8). At rest, there are no significant
differences in the HF component in any scenario, since the
mean heart rate does not significantly vary, fR(n) is located
within the classic HF band, and there is no CF component.
Taking the classical HRV analysis as the reference, when
the HF is located around fR(n), HF power is significantly
different in all exercise intervals (around 5% lower in I60,
20% higher in I80 and 40% higher in I100), since both HF
bands start to differ at the beginning of the exercise when
fR(n) increases above the upper limit of the classic HF
band (0.4 Hz), and maintains above it during the rest of the
exercise. In the recovery phase, it is also higher when HF
band is guided by respiration. In the next scenario, the mean
HR correction is added, and there are significant differences
only in I60. In this interval, the mean HR greatly varies from
the rest phase, while in I80 and I100, the slope of mean HR
is not as steep as in I60.

In the last scenario, spectral components related to car-
diolocomotor coupling were identified and corrected when
necessary. Two different normalizations have been stud-
ied. The first normalization, HFn1, only takes into account
LF and HF components. The second normalization, HFn2,
also includes cardiolocomotor components. While HFn1 is
commonly used in HRV analysis at rest as a measure of
sympathovagal balance, HF component during moderate-to-
high exercise intensities is no longer only related to ANS
activity but also to a mechanical effect. This work pro-
poses HFn2 to quantify the relative HF power with respect
to all components found in HRV spectrum. Comparing pre-
and post-overlapping correction in HFn1 during the over-
lappings, there are no significant differences. HFn2 prior
to the correction shows lower values because both CC and
HF components are contaminated. After correction, there
are significant differences in I80, I100 and IR in HFn2 with
higher power (around 20% more) after the attenuation of
the effect of cardiolocomotor coupling. This effect is mainly
due to the correction of the aliases of the CF component.
However, the importance of this correction is more evident
when each subject is studied separately. As an example, in
Fig. 4, from seconds 600 to 650, HF power present a sudden
increase, which could mislead the interpretation and relate
it to a parasympathetic activation.

4.2 Physiological aspects

Heart rate variability power tends to decrease with exer-
cise, which is shown in Table 3 and has been reported
in previous works like in Sarmiento et al. [33]. Regard-
ing the maximal test, which is presented as the reference
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test, there is first a rapid increase of heart rate and oxy-
gen consumption (I60). In this phase of moderate exercise,
there is an increase in normalized LF power and a decrease
in normalized HF power. This is mainly related with both
a parasympathetic withdrawal and an augmented sympa-
thetic activity, as suggested in Sarmiento et al. [33]. During
moderate-to-high exercise intensities (I80 and I100), cardiac
vagal control is no longer effective: in spite of the parasym-
pathetic withdrawal, normalized HF power greatly increases
due to the mechanical effect of breathing [33], which leads
to a decrease of normalized LF power. When looking at the
HF power in absolute units, this effect is not so apparent
due to the overall reduction of HRV power, but still, HF
power in I100 is slightly higher when compared to that inI80

in MaxT. Still, even after the power correction, respiratory
sinus arrhythmia (i.e. HF power) is not a valid marker of
parasympathetic activity during high intensities of exercise,
being a limitation of HRV analysis during exercise.

There are no significant differences in the LF and HF
power indices when comparing the two tests on the tread-
mill (MaxT and SubT). Looking at Fig. 7, it shows that
CC power is always higher in SubT than MaxT. The reason
may be that in MaxT, the cadence frequency was free, while
in SubT it was fixed. Interestingly, the volunteers claimed
that running at a fixed cadence during the incremental exer-
cise did not feel natural. However, no significant differences
were found in CC power between MaxT and SubT.

SubT and SubC are significantly different during exer-
cise, mainly regarding HF power indices. LF power is only
different in the last interval, near the peak of exercise. Millet
et al. [24] state that central fatigue and decrease in maxi-
mal strength are more important after prolonged exercise in
running than in cycling, which may impact in HRV parame-
ters. They also claim that running exercise induces a higher
oxygen uptake than cycling at the same intensity, being the
metabolic demands different for each type of exercise. This
also happens in this database, where V̇ O2 consumed in the
last interval is always higher in SubT than that in SubC
(3825.1 ± 435.7 vs 3612.4 ± 325.1 ml O2· kg−1· min−1).
Moreover, four subjects did not reach the last interval in
SubC because the maximum value of V̇ O2 in that test was
lower than 80% of the max value in the MaxT test. How-
ever, the results of such physiological tests in cycling and
running may be influenced by the athlete’s original training
background.

The largest differences between the submaximal tests can
be found in CC power, where SubT presents higher levels
of power than SubC. This component is related to cardi-
olocomotor coupling, which might be due to the dynamic
modulation of the venous return due to leg muscle contrac-
tion (Blain et al. [6]). Running may demand more power
at muscle legs than cycling and so the effect of the arte-
rial baroreceptors due to oscillations in venous return should

be stronger in SubT. This exercise test and their related
CC power at HRV could provide useful information and
have never been considered for quantification of the pos-
sible baroreflex sensitivity underlying this component, and
eventually related to some pathologies related to this reflex.
Another difference is that there is a reduction in the venous
return during cycling compared to running, which may
be due in part to peripheral muscle blood flow [24]. More-
over, subjects felt less natural to keep a fixed cadence while
running on the treadmill than cycling and this additional
effort may affect this component. These results suggest
that this cardiolocomotor component is less strong in cyclo
ergometer tests. No differences were found in the recov-
ery phase when comparing the tests, but in MaxT and
SubT, there is a significant decrease from I100 to IR, while
in SubC, there is no significant difference between those
intervals.

Although no significant differences were found in the
overlappings in SubT and SubC, it was found that Sov was
higher in SubT, while Tov was higher in SubC. This means
that the power in the aliased components is higher in SubT
with respect to the HF power. However, this overlaps last
shorter in SubT than SubC. If the overlapped areas are
detected and removed from the study, it may be better to per-
form a test on a treadmill, where this overlaps are shorter.
While on the other hand, if these overlaps are not detected,
a test on a cycle ergometer may be preferred, since the
severity of the overlaps is lower.

One limitation of this study is that the database is com-
posed of only well-trained men subjects and so the results
only apply for this type of population. This analysis should
be extended also to women, and groups with different age
and training level ranges to better understand how the ANS
respond to the stress of exercise.

5 Conclusions

This work has proposed an integrated methodological
framework for a robust HRV analysis during exercise. IPFM
model allows to correct the HRV signal to remove the influ-
ence of the time-varying mean HR. Non-stationary nature of
HRV during exercise has been solved by using the SPWVD,
a time-frequency spectral analysis, which allows to extract
continuous power information. HF band has been rede-
fined and centered at the respiratory frequency. With this
methodology, which mainly affects the HF measurements,
HF power is increased in 20% during medium to high level
of exercise, in 40% at peak exercise and in 20% at the
recovery phase, being the more significant methodologi-
cal step is the inclusion of respiratory information. Lastly,
spectral components related to the stride/pedalling cadence
have been identified and, whenever they overlapped with the
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HF band, the measured powers have been corrected. When
correcting these components, HF power is increased 20%
during medium to high intensities of exercise and during
recovery.

During the first phase of the exercise, there is a rapid
increase of heart rate and oxygen consumption, together
with an increase in normalized LF power and a decrease
in normalized HF power. During moderate-to-high exercise
intensities, however, there is an increase in normalized HF
power despite the parasympathetic withdrawal, mainly due
to the mechanical effect of breathing. In the recovery phase,
an increase in normalized LF and a decrease in normal-
ized HF are expected. When comparing running and cycling
tests, normalized HF power differs, being around 20%
greater while cycling. Power related to the stride/pedalling
cadence during high intensities of exercise is around 15%
stronger while running than cycling, being higher if this
cadence is fixed.
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(2015) Attenuation of the influence of cardiolocomotor coupling
in heart rate variability interpretation during exercise test. In: 37nd
Annual International Conference of the IEEE EMBS: 1508–1511

14. Hernando D, Bailón R, Almeida R, Hernández A (2014) QRS
detection optimization in stress test recordings using evolution-
ary algorithms. XLI International Conference on Computing in
Cardiology: 737–740

15. Hottenrott K, Hoos O, Esperer H (2006) Heart rate variability and
physical exercise. Current Status Herz 31(6):544–552

16. Laguna P, Moody GB, Mark R (1998) Power spectral density
of unevenly sampled data by least-square analysis. IEEE Trans
Biomed Eng 45(6):698–715

17. Llamedo M, Martı́nez JP (2014) QRS detectors performance com-
parison in public databases. XLI International Conference on
Computing in Cardiology: 357–360

18. Mainardi L (2009) On the quantification of heart rate variability
spectral parameters using time–frequency and time-varying meth-
ods. Philosophical Transactions of the Royal Society of London
A: Mathematical. Phys Eng Sci 367(1887):255–275

19. Martin W, Flandrin P (1985) Wigner–Ville spectral analysis of
nonstationary processes. IEEE Trans Acoust Speech Signal Pro-
cess 33:1461–1470

20. Martı́nez JP, Almeida R, Olmos S, Rocha AP, Laguna P (2004) A
wavelet-based ECG delineator: evaluation on standard databases.
IEEE Trans Biomed Eng 51(4):570–581

21. Mateo J, Laguna P (2003) Analysis of heart rate variability in the
presence of ectopic beats using the heart timing signal. IEEE Trans
Biomed Eng 50(3):334–343

22. Meste O, Khaddoumi B, Blain G, Bermon S (2005) Time-varying
analysis methods and models for the respiratory and cardiac
system coupling in graded exercise. IEEE Trans Biomed Eng
52(11):1921–1930

23. Meste O, Rix H, Blain G (2009) ECG processing for exercise test.
Advanced Biosignal Processing. Springer, Berlin

24. Millet GP, Vleck VE, Bentley DJ (2009) Physiological differences
between cycling and running: lessons from triathletes. Sports Med
39(3):179–206

25. Monfredi O, Lyashkov AE, Johnsen AB, Inada S, Schneider H,
Wang R, Nirmalan M, Wisloff U, Maltsev VA, Lakatta EG, Zhang
H, Boyett MR (2014) Biophysical characterization of the underap-
preciated and important relationship between heart rate variability
and heart rate. Hypertension 64(6):1334–1343

26. Orini M, Bailón R, Enk R, Koelsch S, Mainardi L, Laguna
P (2010) A method for continuously assessing the autonomic



794 Med Biol Eng Comput (2018) 56:781–794

response to music-induced emotions through HRV analysis. Med
Biol Eng Comput 48:423–433

27. Orini M, Bailón R, Mainardi L, Laguna P (2012) Synthesis
of HRV signals characterized by predetermined time-frequency
structure by means of time-varying ARMA models. Biomed Sig-
nal Process Control 7:141–150

28. Pradhapan P, Tarvainen M, Nieminen T, Lehtinen R, Nikus K,
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