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Abstract

In this paper, the problem of time alignment is re-
visited by adopting an ensemble-based approach
with all signals jointly aligned. It is shown that
the maximization of an eigenvalue ratio is synony-
mous to maximizing the signal-to-jitter-and-noise ra-
tio. Since optimization of this criterion is extremely
time consuming, a relaxed optimization procedure
is introduced which converges much more quickly.
Using simulations based on respiratory flow signals,
the results suggest that the time delay error variance
of the new method is much lower than that obtained
with the well-known Woody’s method.

Keywords Time alignment, Signal ensemble, Sub-
sample precision, Eigenvalue decomposition.

1 Introduction

Time alignment is a classical problem in signal pro-
cessing which has been extensively treated in many
biomedical applications, including event-related brain
potentials, conduction estimation in electromyography,
and cardiac late potentials. The goal is often to align an
ensemble of observed signals with similar shape so that
noise reduction can be achieved through ensemble aver-
aging [1].

Despite the long-standing interest in methods for time
alignment, it is surprising that the methods which are in-
trinsically ensemble-oriented have received so limited at-
tention. The guiding design principle has rather been to
extend an alignment method which compares each signal
of the ensemble to a reference signal, thus relying on pair-
wise alignment in the time [2], frequency [3, 4], or scale
domain [5]. Such an approach is, however, empirical in
nature and does not ensure that the resulting time delay
estimates of the ensemble are optimal.

Woody’s method is probably the most well-known
method for ensemble time alignment, with matched fil-
tering as its core operation [6]. An initial estimate of the
filter’s impulse response is obtained by averaging the un-
aligned ensemble. An iterative procedure is then applied
by which the time delay of each signal of the ensemble
is estimated, a new ensemble average is computed, and

so on, until the time delays no longer change. Although
no general proof of convergence has been presented, it
is well-known that convergence is generally achieved
within 5–10 iterations, provided that the waveforms are
initially reasonably well-aligned and that the signal-to-
noise ratio is reasonably good. The Woody method has
later been extended so that the colored noise situation can
also be handled [7], not only white noise which was im-
plicit to the original work.

It was not until 2008 the time alignment problem was
recast into a formulation by Cabasson and Meste which
accounts for all the waveforms of the ensemble [8]. They
proposed a statistical model framework in which each
observed signal was assumed to be composed of an un-
known, fixed-amplitude signal with unknown delay and
additive, Gaussian white noise. The joint maximum like-
lihood (ML) estimator of the unknown signal waveform
and the time delays was derived, and found to differ
slightly from the procedure that defines Woody’s method.
The main difference is that the ensemble average is no
longer needed when estimating the time delays. Since an
iterative version of the estimator was implemented, opti-
mality in the ML sense could not be guaranteed. Simu-
lation results showed that the modified method produced
time delay estimates with lower error variance for small
ensemble sizes (i.e., containing less than 20–25 wave-
forms), and offered slightly faster convergence.

Maximum a posteriori estimation (MAP) has been in-
vestigated for a generalized statistical model in which
each signal waveform is multi-component and character-
ized by random amplitude and time delay of each com-
ponent [9]. Since the noise was assumed to be Gaussian,
the MAP approach led to the minimization of a quadratic
cost function whose solution entails matched filtering and
a constrained time delay search intervals. Although the
authors outlined the optimal solution in their paper, they
implemented and studied nevertheless a suboptimal es-
timator which was computationally more efficient than
the optimal one. Since the time delay estimates were de-
termined iteratively using matched filtering, it was con-
cluded that the Woody’s method can be viewed as a sub-
optimal implementation of the MAP estimator. When a
uniform probability density function (PDF) of the time
delays is assumed, and the multi-component, variable-
amplitude signal replaced by a single-component, fixed-



amplitude signal, the alignment method becomes closely
related to that in [8].

This paper introduces a novel approach to time align-
ment where the eigenvalue properties of the correlation
matrix for the entire ensemble of data are explored. No
assumptions on time delay PDF have to be made, nor is
an estimate of the underlying signal waveform required
as is the case in Woody’s method. These differences are
due to the simple fact that an ensemble of any similar-
shaped waveforms produces an observation matrix whose
ratio of the largest eigenvalue and the sum of remaining
eigenvalues is larger when the waveforms are aligned. It
can be shown that this eigenvalue ratio has the attractive
interpretation of a signal-to-jitter ratio.

2 Methods

2.1 Signal model and cost function

Time alignment of a signal ensemble takes its starting
point in the following simple statistical model where the
observed signalsxi(n), i = 1, . . . ,M , are all assumed to
be characterized by

xi(n) = s(n− θi) + vi(n), n = 0, . . . , N − 1, (1)

wheres(n) is a signal with energyEs which is constant
across the ensemble,θi the unknown, integer-valued time
delay to be estimated, andvi(n) zero-mean, white noise
with varianceσ2

v . The amplitude ofs(n) is assumed to be
fixed and equal to one. The entire ensemble is compactly
represented by the column matrix

X =
[

x1 x2 · · · xM

]

, (2)

where thei-th column contains the samplesxi(n),

xi =











xi(∆)
xi(∆ + 1)

...
xi(N +∆− 1)











. (3)

where∆ is the start sample index. When all signalsxi are
perfectly aligned, the corresponding correlation matrix is
given by [1]

Rx , E
[

xx
T
]

= ss
T + σ2

vI, (4)

where the vectors contains the signal sampless(n). The
eigenvalues ofRx equal

λi =

{

Es + σ2
v , i = 1;

σ2

v , i = 2, . . . , N.
(5)

The eigenvalue ratio

Λ ,
λ1

∑N

i=2
λi

(6)

is here proposed as a performance measure of time align-
ment because it reaches its maximum when all signals

are perfectly alignment, i.e., the assumption which leads
to (5) and a rank-one correlation matrixRx.

Interestingly,Λ can be interpreted as a signal-to-jitter-
and-noise ratio. This fact is shown by considering the
continuous-time counterpart to the signal model in (1),
given by

xi(t) = s(t− θi) + vi(t). (7)

The same assumptions apply for the discrete-time case,
except thatθi is a real-valued instead of integer-valued
random variable. Assuming thatθi is small and zero-
mean with varianceσ2

θ , the observed signal can be ap-
proximated by

xi(t) ≈ s(t)− θis
′(t) + vi(t), (8)

wheres′(t) denotes the first derivative ofs(t). The sig-
nalss(t) ands′(t) are orthogonal, i.e.,
∫

∞

−∞

s(t)s′(t)dt =
1

2π

∫

∞

−∞

S(Ω)(−Ω)S∗(Ω)dΩ

= −
1

2π

∫

∞

−∞

Ω|S(Ω)|2dΩ = 0, (9)

whereS(Ω) denotes the Fourier transform ofs(t). It is
here tacitly assumed thats(t), which is a finite duration
signal, can be extended from−∞ to∞.

Assuming that the observed signalxi(t), expressed by
(8), has been sampled at the Nyquist rate, the correlation
matrix of the sampled counterpart is given by

Rx = ss
T + σ2

θs
′
s
′T + σ2

vI, (10)

where use has been made of the sampled counterpart to
(9), stating that the vectorss ands′ are orthogonal. It can
be shown thats ands′ are eigenvectors, with eigenvalues
Es + σ2

v andσ2

θEs′ + σ2

v, respectively, whereas the re-
maining eigenvectors can be arbitrarily chosen as long as
they are orthogonal tos ands′. Thus, the eigenvalues of
Rx equal

λi =







Es + σ2
v , i = 1;

σ2

θEs′ + σ2

v , i = 2;
σ2

v, i = 3, . . . , N,
(11)

whereEs = s
T
s andEs′ = s

′T
s
′ denote the energy of

the signal and its derivative, respectively. Inserting the
eigenvalues in (6), it is easy to show thatΛ can be inter-
preted as a signal-to-jitter-and-noise ratio,

Λ(θ) =
λ1(θ)

∑N

i=2
λi(θ)

≈
Es

σ2

θEs′ + (N − 1)σ2
v

(12)

where the numeratorEs + σ2
v has been approximated

by Es sinceλ1 ≫ λN in many biomedical applications
of interest. The dependence of the eigenvalues on the
time delay vectorθ, defined byθ1, . . . , θM , is indicated
in (12).

2.2 Brute force integer optimization

The sample correlation matrix

R̂x = XX
T (13)



is computed, its eigenvalues determined, and the optimal
time delays are determined from

θ̂ = argmax
θ

Λ(θ), (14)

i.e., by finding those column shiftŝθ1, . . . , θ̂M which
maximize the cost functionΛ(θ). Each column is shifted
symmetrically around its initial position, i.e., it is shifted
∆ locations upwards as well as downwards.

The maximization in (14) is implemented with a brute
force technique which tests all possible shift combina-
tions, amounting to about(2∆+1)M shifts. This implies
that the singular value decomposition must be computed
about1084 times for the case when∆ = 3 andM = 100,
this being a case which is representative for many appli-
cations. Evidently, this amount of computation is far too
demanding to be of any practical use, and therefore it is
essential to find an alternative, more efficient approach to
multidimensional optimization.

2.3 Relaxed optimization

A fruitful approach to dramatically speed up the opti-
mization is to reformulate (14) so that the integer-valued
time delaysθ1, . . . , θM become continuous-valued, i.e.,
to relax the optimization problem, thereby making it pos-
sible to employ an algorithm which does not require a
gradient of the cost function. The first step in such an ap-
proach is to increase the original sampling rate of the aug-
mented ensemblẽX through interpolation so that the sig-
nals become good approximations of the continuous-time
signals. The interpolated signals are denotedxi,c(t). In
practice, this conversion is accomplished by interpolating
the signals by a factor of 50 (or similar), and then apply-
ing a zero-order hold operation to produce a signal which
is continuous in time.

For every set of time delaysθ1, . . . , θM , now treated
as continuous-valued variables, the column vectors ofX

are determined by resampling the continuous-time sig-
nalsxi,c(t), using the following expression

xi(n) = xi,c(nTs+θi), n = 0, . . . , N+2∆−1, (15)

whereTs denotes the sampling interval of the original
observed signal. Similar to brute force integer optimiza-
tion, the eigenvalues of̂Rx are then determined, and so
on. Since it is difficult to derive an analytical expression
of the gradient ofΛ(θ), the well-known Nelder–Mead
simplex algorithm (Matlab implementation) is here em-
ployed for optimization.

The assumption of an integer-valued time delayθi in
(1) is obviously due to that the observed signal is sam-
pled. However,θi is typically continuous-valued in prac-
tice and, consequently, relaxed optimization is particu-
larly suitable for maximizing the cost function.

3 Simulations

The simulations involved a signal waveform which was
extracted from a respiratory flow signal, acquired from a

patient with coronary heart failure which was part of a
database investigated in a recent study [10]. One rep-
resentative breathing cycle of about 2.5 s was extracted
from a patient with periodic breathing, corresponding to
25 samples at a sampling rate of 10 Hz. Twenty zero-
valued samples were then inserted both before and after
the extracted cycle in order to produce the transient wave-
form s(n), displayed in Fig. 1(a) when being part of a
small ensemble.

The integer-valued time delayθi was assigned a uni-
form PDF over the interval[−δ, δ], whereδ = 3. The
performance was evaluated using the Monte Carlo sim-
ulation technique withR = 50 different realizations for
a small ensemble size ofM = 10; this size was chosen
so as to make the computations of the brute force method
less painful. The resulting ensemble contained signals
with a mixture of signal-to-noise ratios (SNRs), ranging
from a variable lower limit (the SNR indicated below in
the results) to a fixed upper limit equal to 30 dB; SNR is
here defined as10 · log(Es/σ

2
v).

Both variants of the present eigenvalue-based method
embrace only one single parameter, namely the maxi-
mum time shift∆max which defines the length of the shift
interval [−∆max,∆max] around the true time delay. This
parameter is here set equal toδ, i.e., ∆max = 3. The
default values of Matlab’s implementation of the Nelder–
Mead algorithm were employed.

In order to evaluate the performance, the present
method was compared to the Woody method [6], see
also [1]. The Woody alignment involved, just as the
eigenvalue-based method, a symmetrical search interval
of the same length around the true time delay to deter-
mine the time of the maximal output of the matched filter.

Alignment performance is here synonymous to the
variance of the time delay errors(θ̂i − θi), i = 1, . . . ,M ,
and averaged over theR different Monte Carlo runs.
All computations were performed in Matlab on a server
(BLUE) with 8 parallel processors.

4 Results

Figure 1(b) and (c) illustrate the alignment that results
from using Woody’s method and brute force optimiza-
tion, respectively. In this example, it is visually evident
that the present eigenvalue-based method offers better
alignment when the ensemble is heterogenous with re-
spect to SNR.

Figure 2 presents the time delay error variance for dif-
ferent lower limits of the mixed SNR. It is noted that the
error variance is 0 for the brute force method for an SNR
equal to 25 dB. As the SNR drops, the performance of
the Woody method deteriorates much faster than do the
two variants of the present method. Indeed, they perform
essentially the same when the SNR is equal to 15 dB.
However, the brute force method requires about 6 weeks
to finish whereas the relaxed optimization finishes in a
few seconds!
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Figure 1: An example of (a) a simulated ensemble con-
tainingM = 10 noisy respiratory flow waveforms. The
ensemble is aligned using either (b) the Woody method
or (c) the new eigenvalue-based method (brute force).

5 Conclusions

A new method is presented for ensemble time align-
ment which explores the properties of the eigenvalues of
the data matrix. The eigenvalue criterion to be maximized
is given the interpretation of a signal-to-jitter-and-noise
ratio. While the results are yet preliminary in nature,
they suggest nonetheless that the new eigenvalue-based
criterion can offer much better performance than does
the widely used Woody’s method for time alignment of
waveforms with fixed morphology. No estimate of the
underlying signal waveform is required.
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