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Abstract: Background: End-stage renal disease patients undergoing hemodialysis (ESRD-HD) therapy
are highly susceptible to malignant ventricular arrhythmias caused by undetected potassium concen-
tration ([K+]) variations (∆[K+]) out of normal ranges. Therefore, a reliable method for continuous,
noninvasive monitoring of [K+] is crucial. The morphology of the T-wave in the electrocardiogram
(ECG) reflects ∆[K+] and two time-warping-based T-wave morphological parameters, dw and its
heart-rate corrected version dw,c, have been shown to reliably track ∆[K+] from the ECG. The aim of
this study is to derive polynomial models relating dw and dw,c with ∆[K+], and to test their ability
to reliably sense and quantify ∆[K+] values. Methods: 48-hour Holter ECGs and [K+] values from
six blood samples were collected from 29 ESRD-HD patients. For every patient, dw and dw,c were
computed, and linear, quadratic, and cubic fitting models were derived from them. Then, Spearman’s
(ρ) and Pearson’s (r) correlation coefficients, and the estimation error (ed) between ∆[K+] and the
corresponding model-estimated values (∆̂[K+]) were calculated. Results and Discussions: Nonlinear
models were the most suitable for ∆[K+] estimation, rendering higher Pearson’s correlation (median
0.77 ≤ r ≤ 0.92) and smaller estimation error (median 0.20 ≤ ed ≤ 0.43) than the linear model
(median 0.76 ≤ r ≤ 0.86 and 0.30 ≤ ed ≤ 0.40), even if similar Spearman’s ρ were found across
models (median 0.77 ≤ ρ ≤ 0.83). Conclusion: Results support the use of nonlinear T-wave-based
models as ∆[K+] sensors in ESRD-HD patients.

Keywords: electrocardiogram; periodic component analysis; T-wave morphology; time warping;
noninvasive potassium sensing; personalised medicine

1. Introduction

Heart failure is among the most common cardiovascular complications in end-stage
renal disease (ESRD) patients [1,2]. In hemodialysis (HD)-dependent ESRD (ESRD-HD)
patients, the risk of cardiovascular mortality caused by electrical instability is 10- to 20-fold
higher than in age- and gender-matched healthy subjects [3,4]. This remarkable association
can be explained by the extreme fluctuations in blood potassium concentration ([K+])
occurring in between HD sessions [5,6]. These changes in [K+] are usually clinically
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silent and occur without warning to the patient or to the doctor in the absence of blood
tests [7]. Therefore, continuous noninvasive monitoring of [K+] variations (∆[K+]) is
of great importance [8] as it would provide risk warnings, improving an ever-growing
clinical need.

The electrocardiogram (ECG) reflects the electrical activity of the heart in a non-
invasive and inexpensive way. Electrocardiographic consequences of ∆[K+] are well
known [9–11]: The earliest effects appear as narrowed and peaked T waves [12], followed
by changes in the QT interval duration (or its corrected version, QTc) [13] and in repolari-
sation complexity [14]. Several studies in the literature have attempted to estimate [K+]
through the analysis of T-wave morphology changes, quantified by features representative
of the T-wave shapes, [15–17]. In previous studies [18–22], we proposed and investigated
six T-wave morphological parameters quantifying T-wave morphology changes by means
of time warping analysis [23] for continuous non-invasive ∆[K+] monitoring. These six
T-wave morphology parameters included du

w, dw, and d̂w,c (unsigned, signed, and heart rate
corrected T-wave morphology variations in time, respectively), da (T-wave morphology
variations in amplitude), and their non-linear components (dNL

w and dNL
a ) as described

in [23] and [21]. In addition, we tested two lead space reduction techniques [20], principal
component analysis (PCA) and periodic component analysis (πCA) [24], this later imple-
mented in two different versions: By exploiting the complete QRST complex periodicity,
πCB, or just restricting to the T-wave, πCT [20]. This work [20] showed that dw and d̂w,c had
the highest correlation with ∆[K+]. They also showed that πCT presented higher robustness
against noise than PCA or πCB, making it the most suitable lead space reduction technique
for ∆[K+] tracking during the HD session, as well as in the post therapy monitoring before
the next HD session. Nevertheless, a quantitative relation between these T-wave morpho-
logical parameters derived from ECG analysis and ∆[K+] has not yet been established for
clinical use, which would allow a non invasive measurement of ∆[K+] value.

The direct assessment of a marker as [K+] surrogate by Pearson correlation analysis
implies the assumption of a linear relation between them. However, previous works have
reported that the reconstruction of [K+] from the ECG significantly improves by employing
a quadratic regression [16]. This result is compatible with the findings we reported in [20,21]
where the same study population described in Section 2 was investigated according to
the protocol in Figure 1. In Palmieri et al. [21], we observed a non-linear correspondence
between ∆[K+] and the T-wave time warping biomarkers dw and d̂w,c (purple and green
boxplots, respectively, in Figure 2 of the present study). Therefore, we hypothesised that
using patient-specific nonlinear models based on T-wave time warping-derived markers
can provide better quantitative assessment of ∆[K+]. The aim of this study is to derive and
to evaluate nonlinear polynomial sensing models to estimate ∆[K+] by using πCT-based
markers, dw and d̂w,c. As a reference, a patient-specific linear model is also estimated for
each marker.

This paper is organised as follows. First, we describe the study population, a database
recorded during the interdialytic interval between two HD sessions. We next expand on
the methodology to calculate the T-wave morphology parameters, as well as the proposed
models to monitor [K+] fluctuations from the ECG. Finally, we present and discuss the
results, ending with conclusions and considerations for future research.
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Figure 1. Data acquisition protocol. Holter electrocardiogram (ECG) signals of end-stage renal
disease patients undergoing hemodialysis (ESRD-HD) patients were acquired throughout 48 h,
starting 5 min before the beginning of the HD therapy. Six blood samples were collected at the
beginning of the therapy (h0), each hour during the HD (h1, h2, h3), at the end (h4, at minute 215th or
245th, depending on the HD duration) and before the beginning of the next HD session (h5).

Figure 2. Boxplots showing the distribution of ∆[K+] (blue) and the described πCT-based time
warping biomarkers dw (purple) and d̂w,c (green), computed at each time points (h0 to h5), see
Figure 1. The central line of the boxplots represents the median, the edges of the box are the 25-th and
75-th percentiles, and the whiskers extend to the most extreme data points not considered as outliers.
The notches represent the 95% confidence interval of the median, calculated as q2− 1.57(q3− q1)/

√
n

and q2 + 1.57(q3 − q1)/
√

n being q2 the median, q1 and q3 are the 25-th and 75-th percentiles,
respectively, and n is the sample size. Finally, red “+” denotes outliers. Data adapted from [20,21].

2. Materials

The ESRD-HD study population included 29 patients from the Nephrology ward at
Hospital Clínico Universitario Lozano Blesa (Zaragoza, Spain). Inclusion criteria were (i)
18-year-old or older patients, (ii) being diagnosed with ESRD, and (iii) undergoing HD
at least three times per week, with venous or cannula access. The study protocol was
approved by the Aragon’s ethics committee (CEICA, ref. PI18/003) and all patients signed
informed consent. All procedures and methods were performed in accordance with the
Helsinki Declaration. Further details concerning the study protocol and clinical features
of the study population can be found in [20,21]. A 48-h, standard 12-lead ECG Holter
recording (H12+, Mortara Instruments, Milwaukee, WI, USA, sampling frequency of 1
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kHz, amplitude resolution of 3.75 µV) was collected for each enrolled patient, with the
acquisition starting 5 min before the HD onset and lasting until the next HD session,
programmed 48 h later. Simultaneously, to determine [K+], a total of 6 blood samples
were collected just before starting the HD and every hour during the HD session (5 in
total), with a last extraction immediately before the next HD session (Figure 1). The current
number of patients included in the database is still limited, hence this work should be
interpreted as an exploratory pilot study .

3. Methods

In this section, the different steps required for the processing of the ECG signals are
described and summarised in the block diagram presented in Figure 3.

ECG filtering, QRS 
detection, T wave delineation

𝜋𝜋CA computation, QRS 
detection, T wave delineationRaw ECG

(a) (b) (c)

—

—

Time-warping analysis, 𝑑𝑑𝑤𝑤
and �̂�𝑑𝑤𝑤,𝑐𝑐 computation [21]

Windows selection and 
MWTW extraction

Fitting models and 
�∆𝑑𝑑,𝑚𝑚
𝑓𝑓 𝐾𝐾+ estimation

(d)

(e)(f)(g)

Figure 3. Flow chart showing the ECG processing steps performed in this study. (a) Raw ECG (the
eight independent leads I, II, V1 to V6 are shown) obtained from one of the enrolled ESRD-HD
patients (see Section 2). (b) Preprocessed ECG as described in Section 3.1. (c) πCA is applied and
both QRS complexes and T-waves (TW in the legend) are detected and delineated as detailed in
Section 3.2. (d) From 2-min wide windows, (e) a mean warped T-wave (MWTW) is extracted and
(f) T-wave morphology markers dw and d̂w,c are computed as stated in Section 3.3. (g) The fitting
models for ∆̂ f

d,m[K
+] estimation are evaluated as in Section 3.5. In this example, a cubic model with

m = a is presented.
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3.1. ECG Pre-Processing

Baseline wander was removed with a 0.5-Hz cut-off high-pass filter, implemented
with a forward-backward 6-th order Butterworth filter [25]. Residual noise out of the
T-wave band was removed with a 40 Hz cut-off frequency forward-backward 3-th order
low-pass Butterworth filter. QRS complexes were detected and T-waves delineated using a
wavelet-based single-lead delineation method applied to each of the 12 leads [26].

3.2. Lead Transformation by Periodic Component Analysis, πCA

Periodic component analysis is a lead space reduction technique aiming to emphasise
the periodic structure of a signal [24,27]. In this work, πCA was applied with a one-beat
periodicity to maximise the T-wave beat-to-beat periodic components on the transformed
signal, as explained in [20]. For each ECG recording, a transformation matrix ΨπCA was
estimated as detailed in [20], and applied to the 8 independent standard leads, obtaining a
new set of 8 transformed leads, named periodic components. In this way and by ordering
the transformed leads inversely to their associated eigenvalue, the most beat-to-beat peri-
odic components appear projected onto the first component, πC1, which was selected for
subsequent analysis and T waves were again delineated by using the above-mentioned
delineator [26].

3.3. Warping-Based T-Wave Morphology Markers

All T-waves from πC1 were further low-pass filtered at 20 Hz using a forward-
backward 6-th Butterworth filter to remove remaining out-of-band frequency components.
T-waves in 2-min wide windows centered around the 5-th minute and 35-th minute of each
available hour were selected, from which a mean warped T-wave (MWTW) was computed
from all T-waves in each window [21,23]. Finally, the two T-wave morphology parameters,
dw and dw,c, were computed by comparing each MWTW with respect to a reference MWTW,
selected at the end of the HD session, resulting in relative markers to the reference point at
the end of HD (h4 in Figure 1). A detailed description of the computation of the warping
markers here analysed can be found in [21,23], describing how dw represents a relative
measure of morphological changes between two T-waves. Likewise, d̂w,c is obtained from
dw marker after being compensated for T-wave morphological changes not attributable to
∆[K+] but to heart rate changes occurring between the reference and analysis points [20,21].

3.4. Blood Potassium Concentration Variations ∆[K+]

The two proposed biomarkers, measured along time, have been associated with the
corresponding relative variations in [K+] with respect to the [K+] at the reference point
(h4), where a blood sample was taken:

∆[K+](hi) = [K+]hi
− [K+]h4 (1)

being [K+]hi
the concentration at the hi-th time point (see Figure 1) and [K+]h4 the reference

concentration at the end of the HD treatment. The ∆[K+] distribution across patients for
each hour is presented in Figure 2.

3.5. Marker Fitting Models for ∆[K+] Estimation

For a given patient p, the relationship between the marker d ∈ {dw, dw,c} and ∆[K+]
measured along time was modelled by means of a linear (l), quadratic (q), and cubic (c)
regression models for each patient to noninvasively calculate ∆[K+] values, according to
the following models:

∆̂l
d[K

+](hi) = αl d(hi), (2)

∆̂q
d[K

+](hi) = αq d(hi) + βq d2(hi), (3)

∆̂c
d[K

+](hi) = αc d(hi) + βc d2(hi) + γc d3(hi), (4)
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respectively. The coefficients αl , αq, βq, αc, βc, and γc were estimated for each patient p
and marker d by using a least square regression analysis between ∆̂[K+] and ∆[K+] values.
For each patient and marker, the parameters of the three models were estimated with
two different approaches: (i) By using all the available ∆[K+] values (“m = a”) and (ii) by
adopting a leave-one-out cross validation (“m = o”) by excluding the hi-th ∆[K+](hi) value
from the training-set and evaluating the prediction error at this hi-th point, repeating this
for all possible hi exclusions.

Finally, to avoid physiologically meaningless ∆̂d[K+] trends, the three models in
Equations (2)–(4) were computed with a constrained parameter estimation in order to
guarantee a monotonically increasing relationship between ∆̂[K+] and d, as physiologically
expected and corroborated by the marker trend evolution in Figure 2 in this paper and in
Corsi et al. [16] in Figure 2 and 4 . That was implemented by imposing:

∂∆̂d[K+]

∂d
≥ 0, (5)

which for positive values of the marker, d > 0, implies αl ≥ 0, αq ≥ 0, βq ≥ 0, αc ≥ 0,
βc ≥ 0, and γc ≥ 0. The case with d < 0 is anecdotal, see Figure 2, and most likely is due to
outliers, since they do not follow physiological interpretations of T-wave narrowing with
increased potassium.

3.6. Statistical Analysis

Spearman’s rank and Pearson’s correlation coefficients (ρ and r, respectively) were
used for correlation analyses between ∆[K+] and ∆̂ f

d,m[K
+], where f ∈ {l, q, c} denotes

the fitting model, d ∈ {dw, d̂w,c} the T-wave morphology parameter and m ∈ {a, o} the
estimation method. This analysis gives information about both the monotonic relation and
the strength of the association between each modelled T-wave morphology parameter and
∆[K+], thus providing a more complete characterisation. In addition, for each patient p
and hour hi, an estimation error e f

d,m(hi, p) was computed as:

e f
d,m(hi, p) =

∣∣∣∆̂ f
d,m[K

+](hi, p)− ∆[K+](hi, p)
∣∣∣ (6)

where i ∈ {0, 1, 2, 3, 5} is the set of hours where the computation of the estimation error
is meaningful. Note that h4 is the reference point where both ∆[K+] and ∆̂ f

d,m[K
+] are

equal to zero and therefore it is excluded from error computation to avoid a biased error
evaluation. The value ∆̂ f

d,a[K
+](p, hi) represents the estimation at time hi when training

is done including all available hi hours values from the corresponding patient, while
∆̂ f

d,o[K
+](p, hi) represents the estimate at hour hi when all but the hi-th point of the patient

are used in the training.
All statistical analyses were performed using MATLAB version R2019a and results

are given as the median and interquartile range (IQR).

4. Results

The median and IQR values of intra-patient Spearman’s (ρ) and Pearson’s (r) correla-
tion coefficients, computed between ∆[K+], and ∆̂ f

d,m[K
+], are given in Table 1. The same

table also displays the median and IQR values of the errors e f
d,m(p, hi), pooling together all

patients and all blood extractions (ALL), and segregated for hour h0 and h5.
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Table 1. Intra-patient ρ, r, e f
d,m—either when pooling all patients and blood samples together

(ALL) or specifically for h0 and h5—evaluated between ∆[K+] and ∆̂ f
d,m[K

+], expressed as median

(interquartile range (IQR)), for each model f ∈ {l, q, c}, marker d ∈ {dw, d̂w,c}, and estimation rule
m ∈ {a, o}.

d f m ρ r e f
d,m

ALL h0 h5

dw

l a 0.83 (0.33) 0.86 (0.35) 0.30 (0.48) 0.28 (0.77) 0.29 (0.55)
o 0.77 (0.48) 0.76 (0.47) 0.38 (0.61) 0.56 (1.10) 0.45 (0.66)

q a 0.83 (0.36) 0.91 (0.29) 0.22 (0.34) 0.24 (0.58) 0.27 (0.49)
o 0.83 (0.49) 0.77 (0.51) 0.38 (0.59) 0.64 (1.15) 0.63 (0.60)

c a 0.89 (0.35) 0.92 (0.27) 0.21 (0.34) 0.23 (0.37) 0.30 (0.54)
o 0.83 (0.49) 0.79 (0.61) 0.39 (0.72) 0.64 (1.24) 0.69 (0.75)

d̂w,c

l a 0.83 (0.31) 0.88 (0.34) 0.27 (0.50) 0.26 (1.03) 0.31 (0.54)
o 0.80 (0.44) 0.81 (0.34) 0.40 (0.63) 0.54 (1.11) 0.50 (0.59)

q a 0.83 (0.35) 0.90 (0.27) 0.21 (0.36) 0.25 (0.73) 0.27 (0.50)
o 0.80 (0.53) 0.77 (0.39) 0.41 (0.67) 0.57 (1.45) 0.71 (0.61)

c a 0.83 (0.31) 0.90 (0.25) 0.20 (0.39) 0.25 (0.67) 0.23 (0.52)
o 0.80 (0.49) 0.72 (0.45) 0.43 (0.81) 0.77 (1.25) 0.76 (0.80)

Boxplots in Figure 4 show the estimation error e f
d,m(p, hi) distributions, sorted by

hours hi, using the linear (Figure 4a,d), the quadratic (Figure 4b,e), and the cubic (Figure
4c,f) models. In addition, the aggregated distribution for all hours is presented with the
label (ALL). The widest error distributions are obtained for hours h0 and h5, whose median
and IQR are given in Table 1. These time points are of great interest since: (i) The samples
are the furthest from the reference (h4) and (ii) when they are estimated by using the
leave-one-out (m = o) approach they do not have any temporarily close samples before
(i.e., in case of h0) and/or after (i.e., in case of h5) as opposed to h1, h2, and h3; this together
with the fact that their associated marker values are also the farthest from the rest, Figure 2.
Therefore, it seemed worthy performing a detailed hour-based error analysis.

An example of cubic modeling results for a given patient with and without parameter
constriction for monotonic ∆̂c

dw ,o[K
+] behaviour with d is presented in Figure 5. Results are

given for no restrictions on {αc, βc, γc} (Figure 5a); by just imposing αc ≥ 0 (Figure 5b);
and by the full constrained model (αc ≥ 0, βc ≥ 0, γc ≥ 0) (Figure 5c).
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Linear

(a) d = dw

Quadratic

(b) d = dw

Cubic

(c) d = dw

(d) d = d̂w,c (e) d = d̂w,c (f) d = d̂w,c

Figure 4. Estimation error (e f
d,m(p, hi)) distributions across patients for each hour hi and when pooling all samples together

(ALL). Panels (a,d) show results for linear models f = l; panels (b,e) show the quadratic and panels f = q; and (c,f) show
the cubic model f = c. Yellow dots represent individual error values when m = a, while light-blue ones denote those
obtained when m = o. Corresponding boxplots are depicted on top of each distribution: The black ones represent the errors
in m = a while the red ones represents error in case of m = o. “+” denotes outliers.

(a) (b) (c)
Figure 5. Examples of cubic models (red dotted lines) computed for a given patient by imposing different parameter
restrictions for leave-on-out cross-validation method, the corresponding equations are reported above each panel. The re-
sulting model without restrictions on {αc, βc, γc} is in panel (a), while those from imposing αc ≥ 0, or full constrained
model are presented in (b,c) respectively. In each panel: The blue diamonds represent measured ∆[K+] values at the hours
{h0, h1, h2, h3, h4, h5}; while red dots are the estimated ∆̂c

dw ,o[K
+] corresponding to the computed dw used in the training

set and computed at {h1, h2, h3, h4, h5}; the green square is the estimated ∆̂c
dw ,o[K

+] corresponding to the dw at h0, the hour
excluded from the training set in this example, and then the one with higher risk for error in the estimation. See that only
full set of parameters forced to be positive result in a monotonic, physiologically plausible, function.

5. Discussion

In this study, we analysed ECG signals from 29 ESRD-HD patients. We extracted T-
wave morphology parameters, dw and d̂w,c, previously reported to have a strong correlation
with ∆[K+] [20,21]. Then, we proposed and compared, the use of linear, quadratic, and
cubic regression models for ∆[K+] estimation from dw and d̂w,c markers. The performance
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of each model was evaluated through Spearman’s and Pearson’s correlation coefficients
of the estimated ∆̂[K+] with respect to actual ∆[K+] values and through hourly-based
absolute estimation errors. The results on ESRD-HD patients here reported showed that
non-linear regression models could be advantageously used to quantitatively estimate
∆[K+] and could, therefore, be an effective tool for remote, frequent, and noninvasive
monitoring of ESRD-HD patients.

According to Spearman’s correlation coefficient (ρ) between measured and estimated
variations in [K+], similar ρ median values were found across the three models, with 0.06
being the highest median increment when moving from a linear to a cubic model for d = dw
in m = a and, thus, denoting an analogous monotonic relationship between real ∆[K+] and
estimated values (∆̂ f

d,m[K
+]). On the other hand, an improvement can be appreciated when

comparing Pearson’s correlation coefficient (r) evaluated in the three models, being the
IQR reduced in d = dw and m = a by 0.06 and 0.08 when comparing the quadratic and cubic
models, respectively, with respect to the linear model. Similar considerations can be made
for d = d̂w,c. This is an expected outcome since the models here proposed were designed
to avoid distorting the original monotonic increasing relationship between ∆[K+] and the
ECG derived markers, but only to adjust for the linear/non-linear relationship between
them. However, the overall performance decreases considerably when the leave-one-out
method, m = o, was used, being the median r lower and the IQR wider than in m = a. Also,
for both dw and d̂w,c in m = o, a remarkable increase in the IQR can be observed when
comparing linear and cubic models: From 0.47 to 0.61 for the first marker and from 0.34
to 0.45 for the second one. Overall, these findings seem to suggest that the cubic model
does not provide any additional advantages to the linear or quadratic models in estimating
∆[K+] using the leave-one-out approach. Therefore, the results we observed for m = a
could potentially be affected by over-fitting.

Another interesting observation can be made when comparing dw with d̂w,c in terms
of r: For the linear model and m = a, a small gain is obtained by heart rate correction, which
is more significant for m = o. However, this improvement for the heart rate corrected index
d̂w,c vanishes in m = a when using the quadratic model or the cubic model getting even
worse in m = o. This can also be a result of the over-fitting in these estimates, d̂w,c since it is
already subjected to an heart rate correction estimation [21].

A reduction in the median and IQR estimation error for d = dw in m = a results when
hours and patients values are pooled together. The IQR decreases from 0.48 for the linear
model to 0.34 for both the quadratic and cubic models. The median error goes from 0.30
in the linear model to 0.22 and 0.21 in the quadratic and the cubic models, respectively.
An analogous trend can be found for d = d̂w,c in m = a: IQR reduces from 0.50 in f = l to
0.36 in f = q and to 0.39 in f = c. However, for both markers, the improvements disappear
when the leave-one-out method m = o is used, which would support the previously
hypothesised over-fitting for m = a. These outcomes would point at the quadratic model as
the most suitable model for ∆[K+] estimation in m = a, as well as in m = o, even if in this
latter case the advantage is not very remarkable. Moreover, as mentioned above, there is
no clear benefit in using a cubic rather than a quadratic model in any of both m = a and
m = o cases, probably due to the full constrained parameter estimation rule we imposed
which, when applied to the cubic model, we observed it resulted in a very small cubic term,
reducing to quadratic model as in Figure 5.

The most distant hours from the reference point (h0 and h5 in this work) are the most
interesting and challenging for ∆[K+] estimation. Indeed, these two are the time points
where the estimation errors are the highest and the error distributions are the widest, which
is particularly true when they are taken out of the training set in the m = o case (red boxplot).
That could be considered as an indication of the high uncertainty in predicting such values,
especially when the values to be estimated do not have closer samples before and/or after,
resulting in the wide IQR values reported for e f

d,m at h0 and h5, Table 1. In general, the IQR

value for e f
d,m at h0 decreases for dw/d̂w,c in m = a from 0.77/1.03 for linear to 0.58/0.73
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for quadratic and to 0.37/0.67 for cubic model (similarly for the median), but again these
reductions vanish in m = o. Analogous considerations can be made for e f

d,m at h5.
The results observed so far may lead to the conclusion that, according to the per-

formance metrics r or e f
d,o considered, the observed improvement for quadratic model

estimation in the case of m = a vanishes, or it is largely attenuated, in m = o. However,
when analysing data distributions we realise that values of dw and d̂w,c markers are not
evenly distributed in all the analysed range (see Figure 2). This fact can imply an over-
weight of small d values in m = o modelling, penalising the estimates at h0 and h5, which
present d values that might not be well represented in the training set. This could also
mean that the leave-one-out cross-validation needs to be cautiously framed when the
value of d to be estimated is far from those used in the training set range, which in our
dataset usually happens at h0 and/or at h5 as exemplified in Figure 6. In these cases,
the estimation error between real ∆[K+] and ∆̂ f

d,o[K
+] would be larger than the error with

respect to ∆̂ f
d,a[K

+]. This could be due to the fact that when the training set consists of
all the available d values (i.e., m = a), thus covering all the whole spanning range for that
patient, the estimated coefficients make a proper modeling and ∆[K+] estimation possible.
However, if that range is not well represented (e.g., in m = o mainly for h0 and h5), then
the estimated coefficients model well the range of low d values, but do not model well
large d values outside that range, thus not being able to provide accurate estimates for
high d values, resulting in inconsistent models and then in unreliable ∆[K+] estimation.
This circumstance is particularly true for the cubic model rather than for the quadratic
one, as a consequence of having an extra parameter to fit, then increasing the possibility of
overfitting, obtaining divergent values outside the training range.

Quadratic

(a)

Cubic

(b)

Figure 6. Example of leave-one-out model prediction (m = o) at h0 compared to a m = a approach for a given patient.
The quadratic models ( f = q) are depicted in panel (a) while the cubic ones ( f = c) are in panel (b). In each panel: The
blue diamonds represent measured ∆[K+] values at each hour {h0, h1, h2, h3, h4, h5}; the black triangles are the estimated
∆̂ f

d̂w,c ,a
[K+] while the red dots are ∆̂ f

d̂w,c ,o
[K+] corresponding to the d̂w,c used in the training set {h1, h2, h3, h4, h5}, and the

green square is the predicted ∆̂ f
d̂w,c ,o

[K+] corresponding to the d̂w,c at h0, the hour excluded from the training set. The black-

dashed line is the model in m = a while the red-dashed line accounts for the model in m = o.

In the following, some limitations of our study are acknowledged. If blood samples
had been collected more frequently during the early stage of the HD treatment when [K+]
and, consequently, d more rapidly change—covering a broad range of values—then the
model training set in m = o could have better represented all the possible cases of d in
the quadratic as well as in the cubic model, and then the results could have been more
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conclusive for the non-linear modelling improvement in predicting [K+]. If this refined
learning would have been done, or is done in future studies, it will, predictably, result in
less error at the extreme times h0 and h5 of the process, and consequently also in a notably
improved performance of the quadratic model both for m = a and for m = o.

Another limitation that should be taken into account when interpreting this work’s re-
sults is the lack of perfect time synchronisation between the actual ∆[K+] and the evaluated
d used for estimation at h5. As previously reported in [21], 44 h is the average ECG duration
in our database—not 48 h, when the last blood sample is takenl—mainly due to electrode
detachment or early battery exhaustion. However, in a recent study [20], we observed a low
marker dynamics in the late post-HD treatment. Therefore, with some degree of confidence,
we have assumed that the estimation error obtained between ∆[K+] and ∆̂ f

d,m[K
+] at h5

would be quite similar if the actual value—had the ECG lasted, as planned, for 48 h—had
been used for modelling.

Specific aspects of ESRD-HD patients’ clinical status (e.g., possibility of previous
infarction not always revealed in clinical history) could have influenced the results, gener-
ating the inter-patient variability here observed. In addition, the accuracy of the proposed
models in estimating potassium variations for patients other than ESRD-HD remains to
be assessed.

Finally, the reduced number of patients and available blood samples for each patient
included in this study also represents a limitation to frame the conclusion of the work.
Indeed, even if the proposed approach may entail a significant step towards a robust and
reliable ∆[K+] sensing from time-warping based biomarkers, it needs to be validated in
larger cohorts before any translation to clinical practice. However, the available data would
suggest that a patient-specific quadratic model could estimate ∆[K+] time trends with better
accuracy than a linear-model. Also, in real practice, this method implies the collection
of several blood samples, which may result in cumbersome procedures. It remains to be
studied to what extent the models learned in one session can be extrapolated for sessions
in later days/weeks, reducing the learning to just a single session.

Future studies should be conducted in a larger population including not only ESRD-
HD patients but also subjects at risk of [K+] imbalance, such as those with diabetes
mellitus [28] or severe cardiovascular events like myocardial infarction [29]. In addition,
the proposed estimation models should be validated in a follow-up study where the
models are learned at the initial HD session and used in later HD sessions to measure
∆[K+]. In such studies the complete learning with m = a at the initial HD session could
be evaluated by its prediction value at subsequent sessions, without any overfitting risk.
At this future analysis, we expect that m = a approach will show better performance,
in terms of correlation and estimation error, than the one reported here for the m = o case,
since the models’ coefficients will be estimated over the six ∆[K+] values (and not just over
five as in m = o), thus covering the full range of d values for each patient.

6. Conclusions

The present study showed the advantage in using non-linear models in estimating
∆[K+] measurements in ESRD-HD patients based on T-wave-derived markers. These
results suggest a new noninvasive strategy for ECG-based [K+] sensing, with large im-
plications for monitoring patients with cardiovascular and renal diseases, providing a
meaningful tool for a personalised ambulatory cardiac risk assessment of these patients.
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The following abbreviations are used in this manuscript:

ΨπCA Transformation matrix to perform Periodic Component Analysis
[K+] Blood potassium concentration
∆[K+] Blood potassium concentration variations
ECG Electrocardiogram
ESRD End Stage Renal Disease
ESRD-HD patients End Stage Renal Disease patients undergoing hemodialysis
HD Hemodialysis
IQR Interquartile range
MWTW Mean Warped T-wave
PCA Principal Component Analysis
π CA Periodic Component Analysis
πCT Periodic Component Analysis evaluated over the T-wave
ρ Spearman’s correlation coefficient
r Pearson’s correlation coefficient
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