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Abstract
Fetal heart rate monitoring is used for pregnancy surveillance in obstetric 
units all over the world but in spite of recent advances in analysis methods, 
there are still inherent technical limitations that bound its contribution 
to the improvement of perinatal indicators. In this work, a previously 
published wavelet transform based QRS detector, validated over standard 
electrocardiogram (ECG) databases, is adapted to fetal QRS detection over 
abdominal fetal ECG. Maternal ECG waves were first located using the 
original detector and afterwards a version with parameters adapted for fetal 
physiology was applied to detect fetal QRS, excluding signal singularities 
associated with maternal heartbeats. Single lead (SL) based marks were 
combined in a single annotator with post processing rules (SLR) from which 
fetal RR and fetal heart rate (FHR) measures can be computed. Data from 
PhysioNet with reference fetal QRS locations was considered for validation, 
with SLR outperforming SL including ICA based detections. The error in 
estimated FHR using SLR was lower than 20  bpm for more than 80% of 
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the processed files. The median error in 1  min based FHR estimation was 
0.13 bpm, with a correlation between reference and estimated FHR of 0.48, 
which increased to 0.73 when considering only records for which estimated 
FHR > 110 bpm. This allows us to conclude that the proposed methodology is 
able to provide a clinically useful estimation of the FHR.

Keywords: wavelet transform, abdominal fetal electrocardiogram, QRS 
detection, fetal heart rate

(Some figures may appear in colour only in the online journal)

1. Introduction

Electronic fetal heart rate (FHR) analysis, introduced into clinical practice about 40 years ago, 
is now the most widely used fetal monitoring technique in industrialized countries (FIGO 1995)  
and has provided extensive knowledge on intrauterine oxygenation. The most prominent sci-
entific associations (Rooth et al 1987, FIGO 1995, RCOG 2001, ACOG 2005) recommend the 
surveillance of selected pregnancies from 24–26 weeks of gestation to term and fetal monitors 
are widespread in modern obstetric units.

There are systems for computerized and automatic analysis of FHR, which may provide 
real-time alerts for healthcare professionals when changes associated with fetal hypoxia are 
detected (Nunes et al 2013). Research has been performed on the application of alterna-
tive linear and nonlinear FHR indices, which have proven to be useful to detect cases of 
lower umbilical artery blood pH (Gonçalves et al 2006), particularly in intrauterine growth 
restricted fetuses when additional information such as the gender of the fetus is also consid-
ered (Gonçalves et al 2013). However, despite recent advances, there are still inherent techni-
cal limitations (Sameni and Clifford 2010, Clifford et al 2014), bounding its contribution to 
the improvement on perinatal indicators (Nunes et al 2013).

One of the main challenges in this field is to extract accurate and useful information from 
the external fetal electrocardiogram (FECG), which may provide a better non-invasive char-
acterization of the fetal cardiovascular system during the third trimester of pregnancy. A more 
accurate detection of the fetal cardiac rhythms, from the maternal abdominal ECG, is a current 
research topic (Silva et al 2013, Clifford et al 2014). Such improvements in FHR extraction 
may allow better performance of currently used FHR indexes, as well as the application and 
development of alternative FHR indexes.

There are several methods for QRS detection in related literature, among which wavelet 
transform (WT) based strategies can be found (Elgendi 2014). The use of a derivative WT for 
QRS detection over standard ECG signals was proposed by Li et al (1995). An extended and 
enhanced algorithm was later developed and validated in Martínez et al (2004), with good 
results over standard databases. The WT provides a description of the signal in the time-scale 
domain, allowing the representation of its temporal features at different resolutions (scales) 
according to their frequency content. Thus, regarding the purpose of locating different waves 
with typical frequency characteristics, avoiding noise and artifacts, the WT seems a suitable 
tool for QRS location over FECG.

Since the maternal abdominal ECG is composed of the maternal and fetal ECGs, 
it becomes obvious to apply methods of source separation such as independent compo-
nent analysis (ICA). One of the main limitations of ICA is the difficulty of automatically 
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assigning each of the ICA components to the maternal or fetal ECG (Hyvárinen and  
Oja 2000, Sameni et al 2006).

An adapted version of the algorithm described in Martínez et al (2004), focusing on fetal QRS 
(FQRS) detection over abdominal FECG recordings, which allows for location of both mater-
nal and fetal QRS complexes was developed as part of the Noninvasive Fetal ECG PhysioNet/
Computing in Cardiology Challenge 2013 (CinCCh) (Almeida et al 2013, Vidaurre et al 2011). A 
wide variety of techniques have been used in an attempt to locate FQRS from abdominal FECG 
and WT have been used typically for denoising (Vidaurre et al 2011). In our approach WT is 
explicitly employed for detection by a set of filters especially suited to singularities location, 
using the same strategy as for an adult ECG. The objective of this work is to present a enhanced 
version of that described in Almeida et al (2013) and fully validate it. The algorithm was applied 
to ECG leads, as well as to derived ICA components, from two different databases.

2. Data and methods

Two datasets of four abdominal FECG leads with reference FQRS annotations available in 
PhysioBank of PhysioNet (Goldberger et al 2000) were used, denoted here by Silesia dataset 
and Challenge dataset. The first dataset also includes a channel with the simultaneous direct 
FECG. The proposed approach is shown as a scheme in figure 1. The general approach for 
abdominal (indirect) FECG consisted of four steps:

 (a) initial pre-processing of each lead j(  j = 1, 2, 3, 4);
 (b) application of the original QRS detection strategy of Martínez et al (2004) to detect 

maternal QRS  complexes, locating their boundaries and identifying associated WT’s 
extrema (maximum modulus lines—MML);

 (c) application of the adapted QRS detection strategy to identify the FQRS over abdominal 
FECG (SLj, j = 1, 2, 3, 4), which excludes maternal QRS complexes using the information 
from step (b);

 (d) combination of single leads marks, aiming to improve FQRS identification (SLR).

An alternative approach, represented in the gray box of figure 1, consisted in feeding the ICA 
components, obtained after step (a), to step (c), leading to another version of identified FQRS 
(ICAk, k = 1, 2, 3, 4). For the Silesia dataset, the original QRS detection was also directly 
applied to preprocessed FECG, leading to FQRS (direct).

2.1. Data and pre-processing

Silesia dataset Data from the Abdominal and Direct Fetal Electrocardiogram Database con-
sisting of five files (r01, r04, r07, r08 and r10) of 5 min, sampled at 1000 Hz recorded 
from women in labor between 38 and 41 weeks of gestation (Matonia et al 2006, Kotas 
et al 2011). Each file includes one channel with a direct FECG, acquired from a fetal 
scalp electrode, and 4-leads of noninvasive abdominal FECG signals. The recordings 
were acquired in the Department of Obstetrics at the Medical University of Silesia, by 
means of the KOMPOREL system for acquisition and analysis of FECG (ITAM Institute, 
Zabrze, Poland). The reference marks for FQRS locations are available for all five record-
ings. Initial R-wave locations automatically determined in the direct FECG signal using 
the KOMPOREL system were verified by a group of cardiologists. The reference annota-
tions have been stored together with the signals in EDF/EDF +  format and were accessed 
using BioSig for Octave and Matlab (biosig4octmat) (Vidaurre et al 2011).
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Challenge dataset Data from the sets A and B of the CinCCh consisting, respectively, of 
75 and 100 files of 1 min 4-leads of noninvasive abdominal ECG signals, sampled at 
1000 Hz (Vidaurre et al 2011, Clifford et al 2014). These files are part of a larger set, 
which includes Silesia dataset files and comprises a total of 447 files, divided by three sub 
datasets named A, B and C. ECG samples corresponding to invalid observations present 
the special value  − 32 768. Reference marks for FQRS complex locations are available 
only for 74 of set A files, while set B is used for blind testing (Challenge organizers scor-
ing), as described in Clifford et al (2014). Both signals and annotations are in MIT-BIH 
ECG data format and were accessed and preprocessed using the BioSigBrowser Matlab 
tool (Bolea et al 2009).

Samples with the special value  − 32 768 in the Challenge dataset files were ignored in further 
processing. A reduced bandwidth notch filter around frequency ω0 = 0, according to the sys-
tem function:

ω
ω

= − +
− +

− −

− −H z b
z z

r z r z
( )

1 2 cos

1 2 cos
0

0
1 2

0
1 2 2 (1)

with b0 = 1 and r = 0.95, was applied to all signals for detrending.
Independent component analysis (ICA) was applied to abdominal FECG recordings using 

the fast fixed-point algorithm implemented in the FastICA package for MATLAB (Hyvárinen 
and Oja 2000) to obtain ICA derived leads.

2.2. Wavelet-based detection method

A single-lead based delineation system using the WT combined with a derivative pro-
totype wavelet (Martínez et al 2004) is used here for QRS detection. For the selected 

Figure 1. Schematic representation of the methodology for FQRS detection.
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prototype wavelet the WT is implemented using FIR low and high-pass filters with 
impulse responses

δ δ δ δ

δ δ

= · + + + + + −

= · + −

h n n n n n

g n n n

[ ] 1 / 8 { [ 2] 3 [ 1] 3 [ ] [ 1] }

[ ] 2 { [ 1] [ ] } .
 (2)

Using these wavelet filters, the WT at scale 2m, wx, m[n] is proportional to the derivative of 
the filtered version of the signal x[n] with a smoothing impulse response at scale 2m. Thus, 

Figure 2. Maternal and fetal QRS detection over direct and abdominal FECG (x) and 
WT signals (wx, m[n]). on the upper left panels: WT local extrema related to FQRS are 
higher than the original thresholds in the direct FECG, producing MML, but not in the 
abdominal FECG; for abdominal FECG only maternal MML are found using the origi-
nal thresholds; modified (lower) thresholds are required for detecting fetal MML; no 
FQRS related MML are found for WT scale 24 of abdominal FECG. SLR is illustrated 
for a single beat in the midle panel: vertical dashed lines correspond to the neighbor-
hood considered to chose the SL annotations to include in the median final mark; the 
SL FQRS candidate in the lower lead was excluded, as it was not found in no other lead, 
while another FQRS was found in 3 out of the 4 leads and SLR annotation taken as the 
median. A case in which the detection method fails is illustrated in the right panel: no 
FECG is visible neither in the abdominal recordings nor in the WT.
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signal wave peaks correspond to zero crossings in the WT and signal maximum slopes cor-
respond to the WT maxima and minima (maximum modulus lines—MML), as can be seen in 
figure 2 where direct and abdominal FECG signals and the respective WT signals are plotted.

The detection of the fiducial points is carried out across the adequate WT scales and attend-
ing to the dominant frequency components. QRS waves are located across scales 21 to 24, by 
searching candidates for MML as local extreme points over (root mean square based) scale 
dependent thresholds. Isolated and redundant candidates are eliminated and only the ones that 
appear as MML pairs of opposite polarity across adequate scales are considered. Any MML 
line is considered to be isolated and discarded if at scale 21 differs 0.15 s or more from the 
closest neighbour at the same scale. Positive MML differing less than timepair = 0.12 s from 
each other are considered to be redundant and only the closest to the MML with negative 
polarity is kept. Additionally, MML of the same polarity differing less than timepair from 
the same MML of opposite polarity are also considered to be redundant. From those, the one 
whose amplitude normalized by the time interval to the MML with opposite polarity is at least 
1.2 times higher than the other is kept, or the one closest to the MML with opposite polarity. 
The QRS location is taken as the zero crossing between MMLs of opposite polarity differing 
less than timepair. A 275 ms refractory period is included and search back performed if too 
long an RR interval is found. QRS onset and end are located using slope based criteria over 
the WT at scale 22. The above referred parameters were empirically tuned and validated over 
ECG signals of standard databases during the development of an automatic delineation system 
described in Martínez et al (2004) and set as default.

When simultaneous leads are available, multilead based global marks for main peak loca-
tion are taken as the median over SL based locations for QRS candidates found in at least K 
of the available leads, while boundaries are taken as onset[end] of the first[last] SL mark with 
at least one neighbour mark in the other lead (SLR—single lead plus rules approach). In this 
work K = 2 was considered.

The above described method, using the default parameters of Martínez et al (2004), is 
applied over the direct FECG fetal QRS (FQRS). However, this same strategy applied to 
abdominal FECG is expected to locate only the maternal QRS complexes, as illustrated in 
figure 2.

Adaptations, attending to the fetal physiology and signal contamination with maternal 
ECG, are therefore clearly required for FQRS location over abdominal FECG. In adults, QRS 
complex content can range from almost 0 to 40 Hz while the frequency content of FQRS is 
over 20 Hz (Matonia et al 2006). This means that the WT scale 24 is not useful as its equivalent 
frequency band does not reach 20 Hz (Li et al 1995). This fact is also illustrated in figure 2 
in which no FQRS related MML are found for WabdominalFECG,4 signal. Thus for the adapted 
strategy only scales 21 to 23 are used.

The lower power of the fetal contribution requires a lower threshold for fetal MML detec-
tion and a 75% reduced threshold, calculated without considering the maternal QRS intervals 
in its computation, is used. MML lines previously associated with maternal QRS are excluded 
after isolated and redundant candidates elimination, but before a polarity check of the fetal 
MML to define pairs. The time interval timepair used for no redundancy between MML of 
the same polarity and for MML pair association was reduced to 25 ms for adaptation to the 
shorter duration of FQRS complexes: MML associated with secondary QRS waves (like Q 
and small S waves) should appear closer. All numeric changes in parameters from the default 
were guided by the physiological differences of FECG with respect to the adult recordings, 
but the specific values were obtained by trial and error. Nevertheless, in the case of absence of 
FECG components the algorithm will detect maternal T/P waves instead, as illustrated in the 
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lower right panel of figure 2, producing erroneous detections. Each available abdominal lead 
and ICA component is processed separately to produce SL and ICA based sets of locations.

For multilead based locations, a FQRS is accepted if it is detected in at least two out of the 
four leads (SL sets only) within a 250 ms neighborhood, as illustrated at the upper right panel of 
figure 2. The final SLR location is taken as the median mark. This allows us to produce a unique 
annotator (SLR set of locations) from which RR and HRV fetal measures could be taken.

With respect to the preliminary version presented in (Almeida et al 2013) this algorithm 
has incorporated slight changes. In the previous version, maternal MML was excluded at a 
more initial stage, before the redundancy check. Also the SLR strategy was more conservative, 
as it only accepted FQRS detected in at least three out of four leads.

Figure 3. FQRS detection performance in the Silesia data. (a) Performance evaluation 
on the full 5 min recording of each case. (b) Performance evaluation on each minute of 
the 5 min recordings of each case.
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2.3. Performance evaluation

The FQRS marks obtained that differed less than 100 ms from the reference marks were con-
sidered to be true positives (TP). Sensitivity (Se) and positive predictivity (P + ) are computed 
from the number of TP, false positives (FP) and false negatives (FN) as:

= + *Se TP / (TP FN) 100 (3)

+ = + *P TP / (TP FP) 100. (4)

The FQRS location errors were computed for each record as the difference in ms from obtained 
marks and reference marks considering only TP beats. Additionally FHR was estimated as the 
inverse of the mean (or median) RR interval, and computed for each minute for both reference 
and SLR marks, considering all QRS marks (TP and FP). The errors in FHR estimation are 
taken as estimated minus reference values. The scores relative to FHR and RR series defined 
for the CinCCh as described in Clifford et al (2014), were obtained for the Challenge dataset 
and are also presented.

All the above described metrics were obtained for data from the Silesia dataset and 
Challenge dataset A, for which reference annotations were available. For Challenge dataset B 
only the mean scores were provided by the Challenge organizers, and thus are the only perfor-
mance metrics we can present for these data.

3. Results

The modified detector was applied over each of the abdominal leads (SLj, j = 1, 2, 3, 4) and 
ICA (ICAk, k = 1, 2, 3, 4) derived leads. The SLR marks were then obtained by combining 
the four SL based sets obtained over the abdominal leads. The original SL approach was also 
applied over the direct FECG data in the Silesia Data, for comparison purposes. In figure 3(a) 
(left panel) are plotted the P +  and Se values, including the values regarding direct FECG, for 
the 5-min Silesia recordings of the SLR approach and considering each of the four available 
abdominal FECG leads (SL) and four ICA derived signals separately. In the right panel of the 
same figure are plotted the distributions of the FQRS location errors, for both direct, SLR, SL4 
and ICA3, the SL and ICA leads with a higher number of TP detections. In this and similar 
plots the central box limits correspond to the first and third quartiles, with the median marked 
as a horizontal line inside the box. Values out of the 1.5 of the inter-quartile range (IQR) are 
marked as ‘ + ’, as is usual in box plots. A more local analysis is presented in figure 3(b), 
where the Se and P +  values per minute of file were plotted, considering direct FECG, SLR, 
SL4 and ICA3. Table 1 summarizes the reference FHR and respective estimation errors, con-
sidering both mean and median.

Regarding Challenge dataset A, the obtained distributions across files of P +  and Se for 
SLR, SLj and ICAk derived signals are presented in the upper panel of figure  4, with the 

Table 1. Estimated 1 min FHR in the reference and their estimation errors from SLR: 
mean|median FHR reference (mean|median SLR error) bpm. Silesia dataset.

file min 1 min 2 min 3 min 4 min 5

r01 129|128(7|1) 127|127(8|0) 130|129(7|0) 134|133(9|2) 125|126(10|0)
r04 125|125(1|0) 119|122(22|3) 132|131(8|1) 131|130(19|9) 126|126(6|1)
r07 127|127(7|0) 125|126(2|1) 126|127(13|0) 125|126(4|0) 123|124(12|1)
r08 132|132(45|3) 128|128(37|0) 135|132(10|2) 130|131(10|1) 128|128(11|0)
r10 128|130(15|1) 131|131(37|2) 124|125(10| − 1) 148|143(1|1) 138|136(6|9)
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FQRS location error distributions for SLR in the lower panel. In figure 5, the FHR estimates 
based on SLR locations are plotted versus the FHR based on the reference marks for each file, 
along with the error distributions in FHR estimation (middle panel), considering both mean 
and median as estimators, and score distributions (right panel). Mean|median FHR estima-
tion errors were 2.03|0.26 bpm, respectively. The correlation between reference and estimated 
FHR was significant (p < 10 − 2) and found to be 0.30|0.45, increasing to 0.48|0.67 (p < 10 − 4) 
when considering only records for which estimated FHR > 110 bpm. This corresponds to 
excluding 8 out of 74 files (circles on figure 5), all with negative errors, representing FHR 
underestimation.

Considering 1 min based FHR estimation in the data from both databases with reference 
annotations, the mean|median errors were 1.77|0.13 bpm and the correlation between refer-
ence and estimated FHR was 0.35|0.48 (p < 10 − 3), increasing to 0.60|0.73 (p < 10 − 9)when 
considering only estimations with FHR > 110 bpm (excluding 8 out of the 99 1 min segments).

Figure 4. FQRS detection performance in the Challenge dataset A.
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The mean scores relative to the FHR and FRR series defined for the CinCCh obtained for data-
set A were 386.1 and 29.7, respectively, while for dataset B were 513.1 and 35.3, respectively, 
exhibiting some improvements with respect to the results reported in Almeida et al (2013).

4. Discussion

The original detection algorithm (Martínez et al 2004) applied to direct FECG is able to 
achieve a high detection performance, with a global error lower than 1% and a maximum loca-
tion error of 20 ms. This same strategy applied to abdominal FECG was expected to be able to 
locate maternal QRS. Visual inspection allowed us to conclude that it performed correctly, as 
illustrated in figure 2 where maternal QRS complexes are clearly visible and associated MML 
lines are marked. Nevertheless, no systematic validation of that fact could be done due to the 
lack of reference annotations for maternal QRS locations in the data currently available. This 
is a limitation of this work and we expect that it can be solved in the future.

The P +  and Se values for the proposed SLR approach were found to be better or equiva-
lent to the best SL or ICA approach for all records in the Silesia data, as well as for most of 
the 1 min segments. Similar results were achieved regarding FHR estimated values computed 
in the Challenge data, where SLR also outperforms SL and ICA.

Data from the Silesia database have been previously used in the validation of algorithms 
for the automatic FQRS detection from FECG, namely in the works of Kotas et al (2011) and 
Castillo et al (2013). However the direct comparison between our results and those previously 
published is not possible, as those authors did not report which files were considered or did 
not use the same validation criteria.

Kotas et al (2011) proposed spatio-temporal multichannel filtering to construct a new sig-
nal, aiming to enhance fetal cardiac activity. The FQRS were detected over each of the four 
original abdominal FECG, a manually selected ICA component and that constructed signal, 
using several detection approaches. Three 5 min files from the Silesia dataset were used in 
the published performance evaluation, with results highly dependent on the file: P +  and Se 
ranged from 100% to close to 85% for the proposed method, or as low as 35% for a single lead 
based result. As the authors did not report which files were considered, the direct comparison 
of our results with those previously published is not possible.

Castillo et al (2013) used a wavelet based pre-processing strategy, followed by thresh-
old based FQRS detection; the threshold values are file specific, requiring a training dataset, 
as they depend on both physiological and technical factors. The files and channel evaluated 
there were manually selected according to the quality of FECG related activity present and 
reference marks were manually checked by a medical specialist who had also validated the 
reported results. The authors included four out of the five Silesia files, for the selected leads, 
reporting average Se and P +   values of 98.31% and 98.22%, respectively. The lower per-
formance of our results with respect to that work could be related to the differences in the 
validation criteria. Our results reported here did not involve any kind of manual selection or 
verification of the signals nor annotations and use all files and leads. All the processing was 
strictly automatic. Also, the criteria to decide if an obtained mark corresponds to a true FQRS 
is constant, as we discard all candidates differing by more than 100 ms from the reference 
mark as a FP. As a matter of fact, a 100 ms tolerance can be considered to be small, as FQRS 
durations above 70 ms were reported in normal fetuses (Chia et al (2005)).

The lack of annotated abdominal FECG databases was one of the main difficulties in the 
validation of the automatic detection methods. Most of the published approaches use their own 
data or annotations, which invalidates a correct comparison. The CinCCh is, to our knowledge, 
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the larger database of such data. Unfortunately, reference FQRS locations are only available 
for set A, as the main part of the data is reserved for blind validation, using a score defined 
for the Challenge. Therefore we did not have access to the number of TP, FP or FN to validate 
our method over the set B of the Challenge data. Other open source databases including non-
invasive recordings lack reference FQRS marks.

The adaptation of the original QRS detector for processing abdominal FECG used in this 
work allowed the algorithm to detect the FQRS by using a lower threshold for fetal MML 
detection. The price of a 75% reduction is a higher number of candidates for MML. This 
did not represent a problem since the same protections against isolated and redundant local 
maxima were sufficient to eliminate them in most cases.

The FHR, as measured from FECG, presents high variability with many statistical outliers; 
that is, values out of [Q1  − 1.5IQR, Q3 + 1.5IQR], where Qi stands for the ith quartile. The 
clinically useful measure regarding 1-beat based FHR is not the beat-by-beat instantaneous 
value, but rather a representative value of the minute, that is the central tendency evaluated on 
the time interval. Usually the mean is used, nevertheless it is not a robust measure of central 
tendency, as a single large outlier can throw it off. Considering the reference annotations for 
set A Challenge data, more than 26% of the 1 min long files has a percentage of fetal RR inter-
vals that are statistical outliers higher than 5%, according to the above criteria. More than 13% 
have a percentage of outliers higher than 10% . In the presence of outliers, very frequent in 
this kind of data, as seen above, the median should be used instead, as it still has a breakdown 
point of 50%, by definition, being a more robust central tendency measure.

SLR allowed estimation of the median FHR, with an error of less than 5 bpm for all but two 
1 min subsegments out of 25 in the Silesia data. For the Challenge data the error was lower 
than 5 bpm for more than 50% of the processed files and lower than 20 bpm for more than 
80% of the files. The median error in 1 min based FHR estimation considering both databases 
was 0.13 bpm, and the correlation between reference and estimated median FHR was 0.5. This 
allowed us to conclude that the proposed method is able to provide a clinically useful estima-
tion of the FHR baseline. Nevertheless, the proposed method relevantly underestimated FHR 
for 8 out of the 99 min in which reference fetal RR can be obtained, with both estimated mean 
and median FHR below 110 bpm, producing a bradycardia false positive. One of these cases 
is illustrated in the lower right panel of figure 2, in which no FECG components are visible 
and maternal P/T waves are detected instead. The gestational age and type of presentation 
(breech or cephalic) are important factors that may have been related to the records associated 
with lower quality. For instance, the influence of the vernix caseosa between 28 and 32 weeks 
of gestation leads to a lower amplitude of the FECG. As these factors were unknown for the 
main records in the considered data, it was not possible in this work to confirm whether they 
may have been associated with records presenting lower detection performance. This is an 
important issue for future evaluation. Excluding those eight files allowed us to increase the 
correlation between reference and estimated median FHR to 0.73.

5. Concluding remarks

This work was focused in the correct location of the FQRS locations. The proposed wavelet 
based methodology does not require a specific transformation/separation method regarding 
the FECG analysis. The use of ICA did not improve the performance, with SLR presenting 
the best results. No post-processing with regard to cardiac rhythm was considered. The pro-
posed approach seems promising for assessing fetal cardiac rhythms from abdominal ECGs, 
despite the fact that a high number of errors were present for some files. The performance of 
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the detector strongly depends on the quality of the data, and thus pre-processing methods for 
discarding very low quality signals should be considered. The results obtained allowed us to 
conclude that the proposed methodology is able to provide a clinically useful estimation of 
the FHR.
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