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Abstract—Pulse photopletysmographic signal (PPG) is mod-
ulated by the respiratory rate, so there are some algorithms
capable to extract respiratory information from the derived PPG
signals, as the Pulse Amplitude Variability (PAV). Previous works
have shown that the use of the PPG leads to different results
depending on the PPG sensor location (finger and forehead).
Therefore, a database recording finger and forehead PPG signals
and respiration is done, breathing with fixed frequencies. Results
show that while finger PAV signal works correctly, forehead PAV
signal has a non respiratory component that do not allow to
properly estimate the respiratory rate.

I. INTRODUCTION

Pulse photopletysmographic signal (PPG) is a non-invasive

technique widely used to obtain clinic monitoring information

[1]. PPG has been applied in many different clinical settings,

including the monitoring of blood oxygen saturation, heart

rate and its variability, giving information about the autonomic

nervous system, blood pressure, cardiac output and respiration

[2], [3].

Focus on the respiratory information, the proposed methods

to extract the respiratory rate from the PPG signal are usually

based on the modulations induced by the respiration in the

pulse rate, amplitude and width variabilities (PRV, PAV, and

PWV, respectively). It is known that respiration modulates

PPG signal through several effects [4]: PRV is modulated by

respiration as heart rate variability (HRV) is, through a phe-

nomenon well known as respiratory sinus arrhythmia (RSA);

PAV is also modulated by respiration through variations in

stroke volume and in blood vessels stiffness [4], and this

phenomenon in addition to the pressure changes in the thorax

during respiratory cycle modulates also the PWV [5].

The algorithm proposed in [5] was described to extract

respiratory information based on this three respiratory derived

signals. This method allows to extract the respiratory rate

using only one signal or with a combination of them and was

validated using finger PPG sensor. Nevertheless, finger is not

the only possible location for PPG sensor. Forehead is a widely

used place where PPG sensor can be located depending on the

final application. There are some differences between finger

and forehead PPG signals. Light-transmission configuration

can be used in the finger but not in the forehead, where light-

reflection is the only possible configuration. This affects to the

PPG morphology, obtaining a smoother waveform when the

signal is recorded in the forehead [6]. These characteristics in

combination with the differences in arterial routes can generate

differences in the estimated respiratory rate depending on the

sensor location. In this work, a comparison between finger and

forehead PPG signals for the estimation of the respiratory rate

by means of PAV is presented.

II. MATERIALS AND METHODS

A. Data collection

A database of 10 subjects was recorded to perform the

analysis. For these 10 subjects (mean age of 31.0±6.7 years),

finger and forehead PPG signals were recorded simultaneously

as well as a chest-band respiratory signal that will be used

as the gold-standard. Both PPG signals and the respiratory

chest-band one were recorded and sampled at 250 Hz with

the Medicom System, ABP-10 module (Medicom MTD, Ltd,

Russia).

The used protocol consisted of 7 different stages with a

duration of 3 minutes each one: first, subjects are registered

during spontaneous breathing; then a different respiratory rate

is imposed in each of the remaining six stages, starting at 0.6

Hz and ending at 0.1 Hz in steps of 0.1 Hz. Only the last

2 minutes of each stage are used to extract the respiratory

information of the PPG signal.

B. Respiratory signal estimation

From the PPG signal (xPPG(n)), artefactual pulses were

suppressed by using the artefact detector described in [7].

Then, the apex (nAi) and the basal (nBi) points of PPG pulses

were automatically detected using an algorithm based on a

low-pass differentiator filter [8]. Figure 1 represents a PPG
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signal (measured in arbitrary units, a.u.) where its more

representative points are highlighted.
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Fig. 1. PPG signals where its more representative points are highlighted:
upper image, finger PPG; lower image, forehead PPG.

For both PPG signals, the PAV signal is estimated as the

amplitude variation between the nAi and the nBi:

du

PAV
(n) =

∑
i

[xPPG(nAi)− xPPG(nBi)] δ(n− nAi). (1)

Then, a median-absolute-deviation-based outlier rejection

rule was applied, excluding the points with its distance to the

signal median value is higher than the median distance of the

rest of the points. The subsequent series were interpolated to

4 Hz by cubic splines. Then, a band-pass filter [0.075, 1] Hz

was applied obtaining a signal which is denoted dPAV(n) in

this paper. An example of PAV signal is shown in Figure 2,

together with the respiratory signal.
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Fig. 2. Respiratory signal (blue) and PAV (red) of one subject in the 0.2 Hz
stage.

C. Respiratory rate estimation
An algorithm based on [5] is applied over dPAV(n) to esti-

mate respiratory rate (FR) from “peaked-conditioned” averaged

spectra.

For both cases (finger and forehead), a power spectrum

density Sk(f) is estimated every 5 seconds from the kth 40 s

length running window by the Welch periodogram, using sub-

windows of 12 s and 50% of overlapping.

For each Sk(f), the location of the largest peak f I

p
(k) is

detected. Then, a reference interval ΩR(k) is established as:

ΩR(k) = [FR(k − 1)− δ, FR(k − 1) + 2δ] , (2)

where FR(k − 1) is the respiratory frequency estimated from

the previous (k − 1) window. All peaks larger than 85% of

f I

p
(k) inside ΩR(k) are detected, and f II

p
(k) is chosen as the

nearest to FR(k − 1). Note that f II

p
(k) can be the same f I

p
(k)

if the largest peak is also the nearest to FR(k − 1).
Subsequently, a measure of peakness is obtained from Sk(f)

as the percentage of power around the f II

p
(k) with respect to

the reference interval ΩR(k). The peakness is defined as:

Pk =

∫ f II
p (k)+0.6δ

f II
p (k)−0.6δ

Sk(f)df

∫ FR(k−1)+2δ

FR(k−1)−δ

Sk(f)df

× 100, (3)

where δ has the experimental value of 0.1 as in [5]. Then,

a peaked-conditioned average spectra, S̄k(f), is obtained by

averaging those Sk(f) which are peaked enough:

S̄k(f) =

Ls∑
l=−Ls

χk−lSk−l(f), (4)

where Ls was set to 2 in order to average a maximum of 5

spectra and χk−l is a criterion to consider whether the power

spectrum Sk−l(f) is peaked enough or not, allowing to take

part in the average only to those Sk(f) whose Pk is above

85%.

χk =

{
1, Pk ≥ 85
0, otherwise

, (5)

Figure 3 displays two spectra as examples, one with Pk <
85% (not peaked enough to take part in the average), and

another one with Pk > 85% (peaked enough to take part in

the average).

Finally, respiratory rate is estimated as the maximum of

S̄k(f):

FR(k) = argmax
f

S̄k(f). (6)

D. Performance analysis

As mentioned previously, respiratory rate is estimated every

5 s. The median of all the estimations per stage in every

subject is compared with the original rate obtained by the

chest-band information. An experimental margin of error of

±0.03 (±0.18bpm) is given to the estimation to consider that

it matches with the gold-standard. If the match happens, a

Correct Estimation (CE) is considered. If not, there is a Wrong
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Fig. 3. Differences between spectra which satisfy the peakness condition and
those which do not. Red lines illustrate the limits of the integrating interval of
the numerator in Pk with the solid line marking the f II

p (k) value. Black dashed
lines illustrate the reference interval ΩR(k), with the solid line representing
the previous respiratory rate estimated FR(k − 1).

Estimation (WE). The percentage of correct estimations for

each stage is used as a measure of both PAV performance.

%CE =
CE

CE +WE
× 100. (7)

The algorithm used is based on spectral analysis for respira-

tory component detection. Therefore, knowing how relevant is

the respiratory component in both PAV signals is an interesting

point. The power around the frequency given by the respiratory

chest-band (Fc, with a bandwidth of ±0.05 Hz) with respect

to the entire spectra of expected frequencies (from 0.05 to

0.65 Hz) is computed. The relative power in normalized units

(PR) is defined as:

PR =

∫ f=Fc+0.05

f=Fc−0.05

S̄k(f)

∫ f=0.65

f=0.05

S̄k(f)

. (8)

III. RESULTS

Fig. 4 shows 6 time-frequency maps of the respiratory rate

estimation. Each row represents one different stage: first row,

0.2 Hz stage; second row, 0.4 Hz; and third row, 0.6 Hz. Left

column corresponds to the finger PAV signal and the right

column corresponds to the forehead PAV signal.

As it can be seen, finger PAV signal is useful to estimate the

respiratory rate. Nevertheless, when PAV signal is recorded in

the forehead, a component between 0.1 and 0.2 Hz is found in

all the stages. This masks the possible presence of the expected

respiratory information.

Table I shows the percentage of the correct estimations at

each stage using the PAV signal extracted in the two different

locations. The appearance of this component causes a huge

decrease in the %CE in forehead PAV with respect to the

finger one. Only in 0.1 and 0.2 Hz have similar values, and this

happens because the non respiratory component is between

this both values. Besides this, general results show a worse

capacity to detect the correct rate in the higher frequencies

with respect to the lower ones, independently of the sensor

location.

TABLE I
PERCENTAGE OF THE CORRECT RESPIRATORY RATE ESTIMATION (%CE)

USING PAV IN BOTH LOCATIONS

Location Natural 0.1 0.2 0.3 0.4 0.5 0.6

Finger 80 60 100 90 70 60 40

Forehead 70 60 80 20 10 10 0

Finally, Table II shows the inter-subjects mean and standard

deviation (std) of the relative power in normalized units (n.u.)

inside each band. A decrease of the relative power of the

forehead is found in comparison with the finger at any stage.

TABLE II
MEAN ± STD OF THE RELATIVE POWER (N.U.) FOR EACH STAGE WHEN

THE RESPIRATORY RATE IS EXTRACTED USING THE PAV SIGNAL IN BOTH

PPG LOCATIONS

Location 0.1 0.2 0.3 0.4 0.5 0.6

Finger
25.95 25.77 40.27 25.87 38.80 33.88

± 16.01 ± 18.91 ± 14.30 ± 21.84 ± 19.82 ± 12.98

Forehead
12.82 19.65 14.90 12.59 13.35 17.01

± 13.15 ± 15.26 ± 9.09 ± 3.50 ± 2.77 ± 3.52

IV. DISCUSSION

Several information can be extracted from the use of PAV

signal to estimate the respiratory rate. Using this method it is
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Finger PPG, 0.4 Hz stage
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Forehead PPG, 0.4 Hz stage
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Finger PPG, 0.6 Hz stage
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Forehead PPG, 0.6 Hz stage
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Fig. 4. Time-frequency maps of the respiratory rate estimation using the finger (left) and the forehead (right) PPG signal in different stages: a) and b) in 0.2
Hz stage; c) and d) in 0.4 Hz stage; e) and f) in 0.6 Hz stage.

possible that, sometimes, respiratory rate can not be estimated

in every time instant because the five promediated spectrum do

not fulfill the peakness conditions. In this work this phenomena

happens in 10 over the 70 total possible cases (10 subjects and

7 different stages) in the finger signal, with a median time of

33.03% where the estimation can not be done. In the forehead

signal, this happens in 9 cases, with a median time of 36.36%.

The main result of this article is the fact that when PAV

signal is used with the PPG sensor located in the forehead,

a different behavior has been found. A component (maybe

related to the sympathetic component) appears hiding com-

pletely the expected respiratory rate. This fact contrasts with

the behavior observed when the respiratory rate is calculated

with the same signal but recorded in the finger. In this case,

the respiratory information can be observed as other works

suggest [4], [5], allowing to obtain a proper estimation of the

respiratory rate. The non respiratory component induced by

the sympathetic modulation was observed in the finger PAV

signal too, but it is only a slightly component that barely can

be appreciated.

Attending to the performance results, it is confirmed that a

higher mistake is made in the estimation of the respiratory rate

when higher rates are recorded, in comparison with the lower

ones, as another studies noticed, like in [5] where the error in

the respiratory rate extraction using the PAV was lower when

the frequency was behind 0.15 Hz.

Finally, the relative power in each band shows that respira-

tory information is more relevant when PPG signal is recorded

in the finger instead of in the forehead. This explains the

decrease of the accuracy when comparing the same stage for

the two PPG signals.

As the main result of this study, the appearance of a non
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respiratory component in forehead PAV signal requires an

exhaustive investigation to be done with more subjects and

more in detail in order to find out why this component appears

only in this signal. Besides, as the combined methods to extract

respiratory information include PAV signal, a robust method

to extract respiratory information from the PPG has to be

implemented, no matter what location has the PPG sensor,

to avoid possible wrong estimations.

V. CONCLUSION

In this work, finger and forehead PPG signals are used to

estimate the respiratory rate by means of PAV and validated

using a respiratory chest-band as the gold-standard. Results

shows that using the finger PAV signal the respiratory rate

can be extracted. However, a powerful component between

0.1 and 0.2 Hz appears when the forehead PAV signal is

used, being impossible to estimate the respiratory component.

This behavior cause a decrease in the power inside the band

centered in the expected respiratory rate when a comparison

is done between finger and forehead location, showing that

respiratory information is less relevant in forehead spectral

power distribution than in the finger one. These results suggest

that forehead PAV is not useful as a signal to extract the

respiratory rate. Therefore, an extensive study has to be made

in order to clarify why this component appears and to establish

a more robust method to extract respiratory information from

PPG no matter where the sensor is located.
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