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Abstract—Previously, it has been shown that populations of
spinal motor neurons (MN) can act as a linear system transmit-
ting the common inputs they receive in a linear way to the the
muscles. However, this transmission can be affected by the level of
synchronization of sets of MN innervating a muscle. At present,
the underlying mechanisms producing MN synchronization and
their relation to the transmission of other signals are unclear.
Here we propose a computational model to simulate different
levels of MN synchronization and study how this synchronization
affects the linear transmission of common inputs (information
related to cortical processes) to the outputs (MN spike trains)
and how this can be compensated using alternative methods to
decode common neural inputs to MN pools.

I. INTRODUCTION

In a simplified model of the neural control of muscles,
motor neurons (those that connect the nervous system with the
muscles) receive common inputs (CI) and independent inputs
(II). The CIs represent the sum of all the synaptic inputs that is
shared by the pool of motor neurons innervating a muscle [1].
The IIs, on the contrary, represent the part of the net synaptic
input that is uncorrelated across the motor neurons in the pool.

Due to the differences in the biophysical properties of the
motor neurons innervating a muscle and the differences in
the inputs they receive, the way in which motor neurons
sample the CIs is partly independent for each neuron. As a
consequence of this, the sum of the neural activity generated
by a group of motor neurons innervating a muscle is amplified
and transmitted linearly to the muscles. This amplification and
linearization process has been proposed to be a key property
of motor neuron pools allowing robust neural control of move-
ments, by ensuring that low-frequency CIs (<10 Hz) to motor
neurons are reliably transmitted to the muscles causing muscle
contraction and force generation. Importantly, muscles do not
only receive CIs at low frequencies, but they also receive
inputs at higher frequencies, such as in the beta and gamma
bands (between 13 and 50 Hz) which are likely originated in
cortical regions [2] [3]. Similarly to low-frequency contents,
high-frequency inputs to motor neuron pools are assumed to
be amplified and linearly transmitted by motor neuron pools.
This implies that it may be possible to characterize neural
oscillations in the central nervous system by characterizing
the common neural activity in a motor neuron pool. However,
this assumption relies on a critical factor which is the level

of synchronization of motor neurons (that is, the lack of
independence in the firing times of different neurons in a pool).

Indeed, the influence that the level of firing synchronization
across MN has on the linear transmission of CIs to muscles
is insufficiently known. To advance in this area, here we use
a computational model of a pool of MN receiving inputs at
different frequencies and we study how the simulated CIs can
be identified by analyzing the outputs of MNs when different
levels of firing synchronization are imposed. In other words,
we studied the extraction of common information based on
the MN activities in synchronization-dependent contexts.

II. METHODS

A. Computational Model

The model used for the simulations is the one used in
[4]. In short, the model simulates a MN pool consisting of
177 slow-type MN. This represents the type of MN active
during low-level forces. Each of the 177 MN is represented as
a conductance-based two-compartment model (dendritic and
somatic compartment), based on previously published work.

B. Inputs Design

We simulated two different CIs. One of the CIs was the
synchronization signal (0-10 Hz, like the motor control signal)
and the other CI was an input at the beta frequency (26
Hz), which was the input that had to be decoded from the
MN activity. The synchronization between MN was induced
by increasing the power of the 0-10 Hz signal relative to
the power of the IIs. The power of the beta signal was
unaltered across conditions to test how synchronization affects
the extraction of the beta input. Once adjusted in power, both
inputs were combined into one.
Both CIs were simulated by filtering and scaling white Gaus-
sian noise with third-order Butterworth filters. The synchro-
nization signal was low-pass filtered at 10 Hz and the beta
signal was band-pass filtered around 26 Hz (3 Hz bandwidth).
After filtering, the signals were divided by their root-mean-
square and multiplied by the target power.

We tested three different powers of the synchronization
signal: 0, 0.5 and 1 µA. In every case, the power of the beta
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signal was 0.08. This is the maximum power of the beta signal
so the mean firing rate (FR) of the MN pool is not modified.

To simulate the IIs we used white Gaussian noise with mean
equal to variance. The mean of the II was preliminary adjusted
to make the simulated motor neuron pool achieve a mean FR of
approximately 11 Hz without common signals. As we adjusted
the IIs to achieve a mean FR of 11 Hz, the beta frequency
of the CI was set to 26 Hz to avoid misinterpretations due to
interference effects of the first harmonic of the FR (around 21-
22 Hz). For each condition tested (power of the low-frequency
CI equal to 0, 0.5 and 1), 3 simulations of 20 seconds each
were performed.

C. Correlation and synchronization

To assess the effectiveness of the transmission of the 26 Hz
CI at different synchronization levels, the Pearson correlation
coefficient was computed between the instantaneous amplitude
of the filtered cumulative spike train and the filtered CI. The
composite spike train was obtained by summing the spike
trains of individual motor neurons. The amplitude correlation
was computed as a function of the number of MN (randomly
selected) used to construct the cumulative spike train. Results
were averaged across 50 iterations. To compute the amplitude
correlation, the beta input and the cumulative spike trains
were band-pass filtered at 26 Hz and Hilbert transformed.
The synchronization was measured using the cross-correlation
histogram between pairs of motor neuron spike trains. 50 itera-
tions were calculated in each condition. The population power
spectrum was computed by calculating the power spectrum of
the cumulative spike train.

III. RESULTS

Figure 1 shows the effect of increasing the power of the
low-frequency (0-10 Hz) common signal. As the power of
this CI increases, MN start firing synchronously, which is
reflected by the increased power at the frequency matching
the average FR in the population power spectrum (around
11 Hz, Fig.1 left). The consequence of increased levels of
synchronization is a lower capacity of adequately transmitting
other frequencies by the motor neuron pool, as revealed by
a lower correlation between the filtered composite spike train
and the CI at 26 Hz (Fig.1 right). These results show that
synchronization explicitly worsens the extraction of the beta
signal, and suggest that independence in MN firing may be a
necessary condition for CI extraction.

Interestingly, when using higher frequencies to define the
synchronization signal (filtering white noise from 30 to 40 Hz
instead of 0 to 10 Hz, for example), this increased power in
the FR in the population power spectrum is not observed and
the correlation of the beta frequency is not reduced (results not
shown), suggesting that the low-frequency motor control signal
is indeed responsible of the motor neuron synchronization.
This phenomenon can be explained as a non-linearity in the
MN system. When using the first condition (null power of the
synchronization signal), the sum of the power spectra of the
individual spike trains is not equal to the power spectrum of
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Fig. 1: Left: PSD of simulated population (sum of 30 MN) at
powers (0 [blue], 0.5 [red] and 1 [yellow]) of the 0-10 Hz
oscillation. Right: Amplitude correlations between cst and CI
at 26 Hz as a function of the number of MN included in the
cst.

the sum of the individual spike trains, with the first having its
maximum power at the FR frequency and the latter having its
maximum at the frequency of transmission (26 Hz). However,
when increasing the power of the synchronization signal, then
the sum of the individual power spectra of each spike train
and the power spectrum of the sum of spike trains become
more similar (especially when increasing the number of MN
involved), as the synchronization produces an increase in the
FR frequency power and a decrease in the beta frequency
power.

IV. CONCLUSION

In this work, we studied how synchronization affects the
extraction of beta signals, where synchronization was modeled
by increasing the power of the low-frequency CIs. The main
conclusion of this study is that MN synchronization reduces
the capacity of the MN pool to linearly transmit common
inputs in high frequency inputs such as in the beta band. As
these results complement our understanding of MN sampling
process, new methods driven by this information could be
developed to estimate neuronal sources better.
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