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QT-RR Adaptation Time Lag Estimation and its
Dependence on Heart Rate Trend Frequency

Content in Exercise Stress Testing
Cristina Pérez, Esther Pueyo, Juan Pablo Martı́nez, Leif Sörnmo, and Pablo Laguna

Abstract—A new model for the estimation of the QT-RR
adaptation time lag using exercise ECG stress testing has been
proposed, assuming a linear heart rate trend during the test.
In this work, simulated ECGs have been generated based on
heart rate patterns with oscillations at different frequencies to
demonstrate that the assumption can be relaxed so that the QT-
RR adaptation time lag can be adequately estimated for any heart
rate trend whose frequency content is below a certain frequency,
which depends on the QT-RR time lag.

I. INTRODUCTION

THE QT adaptation time lag in response to sudden changes
in heart rate (HR) can be computed using model-based

estimation of the memory parameters describing the time lag
between RR and QT changes. A method was proposed by
Pueyo et al. [1] to model the QT-RR dependence by two
blocks: a first-order system that models the QT memory lag
after RR followed by an instantaneous (typically nonlinear)
transformation that models the stationary QT-RR relation.

Recently, we proposed a model-based time lag estimator
that is suitable for ECGs recorded during exercise stress
testing (EST) [2], where the gradual HR changes observed
serves as the input to the estimator. This method is supported
by the theoretical definition that a linear trend input to a
first-order system generates as output a delayed version of
the linear input, with this delay being the system’s time
constant. However, the observed gradual changes do not follow
a perfectly linear trend.

The novelty of this study includes the demonstration that
the requirement of a linear HR trend can be relaxed to any
change in the trend as long as its frequency content is below
a certain frequency Fc = 1/(2πτs), where τs is the system
time constant in seconds and Fc in Hz. The performance of
the estimator is evaluated using a recently proposed simulator
to generate a dataset of exercise ECGs.

II. HYPOTHESIS

The QT-RR model displayed in Fig. 1 describes the proposal
in [2] to estimate the QT-RR adaptation time lag. The output
diQT(n) of the memoryless transformation, which is derived
from the observed RR interval time series dRR(n) and is
obtained from a hyperbolic regression model, is fed to a linear,
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Fig. 1: The model underlying time lag estimation, relating the
observed RR series dRR(n) to the observed QT series dQT(n).

time-invariant, first-order filter h(n) whose impulse response
is given by

h(n) = κe−n/τu(n), (1)

where τ is the memory time constant, expressed in samples,
here considered as the QT-RR adaptation time lag, the constant
κ is chosen so that the gain is unitary, and u(n) is the
unit step function. The output of h(n) is the modeled QT
series dmQT(n), resulting in dQT(n) once noise w(n) is added
accounting for modeling and delineation errors.

The estimated delay between the observed dQT(n) and the
instantaneous series diQT(n), which is assumed to follow a
linear trend, is taken as the time lag τ̂ .

When dRR(n) is better characterized by a low-frequency
trend, denoted s(n), than by a linear trend, it can be shown
that the first-order system h(n) still behaves as a time-delay
system provided that the spectral content of s(n) is below a
certain frequency.

The discrete-time Fourier transform of h(n) in (1) is

H(ω) =
κ

1− e−1/τe−jω
. (2)

For healthy subjects τs ≈ 25 s [1] and, accordingly, the
system has a cut-off frequency Fc = (2πτs)

−1 ≈ 0.006 Hz
(ωc ≈ 0.01), so the magnitude function of H(ω) can be
approximated for ω ≪ 0.01 by

|H(ω)| = κ√
1− 2e−1/τ cos(w) + e−2/τ

≈ κe1/τ

e1/τ − 1
. (3)

For 1/τ ≪ 1, the phase function ∠H(ω) is approximated by

∠H(ω) = − arctan

(
sin(w)

e1/τ−cos(w)

)
≈ − ω

e1/τ−1
≈ −ωτ,

(4)
resulting in the following approximate expression of H(ω):

H(ω) ≈ κe1/τ

e1/τ − 1
e−jωτ , (5)
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Fig. 2: Examples of dQT(n) and the instantaneous series
diQT(n) for different τ and F .

which is a pure delay for frequencies below Fc.
Therefore, in order to estimate τ by measuring the delay

between dQT(n) and diQT(n), the trend s(n) does not need to
be a linear ramp, but it is sufficient that its frequency content
is below Fc. Then diQT(n) and dQT(n) can be model as:

diQT(n) = s(n) + vi(n),
dQT(n) = s(n− τ) + v(n),

n = 0, ..., N − 1, (6)

where both noise components vi(n) and v(n) account for
beat-to-beat uncertainty in R-wave position and delineation
errors in Q-wave onset and T-wave end, respectively, with
these being statically independent. The integer N is the length
of the interval, containing either the exercise or the recovery
trend, where the estimation of τ is to be performed.

III. DATASET

The dataset contains simulated ECGs defined by a linear
trend template of an RR interval pattern mimicking typical
EST trends [2] plus an added low-frequency oscillation F
during both exercise and recovery. Simulated noise is added
to the ECG with a signal-to-noise ratio (SNR) of 40 dB [3].
Ten simulated ECGs for every combination of τ and oscillation
frequency F , and with a mean duration of 37 min (basal phases
at the beginning and at the end of the EST have a length of
10 min each one) are obtained with values:

τs ∈ {20, 30, 40, 50} s, (7)
F ∈ {0.002, 0.004, 0.006, 0.008, 0.01} Hz. (8)

The range of τs is determined from healthy and pathological
subjects, and the range of F is below and slightly above the
Fc imposed by τs. The method described in [2] is used to
estimate τ .

IV. RESULTS AND CONCLUSIONS

Examples of dQT(n) and diQT(n) for different τ and F are
shown in Fig. 2. For the case of Fig. 2(d), F > Fc the effect of
h(n) results in a smoothed dQT(n). In such cases, the model
in (6) is inappropriate since s(n) is distorted.

Fig. 3: Error mϵτ , and σϵτ , for different τ and F pairs. Results
based on oscillations with full and half amplitude are displayed
with solid and dashed lines, respectively.

Defining ϵτ as the error between the known, simulated time
lag τ and the estimated τ̂ , the mean absolute error mϵτ and
the standard deviation σϵτ are computed separately for each
pair (τ, F ) during exercise and recovery, see Fig. 3. We can
observe that the lowest mϵτ , corresponding to τs = 20s, has
the highest cut-off frequency Fc; then, for a fixed τ , mϵτ

increases as the oscillation frequency F is higher than Fc.
When τ increases, the error mϵτ increases as F becomes
larger, influenced by decreasing Fc. This behavior almost
vanished for F = 0.002 Hz, always lower than any Fc. The
same conclusions, extracted after evaluating mϵτ , can be made
for the analysis in terms of σϵτ , see Fig. 3.

In a previous work [2], we observed this nonlinear HR trend
in series from clinical ECGs. So, the evaluation of the method
in the present study shows that estimate the QT adaptation time
from EST signals is feasible. Moreover, we have only assessed
the methodology for nonlinear HR trend from simulated ECGs
with low SNR since we observed a minor effect of the SNR
value in the estimation of τ [4].

In short, the present study demonstrates that the QT adap-
tation time lag can be estimated from varying HR trend with
low-frequency content below Fc = 1/(2πτs), which fits well
observed HR trends in exercise stress testing.
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