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Abstract— The aim of this study is to quantify the variation

of the T-wave morphology during a 24-hour electrocardiogram

(ECG) recording. Two ECG-derived markers are presented to

quantify T-wave morphological variability in the temporal, dw,

and amplitude, da, domains. Two additional markers, dNL
w and

dNL
a , that only capture the non-linear component of dw and da

are also proposed. The proposed markers are used to quantify T-

wave time and amplitude variations in 500 24-hour ECG record-

ings from chronic heart failure patients. Additionally, two mean

warped T-waves, used in the calculation of those markers, are

proposed to compensate for the rate dependence of the T-wave

morphology. Statistical analysis is used to evaluate the correla-

tion between dw, dNL
w , da and dNL

a and the maximum intra-subject

RR range, ∆RR. Results show that the mean warped T-wave is

able to compensate for the morphological differences due to RR

dynamics. Moreover, the metrics dw and dNL
w are correlated with

∆RR, but da and dNL
a are not. The proposed dw and dNL

w quantify

variations in the temporal domain of the T-wave that are cor-

related with the RR range and, thus, could possibly reflect the

variations of dispersion of repolarization due to changes in heart

rate.

Keywords— Electrocardiogram, morphological variability,

repolarization, T-wave, time-warping.

I. INTRODUCTION

The T-wave reflects the spatio-temporal dispersion of

repolarization of the ventricular myocytes [1]. Thus, if ionic

exchanges during ventricular repolarization or propagation of

the electrical impulse throughout the ventricles suffer from

any abnormalities, this will be reflected on the morphology of

the T-wave [2]. Steep slopes of the T-peak-to-end (Tpe) dy-

namics, considered as a non-invasive marker to some extent

related to enhanced spatio-temporal dispersion of repolariza-

tion restitution, have been suggested to be linked to the gener-

ation of ventricular arrhythmias that could lead to sudden car-

diac death, while flat slopes indicate mechanical heart fatigue

predisposing to [3]. The hypothesis of this study is that the

information contained in the morphology of the T-wave may

provide stronger risk prediction markers than those obtained

when using the Tpe interval only. Overall shifts in the tempo-

ral domain, or misalignments between T-waves, might com-

plicate the comparison and corrupt the measurement of T-

wave morphological variability. Linear and non-linear tempo-

ral re-parameterization (warping) techniques have been used

to overcome this limitation, align electrocardiogram (ECG)

waves and measure amplitude differences with improved ac-

curacy [4]. However, the warping information has never been

used as a marker to assess the T-wave variability in the tem-

poral domain.

The main objective of the study is to assess the rela-

tionship between the maximum RR range and four ECG-

derived markers, dw and da, quantifying T-wave morpholog-

ical variability in the temporal and amplitude domains, re-

spectively, and their non-linearly restricted versions, dNL

w and

dNL

a . Such relationship is evaluated in 24-hour Holter ECGs

from chronic heart failure (CHF) patients.

II. METHODS

A. Mathematical Framework

Let’s consider two T-waves, fff r(tttr) =
[ f r(tr(1)), ..., f r(tr(Nr))]

⊤ and fff s(ttts) =
[ f s(ts(1)), ..., f s(ts(Ns))]

⊤, where tttr = [tr(1), ..., tr(Nr)]
⊤

and ttts = [ts(1), ..., ts(Ns)]
⊤ and Nr and Ns being the total

duration of tttr and ttts, respectively, as illustrated in Figure

1(a). We take fff r(tttr) as the reference T-wave and fff s(ttts) as

the T-wave to be compared with respect to fff r(tttr).
Let γ(tttr) be the warping function that relates tttr and ttts,

such that the composition [ fff s
◦ γ](tttr) = fs(γ(tttr)) denotes the

re-parameterization or time domain warping of fff s(ttts) using

γ(tttr). The square-root slope function (SRSF) was proposed

[5] to find the optimal warping function in a well-defined

geometrical space by warping the SRSFs of the original T-

waves, defined as the square-root of the derivative of fff (ttt),
considering the sign:

qqq f (ttt) = sign
(

ḟff (ttt)
)

√

∣

∣ ḟff (ttt)
∣

∣ (1)

The SRSF of fff r(tttr) and fff s(ttts), qqq f r(tttr) and qqq f s(ttts), re-

spectively, are shown in Figure 1 (b). The optimal warp-
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Fig. 1: Diagram flow illustrating the computation of dw and da. (a) Reference T-wave (solid blue) and a T-wave presenting both time and amplitude
variability (shorter duration and larger amplitude) (dashed red). (b) Applying eq. (1) we obtain their respective square-root slope functions. (c) Optimizing eq.

(2) with the “Dynamic Programming” algorithm, we get γγγ∗(tttr), the warping function that optimally relates tttr and ttts. (e) The re-parameterization of fff s(ttts)
using γγγ∗(tttr) leads to [ fff s

◦ γγγ∗](tttr), the warped T-wave with no remaining time domain variability, and only presenting amplitude variability. (d) Square-root
slope functions of the reference (solid blue) and warped (dashed red) T-waves.

ing function is the one that minimizes the amplitude differ-

ence between the SRSF of fff r(tttr) and fff s(γ(tttr)), qqq f r(tttr) and

qqq[ f s◦γ](ttt
r) = qqq f s(γ(tttr))

√

γ̇(tttr), respectively [5]:

γ∗ (tttr) = argmin
γ(tttr)

(∥

∥

∥
qqq f r (tttr)−qqq[ f s◦γ] (ttt

r)
∥

∥

∥

)

(2)

= argmin
γ(tttr)

(∥

∥

∥
qqq f r (tttr)−qqq f s (γ (tttr))

√

γ̇ (tttr)
∥

∥

∥

)

.

The dynamic programming algorithm was used to ob-

tain the solution of this optimization problem [6]. The op-

timal warping function, γ∗(tttr), that optimally warps fff r(tttr)
and fff s(ttts) is shown in Figure 1 (c). The warped T-wave,

fff s(γ∗(tttr)) is shown in Figure 1 (e), together with the ref-

erence T-wave, fff r(tttr), while their corresponding SRSFs are

shown in Figure 1 (d).

A metric, dw, was defined that quantifies the level of warp-

ing needed to optimally align any two T-waves as the average

of the absolute difference value between γ∗(tttr) and tttr:

dw =
1

Nr

Nr

∑
n=1

|γ∗ (tr (n))− tr (n) |, (3)

The amplitude difference between fff r(tttr) and fff s(γ∗(tttr))
is quantified as the area contained between fff r(tttr) and

fff s(γ∗(tttr)), normalized by the L2-norm of fff r(tttr):

da =
ea

‖ea‖
·
‖ fff s (γ∗ (tttr))− fff r (tttr)‖

‖ fff r (tttr)‖
×100, (4)

where ea

‖ea‖
, with ea = ∑

Nr
n=1( f s (γ∗ (tr))− f r (tr)), accounts

for the sign.

By fitting γ∗(tttr) with a linear regression, γ∗l (ttt
r), and mea-

suring the mean deviation of γ∗(tttr) with respect to this re-

gression, a quantification of the level of non-linear warping

can be obtained:

dNL

w =
1

Nr

Nr

∑
n=1

|γ∗ (tr (n))− γ∗l (t
r (n)) |, (5)

where γ∗l (ttt
r) is the linear fitting of γ∗(tttr).

Regarding da, by normalizing the warped T-waves, non-

linear amplitude differences not due to linear scaling can be

quantified, which might possibly be caused by heterogeneous

dispersion of repolarization times:

dNL

a =

∥

∥

∥

∥

fff r (tttr)

‖ fff r (tttr)‖
−

fff s (γ∗ (tttr))

‖ fff s (γ∗ (tttr))‖

∥

∥

∥

∥

×100. (6)

B. Study population

Consecutive patients with symptomatic chronic heart fail-

ure (CHF) corresponding to New York Heart Association

classes II and III were enrolled in the MUSIC (MUerte Súbita
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en Insuficiencia Cardiaca) study, a prospective, multicenter

study designed to assess risk predictors for cardiovascular

mortality in ambulatory patients with CHF [7]. The 24-hour

Holter recordings of 500 patients with sinus rhythm were

available for the present study. Each recording consisted of

three orthogonal ECG leads, sampled at 200 Hz.

C. Signal Preprocessing and T-wave extraction

Preprocessing of the ECG signals included low-pass fil-

tering at 40 Hz to remove electric and muscle noise, cubic

splines interpolation for baseline wander removal and ectopic

beats detection. Principal component analysis was calculated

lead-wise to emphasize the T-wave components, improve its

delineation and enhance morphological differences. The first

principal component was delineated using a single-lead tech-

nique [8], and the T-waves were confined from the T-wave

onset and T-wave end delineation marks.

Before applying the warping algorithm, the reference and

the studied T-waves were aligned according to their gravity

centers, so that γ∗(tttr) is only dependent on changes in the

T-wave morphology, and not on global shifts.

D. Calculation of T-wave morphology variability

First, the histogram of the RR series was calculated dur-

ing the entire 24-h recording, and it was divided into bins of

10 ms wide. Then, only the bins having at least 50 values

were selected (bins above the horizontal dotted line in Fig-

ure 2). Next, two RR bins, distributed symmetrically around

the median RR (Figure 2, green arrow), were chosen as those

defining the maximum intra-subject RR range, ∆RR, for the

study (Figure 2, orange bins). Then, the T-waves correspond-

ing to the beats associated with the RR intervals within these

two bins were considered for the analysis.

The, the mean warped T-waves of those T-waves selected

from each RR bin were calculated [9]. These mean warped T-

waves are representatives of the average T-wave morphology

at each corresponding RR interval value.

Finally, the morphological differences between both mean

warped T-waves were quantified using dw, dNL

w , da and dNL

a .

The separation of γ∗(tttr) from tttr, quantified by dw and dNL

w

[9], measures the morphological differences in the time do-

main between the two mean warped T-waves. Note that if

this line corresponded to the diagonal, no temporal transfor-

mation would be needed meaning that the morphological dif-

ferences would be non-existent. The amplitude difference be-

tween these warped T-waves would be quantified by da and

dNL

a .

Fig. 2: RR histogram with bins of RR=10ms. Green bin shows the median
RR interval value. Orange bins indicate the RR values defining the

maximum intra-subject range.

III. RESULTS AND DISCUSSION

The morphology of the T-wave is highly dependent on the

history of previous RR intervals [10]. As seen in Figure 3,

panel (b.1), the morphology of the T-wave coming from a

history of previous RR interval values longer than the current

one (panel a.1) is different from that in panel (b.3), which cor-

responds to a T-wave coming from a history of previous RR

interval values shorter than the current one (panel b.1). Due

to the fact that the mean warped T-wave is not just a simple

signal averaging, but it rather stretches (warps) the temporal

domains of the T-waves [9], prior to regular averaging, it is

able to compensate for the morphological differences due to

the different histories of RR interval values (c.1).

The median (interquartile range) value of dw was 16.4

(11.3) ms. These values were 6.1 (4.5) ms for dNL

w , -22.6 (45.5)

% for da and 8.0 (10.7) % for dNL

a . The median (interquar-

tile range) value of the maximum intra-subject RR range

was 0.43 (0.21) s. The Spearman correlation coefficients be-

tween ∆RR and dw, dNL

w , da and dNL

a were 0.50 (<0.001), 0.37

(<0.001), 0 (0.956 and 0.06 (0.153), respectively. This sug-

gests that the morphological variations captured by dw and

dNL

w are correlated with the variations in the heart rate as it

is expected from the fact that the temporal domain of the T-

wave varies with heart rate. Future studies might consider the

restitution of such variations in the temporal domain of the

T-wave as a marker related to the slope of dispersion of re-

polarization restitution and elucidate to what extent the heart

rate corrected dw, estimating the slope of the T-wave mor-

phology restitution, could have potential for arrhythmic risk

prediction.
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Fig. 3: Compensation for the T-wave morphology rate dependence. Panels (a.1-3) show three different dynamics of RR. Panels (b.1-3) show the mean
warped T-wave (black) and the T-wave morphology of the current beat. Red, blue and green colors indicate that the previous RR interval values were longer,
similar and shorter, respectively, than the current one. Panel (c.1) shows the 50 T-waves from a particular RR bin. Panel (c.2) shows the 50 T-waves warped

with respect to the mean warped T-wave.

IV. CONCLUSION

In this study, a mean warped T-wave was proposed to com-

pensate for the rate-dependency of the T-wave morphology in

24-hour Holter ECG recordings. This mean warped T-wave

may be clinically useful as a representative manifestation of

ventricular repolarization dispersion at a certain RR value.

The metrics quantifying variations in the temporal domain of

the T-wave, dw and dNL

w , which use the proposed mean warped

T-wave in their calculation, were shown to be correlated with

the maximum intra-subject RR range. Thus, dw and dNL

w , could

help quantifying the variability in the dispersion of ventric-

ular repolarization, and might have potential for arrhythmic

risk stratification. Future studies will also assess the arrhyth-

mic risk predictive value of the restitution of the T-wave mor-

phology, quantified by normalizing dw and dNL

w by ∆RR, since

we postulate it could act as a surrogate of the dispersion of

repolarization restitution slope.
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