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Abstract— Heart rate variability (HRV) analysis during ex-

ercise has been used to evaluate cardiovascular response to the

stress of exercise, which may offer additional value than in rest

condition. To properly analyze HRV during exercise, several

challenges need to be addressed, such as including respiratory

information and removing the dependance with the mean heart

rate (HR) level. The objective of this work is to extract parame-

ters from HRV analysis and respiratory information during ex-

ercise to evaluate their capability of diagnose coronary artery

disease (CAD). Significant differences in mean HR were found

due to medication effect in patients with CAD. By correcting the

HRV parameters by mean HR, this effect is minimized. Power

related to high frequency, when guided by respiration, results to

have the best diagnosis capability (AUC > 0.7).
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I. INTRODUCTION

Heart rate variability (HRV) is a well known tool to non-

invasively assess the autonomic nervous system (ANS) reg-

ulation over the heart at rest. Spectral analysis of HRV at

rest unveils two main components: one at low frequency (LF)

[0.04, 0.15] Hz, and another at high frequency (HF) [0.15,

0.4] Hz. The LF component largely reflects sympathetic mod-

ulation when normalized with respect to LF and HF com-

ponents [1]. The HF component mainly reflects parasympa-

thetic activity, being influenced by respiration. The ratio be-

tween LF and HF components has been proposed to assess

the sympathovagal balance controlling the heart rate (HR).

Coronary artery disease (CAD) is defined as the narrow-

ing of one or more coronary arteries, which leads to a de-

crease of the oxygen supply to the heart. This lack of oxygen

supply to the myocardium (myocardial ischemia) may cause

angina pectoris or even lead to myocardial infarction. Tradi-

tional non-invasive techniques for CAD diagnosis are based

on exercise ECG tests. Several studies have used HRV anal-

ysis during exercise, since impairment of autonomic cardio-

vascular regulation has been observed in ischemic CAD [2].

However, controversial results have been reported regarding

HRV parameters during exercise, and the lack of a standard

methodology for HRV analysis during exercise hinders a di-

rect comparison of the results. In the study by Bailón et

al. [3], HRV parameters during exercise showed accuracy val-

ues ranging from 76% to 95%, but the authors claimed that

mean HR and respiratory frequency need to be taken into ac-

count. On the other hand, HRV parameters corrected by mean

HR from exercise and recovery phase were reported by Vir-

tanen et al. [4] to be inadequate for CAD detection.

The purpose of this study is to apply the methodologies

described in [3], which include respiratory information, to

an expanded version of the data set studied in [4] with the

aim of determining the diagnostic performance of HRV anal-

ysis during exercise in the detection of CAD. Respiratory rate

was estimated from the ECG using an algorithm based on

the QRS slopes, which has been validated in stress tests [5].

Then, HRV parameters were extracted and their CAD diag-

nosis capability were evaluated in different phases of the ex-

ercise test.

II. METHODS

A. Database and protocol

A subset of the FINCAVAS database [6] consisting of 457

ECG recordings was analyzed. Patients underwent a maximal

exercise test at Tampere University Hospital using a bicycle
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ergometer with electrical brakes. The initial workload varied

from 20 to 30 W, and the load was increased stepwise by

10-30 W each minute. The recovery phase after the exercise

was at least five minutes. Continuous ECG was recorded at

500 Hz with CardioSoft exercise ECG system (Version 4.14,

GE Healthcare, Freiburg, Germany) using the Mason-Likar

modification of the standard 12-lead system. The study pro-

tocol was approved by the Ethical Committee of the Hospital

District of Pirkanmaa, Finland, and all patients gave informed

consent prior to the interview and measurements as stipulated

in the Declaration of Helsinki.

Two groups were formed: a low likelihood of CAD group

(LLC) and a CAD group. Patients for first group were cho-

sen by detailed patient information and from symptoms from

the exercise test: all patients who underwent angiography

or if they reported chest pain during the exercise test were

excluded from the LLC group. Patients in the CAD group

underwent selective coronary angiography within 180 days

of exercise testing, and they presented at least 50% luminal

narrowing of the diameter of at least one major epicardial

coronary artery or main branches. Table 1 shows the popula-

tion characteristics. Some of the patients in the CAD group

were on medication (number of patients in brackets): ACE

inhibitors (61), beta blockers (169), calcium channel block-

ers (38), glyceryl trinitrate (86), long-acting nitrate (90) and

diuretics (34). Also several CAD patients reported chest pain

during the exercise test, leading to a shorter exercise phase.

Table 1: Population characteristics (BMI=body mass index,
MI=myocardial infarction). a denotes median ± median absolute deviation

(MAD) values, * denotes significant differences between groups
(Mann-Whitney test, p<0.001).

LLC (n = 214) CAD (n = 195)

Age (years) a 48 ± 9 62 ± 7 *

Gender (male/female) 124/90 149/46

BMI (kg·m−2) a 26 ± 3 27 ± 2 *

MI (patients) 0 57 *

Diabetes (patients) 12 34

Chest pain (patients) 0 67 *

Exercise length (min) a 7.4 ± 1.4 5.8 ± 1.2 *

B. Preprocessing

ECG waveforms were delineated by a multi-lead wavelet-

based detector optimized to stress test recordings [7]. The

beat time occurrences creates the RR series. Due to a high

level of arrhythmic events in this database, several rules are

imposed on the RR series as in [4]: beat intervals must be

higher than 0.3s and lower than 1.5s, and the relative change

between successive intervals must be lower than 20%. If the

recording has more than 20% abnormal beats, the recording

is removed from the study. In total, 48 recordings were dis-

carded, remaining 409 recordings.

C. HRV and respiratory rate estimation

The HRV signal is obtained using the Time-Varying In-

tegral Pulse Frequency Modulation model (TVIPFM) [8],

which assumes that the activity of the ANS can be mod-

elled by a modulating signal m(t). From beat time occur-

rences tk, the instantaneous HR is obtained dHR(n), sam-

pled at 4Hz. Since the very low frequency components can

mask the low frequency band, a low-pass filter with a cut-

off frequency of 0.03 Hz is used to obtain the filtered sig-

nal dHRM(n). The variability signal dHRV(n) is calculated as

dHRV(n) = dHR(n)− dHRM(n). The modulating signal is esti-

mated as m̂(n) = dHRV(n)/dHRM(n). This method also deals

with ectopic and misdetected beats, assuming a low number

of incidences [9].

Respiratory rate is estimated from an algorithm which ex-

ploits the respiration-induced beat morphology variations on

the QRS slopes of each one of the 12 Mason-Likar ECG

leads. A spectral-based fusion technique is subsequently ap-

plied in order to get an estimation of the respiratory rate Fr(n)
every 5 s. Further details are given in Lázaro et al. [5].

D. Interval selection and physiological parameters

To deal with the nonstationary nature of m̂(n) during ex-

ercise, the analysis is performed in short intervals of the sig-

nal. Four 2-min windows are selected for each patient: at the

beginning of the recording (resting phase), 30 s after the ex-

ercise phase begins, just prior to the end of the exercise and

30 s after the exercise ends (recovery phase). Within these

windows, a 1-min segment is searched with less than 5% ab-

normal beats. These segments, if found, are considered the in-

tervals of analysis: Irest , Iexe1, Iexe2 and Irec. Figure 1 shows an

example of dHRM(n) for one patient, and the windows where

each interval is located. Vertical continuous lines indicates

the beginning and the end of the exercise.

From these intervals, two parameters are extracted:

• d̄HRM: Mean heart rate, obtained as the median value of

dHRM(n) in the interval of interest.

• F̄r: Respiratory rate, obtained as the median value of

Fr(n) in the interval of interest.

Subsequently, the power spectral density of m̂(n) within

these 1-min-length intervals (Sm̂( f )) was obtained based on

Welch periodogram, using windows of 30 s and 20s of over-

lapping. Powers related to the two main componetns, PHF and
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Fig. 1: Example of dHRM(n) for one patient. Vertical lines delimite the
exercise phase, while dashed lines show the windows where the intervals

Irest , Iexe1, Iexe2 and Irec are located.

PLF were obtained from Sm̂( f ). Classical LF band [0.04 Hz,

0.15 Hz] was used, while an alternative HF band centred at

F̄r with a bandwidth of 0.15 Hz was used: [max(0.15 Hz, F̄r -

0.075 Hz), F̄r + 0.075 Hz]. An additional HF parameter, PHFe,

was obtained within an extended band (from 0.15 Hz to half

the mean HR) to compare with PHF.

The following spectral parameters were extracted for each

one of the intervals:

• PLFn: LF power normalized by the total power in LF and

HF bands.

• PHF: HF power obtained around the respiratory frequency.

• R: Ratio between LF and HF powers.

• PHFe: Extended HF power.

E. Statistical analysis

Assumption of normal distribution was rejected using

a Kolmogorov-Smirnov test in all parameters. The Mann-

Whitney test was used to test equality of population medi-

ans (p<0.001) among LLC and CAD groups. A Wilcoxon

signed-rank test between PHF and PHFe was also performed to

compare these parameters (p<0.001). Additionally, the area

under the receiver operating characteristic curve (AUC) was

obtained for each studied parameter.

III. RESULTS

Statistical analysis between LLC and CAD group is shown

in Table 2. d̄HRM and PHF are significantly different in all inter-

vals, with d̄HRM being always higher in LLC group, and PHF

being higher in LLC group in Irest and Iexe1, while higher in

CAD group in Iexe2 and Irec. PHFe behaves similarly than PHF

throughout the test, but the differences are lost in Iexe2. Over-

all, PHFe values are always higher than PHF ones, and a paired

Wilcoxon analysis between both HF parameters reveals that

they are significantly different in Iexe2 and Irec. Both PLFn and R

are very similar (only PLFn is shown), with significantly higher

values for LCC group during Irest and Iexe1. F̄r values are sig-

nificantly higher in the LCC groups during Iexe2 and Irec, but

they do not differ during Irest and Iexe1. Figure 2 shows the

AUCs for each parameter in each interval.
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Fig. 2: AUCs for each parameter in the different intervals.

IV. DISCUSSION

Parameter d̄HRM shows values significantly higher in the

LLC group than in the CAD group, even in the resting phase.

This is probably due to the fact that in the latter group, 80% of

the patients took beta blocker medication. Moreover, patients

in CAD group were likely affected by diminished physical

capacity due to myocardial ischemia. With shorter exercise

sessions (5.8 min vs 7.4 min), both d̄HRM and F̄r are expected

to be lower in the CAD group. Similar conclusions can be

extracted with the AUC values during Iexe2.

By correcting HRV by the mean HR, we try to minimize

the effect of the beta blocker medication. The fact that there is

a change of trend in PHF during exercies supports our hypoth-

esis that it is reflecting differential changes in ANS response

to exercise in LCC and CAD patients rather than the effect of

medication.

When analyzing HRV during exercise, there is a need

to redefine HF band since respiratory rate usually increases

above 0.4 Hz. In this work, we analyze two different bands:

extended up to half the mean HR and centered at F̄r. The dif-

ferences between PHF and PHFe are more evident near the peak

of exercise. By extending the frequency band to measure the

HF component, there is a risk to measure other undesirable

spectral components which can mislead the measures. Previ-

ous works [10] have identified in HRV spectrum a component

which is synchronous to the stride or pedalling frequency.

This component increases with the intensity of the exercise

and can reach up to 30% of the total power. This may explain

that in Iexe2, PHFe values greatly increase and become similar

in both groups, since the origin of this component is purely

mechanic.

Parameters PLFn and R presented very similar trends and

AUCs values. While they were not able to separate LLC and
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Table 2: Median ± median absolute deviation (MAD) values and results for the statistical analysis between LLC and CAD groups. * indicates significant
differences (p<0.001).

Irest Iexe1 Iexe2 Irec

d̄HRM (Hz)
LLC 1.35 ± 0.17 1.65 ± 0.19 2.72 ± 0.16 2.16 ± 0.21

CAD 1.10 ± 0.12 * 1.35 ± 0.11 * 1.94 ± 0.25 * 1.48 ± 0.18 *

PLFn (n.u.)
LLC 0.81 ± 0.08 0.79 ± 0.12 0.17 ± 0.12 0.82 ± 0.08

CAD 0.70 ± 0.13 * 0.69 ± 0.16 * 0.23 ± 0.14 0.77 ± 0.12

PHF (a.u., x10−5)
LLC 30.4 ± 19.5 6.9 ± 5.03 1.23 ± 8.9 2.57 ± 1.8

CAD 11.7 ± 7.6 * 3.6 ± 2.4 * 2.23 ± 1.3 * 7.9 ± 5.6 *

PHFe (a.u., x10−5)
LLC 38.3 ± 23.2 15.4 ± 10.4 6.4 ± 3.6 9.5 ± 5.8

CAD 14.3 ± 9.3 * 8.4 ± 4.6 * 7.4 ± 4.6 20.3 ± 12.5 *

F̄r (Hz)
LLC 0.20 ± 0.04 0.28 ± 0.04 0.53 ± 0.06 0.42 ± 0.05

CAD 0.20 ± 0.05 0.27 ± 0.03 0.46 ± 0.06 * 0.38 ± 0.04 *

CAD groups in some of the intervals, PHF when measured

guided by respiratory rate was significantly different in all

intervals. Looking at the AUCs, PHF values are higher, with

an AUC above 0.7 at rest and recovery. Note that differences

in age between the groups may have influenced the results.

Some studies also claim that parameters like myocardial in-

farction or diabetes could influence to the decreased HRV in

the CAD group [11, 12]. We repeated the analysis removing

the 57 patients with MI and 46 diabetic patients, but no sig-

nificant differences were found with respect to using all pa-

tients. However, they are very few patients, only representing

14% and 11% of the whole database, respectively.

V. CONCLUSION

The CAD diagnosis capability of some HRV parameters

has been studied. Respiratory rate has been estimated from

the ECG and it has been included in the analysis to correctly

measure the HF component. Parameters have been corrected

to remove the effect of changes in mean HR in HRV. Due to

the effect of medications and differences in exercise duration

in this database, mean HR cannot be reliably used to diagnose

CAD. HF power, when guided by respiration, achieves the

highest AUC, above 0.7 both in rest and in recovery.
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