
  

 

Abstract— Mobile phones offer the possibility to monitor and 

track health parameters. Our aim was to test the feasibility and 

accuracy of measuring beat-to-beat heart rate using 

smartphone accelerometers by recording the vibrations 

generated by the heart during its function and transmitted to 

the chest wall, i.e. the so-called seismocardiographic signal 

(SCG). Methods: 9 healthy male volunteers were studied in 

supine (SUP) and in standing (ST) posture. A smartphone 

(iPhone6, Apple) was positioned on the thorax (POS1) to 

acquire SCG signal. While supine, a second smartphone was 

positioned on the navel (POS2). The SCG signal was recorded 

for 3 minutes during spontaneous respiration, synchronous 

with 3-leads ECG. Using a fully automated algorithm based on 

amplitude thresholding after rectification, the characteristic 

peak of the SCG signal (IVC) was detected and used to 

compute beat-to-beat heart duration, to be compared with the 

corresponding RR intervals extracted from the ECG. Results: 

A 100% feasibility of the approach resulted for POS1 in SUP, 

while 89% in POS2, and 78% for POS1 in ST. In supine, for 

each smartphones’ position, the automated algorithm correctly 

identified the cardiac beats with >98% accuracy. Linear 

correlation (r²) with RR was very high (>0.98) in each posture 

and position, with no bias and narrow limits of agreement. 

Conclusions: The obtained results proved the feasibility of the 

proposed approach and the robustness of the applied algorithm 

in measuring the beat-to-beat heart rate from smartphone-

derived SCG, with high accuracy compared to conventional 

ECG-derived measure.  

 

I. INTRODUCTION 

Mobile devices offer the possibility to monitor and track 
health parameters, thanks to externally-connected devices or 
to embedded sensors technology. Thanks to powerful 
processors, extended memory, touch screen, built-in wireless 
connectivity, geolocalisation (i.e. location, accelerometer, 
and compass) and a variety of other sensors, mobile devices 
are continuously improving their performances and 
capabilities. As a result, a variety of mobile applications 
(apps) capable to measure parameters potentially related to 
healthcare through embedded sensors, interconnected devices 
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or external peripherals, is currently present on App stores for 
multiple platforms (iOS, Android, Windows) and 
continuously evolving [1]. 

In particular, technological improvements and 
miniaturization in the embedded accelerometric sensors 
(micro–electro mechanical system technology) allow 
nowadays obtaining information about cardiac activity using 
a mechanical signal. In particular, the vibrations generated by 
the heart and transmitted to the chest wall can be recorded 
through the mobile device accelerometers, representing the 
so-called seismocardiographic signal (SCG), a measure that 
has been recently reconsidered as a useful non-invasive 
technique to characterize cardiac performance [2].  

Our aim was to test the feasibility and accuracy of 
measuring beat-to-beat interval duration using mobile device 
accelerometers by recording the SCG with the subject in 
different postures (supine and standing). In addition, while 
the subject was supine, the optimal position of the mobile 
device for optimizing signal-to-noise ratio was studied by 
comparing the results obtained simultaneously from two 
different locations on the torso. 

II. METHODS 

A. Population and Experimental Set-Up 

Nine healthy right-handed male volunteers (age 25±2, 
BMI 23±3 kg/m

2
) were studied while in two different 

postures: supine and standing. 
In each posture, several signals were acquired 

simultaneously: a) a three-lead ECG (sampling frequency, fs 
= 2048 Hz); b) the 3-orthogonal axis SCG accelerometric 
signal using the smartphone mobile device (iPhone6, Apple, 
fs = 100 Hz, accelerometer sensitivity of 0.001 g) with the 
app ‘SensorLog’; c) a 3-component force signal (fs = 960 Hz) 
by a dynamometric platform based on piezoelectric load cells 
(Type 9286B, Kistler®). 

This last signal represents the beat-to-beat time-variant 
reaction force of the center of mass of the subject on the 
platform, due to blood displacement inside the body (i.e., 
ballistocardiographic signal, BCG).  

The ECG and BCG were synchronized by using a function 

generator that triggered simultaneously both systems. The 

BCG and SCG were triggered at start and end of acquisition 

by a medio-lateral impulsive force stimulus applied to the 

subject’ shoulder, in order to introduce a spike motion 

artifact revealed by both the smartphone’s accelerometers 

and the platform system (Figure 1).  

In supine, where the subject was lying shirtless on a rigid 

support over the dynamometric platform, the acquisition 

protocol included three minutes at rest during spontaneous 

breathing with one smartphone placed on the thorax in 

correspondence of the midclavicular line and fourth 
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intercostal space (POS1), and a second smartphone placed 

on the belly above the navel (POS2). 

In standing, where the subject was standing barefoot on a 

rigid support over the dynamometric platform, the 

acquisition protocol included three minutes at rest during 

spontaneous breathing with the smartphone positioned at 

POS1and kept in place by the subject using the right hand.  

In both POS1 and POS2, the phone was aligned with the 

midclavicular line, with its top towards the head (Figure 2). 

In this way, the three X, Y, Z orthogonal components of the 

acquired SCG signal corresponded to left-to-right (L-R), 

head-to-foot (H-F) and antero-posterior (A-P), respectively. 
The subject was asked to stay quiet, without voluntary 

movements, in order to ensure that recorded accelerations 
and forces were mainly due to mass motion inside the body. 
The experimental procedures involving volunteers described 
in this paper were in agreement with the principles outlined 
in the Helsinki Declaration of 1975, as revised in 2000. 

B. Pre-processing 

The ECG signal was processed using a wavelet-based 
ECG delineator [3] to derive the R peak positions and the 
beat-to-beat gold standard RR duration series. 

The SCG signal was exported in a comma-separated-
values file (.csv) and analyzed off-line using Matlab software 
(The Mathworks, Natick, USA).  

As a first step, the ECG and BCG were synchronized 
taking into account the different sampling frequencies. Then, 
the M-L component of the SCG, where only the vibrations 
introduced by the impulsive force were mainly present, was 
used to synchronize the SCG with the BCG. As a result, SCG 
and ECG resulted synchronized through the BCG. As input 
for further processing, the A-P component was selected for 
POS1, while the H-F component was selected for POS2. 

Due to wandering of its baseline with different influence 
on its components, the SCG signal was band-pass filtered 
(Butterworth) to remove breath motion-related artifacts: for 
the A-P component, a band of 5-25 Hz was used, while for 
the H-F a band of 1-25 Hz was applied. Periodic series of 
positive and negative deflections were clearly visible on the 
A-P and H-F components.  

In Figure 3, an example of the resulting ECG, filtered 
SCG A-P (POS1) and H-F (POS2) components, and H-F 
component of the BCG in one representative subject in 
supine position is shown. It is possible to observe that the 
morphology of SCG A-P and H-F components is different, 
where the SCG H-F resembles the BCG signal.  

For these reasons, we decided to adopt the BCG 
nomenclature (I, J, K systolic waves) for the H-F component 
in POS2 [4], while to keep the SCG nomenclature (mitral 
valve closure MC, isovolumetric contraction IVC, aortic 
valve opening AO, rapid ejection RE) for the A-P in POS1 
[5].  

C. Fiducial point detection 

A fully automated algorithm for fiducial point detection 
was applied to the A-P and H-F SCG selected components, 
based on an evolution of the algorithm proposed in [6].  

The method is summarized as follows and illustrated on 
Fig. 4: 1) full-wave rectification was applied, thus obtaining 
the entire signal with the same polarity; all peaks were 
identified on the rectified signal (Fig.4.a); 2) a threshold T 
was defined, as the half of the mean of all peaks amplitude, 
and only peaks whose amplitude was greater than T were 
retained; 3) smaller peaks in the ±50 msec range of a large 
local peak were excluded  (Fig.4.b); 4) the temporal location 
of the resulting peak was reported on the original signal 
(Fig.4.c).  

As a result, the detected points on the A-P (POS1) 
represented the absolute minimum corresponding to the 
isovolumetric contraction (IVC), while on the H-F (POS2) 
the absolute maximum was searched around this location, 
thus resulting in the detection of the peak wave (J) 
corresponding to the end of the rapid ejection phase.  

From all the detected peaks, an average template was 
computed considering a window spanning 50 samples before 
and after the peak. 

Then, in order to exclude any possible misdetection point, 
the cross-correlation between the template and a portion of 
the SCG signal defined as a window centered at each 
detected peak, was calculated: for a correct detection, the 
maximum correlation value was expected to be at zero-lag. 
Peak detections in which the lag of the maximum correlation 
was more than 100 msec were considered as false positive 
and automatically excluded from the further step. Finally, a 

 
Fig. 1. Schematization of the acquisition settings in standing position: 
ECG and BCG (from the force platform) are synchronized by a SYNC 

signal, while BCG and SCG (from the mobile phone) are synchronized 

by an impulsive force F applied laterally to the subject shoulder. 

 
Fig. 2. Schematization of the two positions and orientation of the mobile 
devices used during acquisition: in supine, two smartphones were 

simultaneously placed in POS1 and POS2; in standing, the smartphone 

was kept by the subject in POS1. 
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single beat duration was identified as the peak-to-peak 
distance between two consecutive peaks, resulting in the 
IVC-IVC and J-J beat-to-beat duration time series.  

D. Validation with the gold standard and statistical analysis 

In order to test if the IVC-IVC or J-J series could 

represent a valid surrogate for electrodes-free heart beat 

duration extraction, linear correlation and Bland-Altman 

analysis were applied compared to the RR series extracted 

from the ECG, separately for supine and standing. 

In order to compute the accuracy of the peak detection 

using the proposed algorithm, all the processed SCG signals 

with superimposed the detected points were visually 

inspected together with the corresponding ECG, searching 

for missing or misdetections, separately for supine and 

standing.  

One-way Anova for correlated samples (p<0.05) was 

applied to test the potential dependence of the accuracy of 

the estimate of the heart duration from the smartphone 

location, by comparing the RR, and the series extracted from 

POS1 and POS2 while in supine position. 

III. RESULTS 

Of the originally acquired 9 subjects, all the signals 
obtained in supine position at POS1 were retained for further 
processing (100% feasibility). Conversely, at POS2 one 
signal was excluded for bad quality (89% feasibility). In 
standing, two signals needed to be discarded for the same 
reason (78% feasibility). 

In supine, for POS1 and POS2 a total of 1874/1897 
(98.6% accuracy, 99.9% sensitivity) and 1683/1699 (99% 
accuracy, 99.9% sensitivity) peaks, respectively, were 
identified by the automated algorithm, one for each heartbeat 
in the RR, where peak detection mislocalizations were 
counted as false positive and missed beats as false negative. 
This resulted in a strong correlation with RR (r²>0.99) for 
both IVC-IVC in POS1 and J-J in POS2, not significant 
biases and narrow limits of agreement (±2SD: POS1 ±20 
msec, POS2 ±30 msec). One-way Anova showed no 
significant difference between results in the two locations. 

In standing, for POS1 a total of 1670/1757 IVC beats 
(94.6% accuracy, 99% sensitivity) were correctly identified, 
one for each heartbeat. Linear correlation of IVC-IVC with 
RR was still high (r²=0.989), with not significant bias and 
slightly larger limits of agreement (±2SD: ±38 msec) than in 
supine. Figure 5 shows the correlation and Bland Altman 
plots relevant to both supine and standing postures.  

IV. DISCUSSION 

We tested the feasibility and the accuracy of measuring 
beat-to-beat heart cycle duration using mobile device 
accelerometers by recording the SCG with the subject in 
different postures (supine and standing).  

Obtained results showed the feasibility of the proposed 
approach, in particular when the subject was supine. 
Additionally, two possible locations for the smartphone on 
the torso were tested while supine: the cardiac apex and the 
navel. The position in correspondence to the cardiac apex 
(POS1) while supine showed a 100% of feasibility, together 
with high correlation and slightly narrower limits of 
agreement in respect to POS2 and POS1 in standing. In fact, 
the applied algorithm to detect peak fiducial points on the 
SCG and compute the beat-to-beat intervals revealed high 
accuracy when compared to conventional ECG-derived RR 
series in all tested conditions, with narrow limits of 
agreement. In particular, optimal results were obtained while 
in supine with the device in POS1, with limits of agreement 
corresponding to ±4 bpm for the fastest heart rate analyzed 
(106 bpm) and to ±0.6 bpm for the lowest one (42 bpm). 

Potential clinical applications of this technique could 
include facilitating patient engagement in the daily measure 
of his/her resting heart rate (RHR), to be directly collected 
through the use of the smartphone and automatically stored 
into personally controlled health record. In fact, RHR is one 
of the simplest cardiovascular parameters. It predicts 
longevity and current evidence suggests that it is also an 
important marker in cardiovascular diseases, including heart 
failure [7]. Moreover, the prognostic value of repeated RHR 
measurements has been strongly related to cardiovascular 
outcomes more than a single baseline RHR [8].  

 
Fig. 3. Example of the ECG, simultaneous filtered SCG signals, 
obtained from POS1 (A-P) and POS2 (H-F), and BCG (H-F), with the 

relevant adopted nomenclature.  

 
Fig. 4. Example of the steps involved in the point detection procedure 
applied to the A-P component of the SCG signal obtained in POS1 in 

supine position in a representative subject (see text for details).  
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Some limitations of this study include the fact that only a 
limited number of male subjects of young age were tested. 
Additional research will be needed to confirm if the position 
of choice of the smartphone in correspondence of the cardiac 
apex is still valid for female subjects, where different 
anatomical features could prevent or introduce complications 
in the recordings, thus affecting the quality of the signal. 
Also, additional testing is required to evaluate feasibility of 
the approach in an older group of subjects, where other 
limitations (tremors, inability to lay on the back, etc.) could 
be present. 

Another potential limitation could be related to the fact 
that all subjects were acquired in resting conditions. 
However, the range of explored heart rate (42-106 bpm) was 
quite wide, thus representing an acceptable test-bed for the 
evaluation of the performance of the fiducial point detection 
algorithm. 

As a conclusion, our preliminary findings put the basis for 
easy, fast and accurate multiple self-evaluation of RHR using 
smartphone accelerometers, with potential benefits in both 
patient monitoring and cardiac disease prevention. 
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Fig. 5. Linear correlation and Bland-Altman between the gold standard RR measures from the ECG and the IVC-IVC or J-J measures from the SCG 

signal, in supine posture for POS1 and POS2, and in standing for POS1. 
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