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Abstract— A novel technique to derive respiratory rate from
pulse photoplethysmographic (PPG) signals is presented. It
exploits some morphological features of the PPG pulse that are
known to be modulated by respiration: amplitude, slope transit
time, and width of the main wave, and time to the first reflected
wave. A pulse decomposition analysis technique is proposed to
measure these features. This technique allows to decompose the
PPG pulse into its main wave and its subsequent reflected waves,
improving the robustness against noise and morphological
changes that usually occur in long-term recordings. Proposed
methods were evaluated with a data base containing PPG
and plethysmography-based respiratory signals simultaneously
recorded during a paced-breathing experiment. Results suggest
that normal ranges of spontaneous respiratory rate (0.1-0.5 Hz)
can be accurately estimated (median and interquartile range of
relative error less than 5%) from PPG signals by using the
studied features.

I. INTRODUCTION

Respiratory rate is a sensitive clinical parameter in a
multitude of pulmonary diseases [1], e.g., it remains the first
and often the most sensitive marker for acute respiratory
dysfunction [2]. Respiratory rate is also useful for detection
of periodic breathing [3] which results in elevated mortality
in heart failure patients [4]. Furthermore, respiratory rate is
currently getting more interest in the field of sports training
monitoring [5]. Respiratory rate is usually measured by
spirometry, pneumography, or plethysmography techniques,
requiring cumbersome devices which may interfere with
natural breathing. The disadvantages of these devices become
more relevant in some applications such as sleep studies
and stress test. Thus, some alternatives have been proposed
in the literature. Some of them are based on the pulse
photoplethysmographic (PPG) signal [6].

PPG signal is usually obtained from a fingertip by a
comfortable and economical sensor composed of a few opto-
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electric components, making it very interesting for ambula-
tory scenarios. Vital signs that can be obtained from the PPG
signals include arterial blood oxygen saturation, pulse rate,
and respiratory rate. However, most of the methods for deriv-
ing respiratory rate from PPG signal rely on morphological
features which are very affected by noise and morphological
changes that usually occur in long-time recordings.

Pulse decomposition analysis (PDA) aims to improve the
robustness of different morphological measurements of the
PPG pulse. It consists of modeling the PPG pulse as a
superposition of different waves under the hypothesis of that
it is formed by a main wave superposed with several reflected
waves. Different models have been used in the literature,
including a superposition of up to 5 Gaussians [7], and also
other functions such as LogNormal [8] and Rayleight [9].

In this work, a modification of the PDA technique pre-
sented in [10] which assumes a model based on a super-
position of Gaussian waves is used. The most particular
characteristic of this PDA technique is that each wave is fitted
separately, trying to impose physiology-related restrictions.
Different morphological features of the PPG pulses which
are expected to be modulated by respiration are measured
from the parameters of the model, and derived respiration
(DR) signals are obtained from them. Then, respiratory
rate is estimated from these DR signals and compared to
the respiratory rate measured by a plethysmography-based
reference respiratory signal.

II. METHODS

A. Signal acquisition and preprocessing

Plethysmography-based respiration and transmission-
based finger PPG signals were recorded by Poly4 and Poly10
(Medicom MTD, Russia) using a sampling rate of 250 Hz,
from 17 healthy volunteers (12 men) who underwent to
a breathing experiment. Subjects were visually guided to
breathe at different constant rates: 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6 Hz. Each one of the rates was requested during 2 minutes.
For further analysis, data were split into segments of 60 s
that were shifted every 10 s. The experimental procedures
involving human subjects described in this paper were carried
out following the Helsinki Declaration of 1975, as revised
in 2000.

A low-pass filter with a cut-off frequency of 35 Hz was
applied to the PPG signals. Subsequently, the apex (nAi

)
and basal (nBi ) points of the ith PPG pulse (xPPGi

(n)) were
detected by an algorithm based on a low-pass-derivative filter
and a time-varying threshold described in [11].
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B. Pulse decomposition analysis

In order to apply a PDA technique, the beginning and end
of the PPG pulses have to be determined. In this work, the ith
PPG pulse was considered to start at nBi and to end at nBi+1

.
The baseline was estimated by cubic-splines interpolation of
the PPG values at nBi and then, this estimated baseline was
subtracted from the PPG signal. In this way, PPG pulses have
null initial and final values after baseline removal.

The PDA technique presented in this work is based on
[10]. Most of the PDA techniques try to fit a model based
on a superposition of waves at once, sometimes leading to
a physiologically unexpected decomposition such as a too
small main wave. In difference, in this work, the fitting is
performed in one step per modeled wave trying to impose
restrictions related to physiology. Considering the first ups-
lope of the PPG pulse to be mainly related to the upslope of
the main wave, the first relative maximum n∗

Ai
was detected.

Thus, the first Gaussian of the model is fitted using only this
PPG pulse first upslope. In order to do this fitting, a wave
was generated by the first PPG pulse upslope followed by
the same pulse upslope inverted in time:

y1,i(n) = x1,i(n) + x1,i(−n+ 2n∗
Ai
+ 1), (1)

where x1,i(n) is the first upslope of the ith PPG pulse, i.e.,
the PPG signal in the interval

[

nBi , n
∗
Ai

]

. Then, y1,i(n) is
normalized to the unit in amplitude and to 1000 samples in
time. This normalized version is denoted yr

1,i(n), indicating
that it is re-scaled. Subsequently, a Gaussian is fitted to it:

ŷr
1,i(n) = Ar

1,ie

−(n−Br
1,i)

2

Cr
1,i

2

, (2)

where Ar
1,i, Br

1,i, and Cr
1,i are the amplitude, mean, and

standard deviation of the Gaussian, respectively.
Then, a version of ŷr

1,i(n) in the original amplitude and
time scales was obtained and denoted ŷ1,i(n). This version
was obtained by correcting the coefficients as:

A1,i = Ar
1,i max {y1,i(n)} (3)

B1,i = Br
1,i

N1,i

1000
(4)

C1,i = Cr
1,i

N1,i

1000
, (5)

where N1,i is the number of samples of y1,i(n).
Subsequently, a residual s(n) was obtained as:

s(n) = xPPGi
(n)− ŷ1,i(n), (6)

where xPPGi
(n) denotes the ith PPG pulse.

The first reflected wave was obtained from s(n). Similarly
to the first step, the upslope of this wave is used to fit the
rising part of a Gaussian, following an analogous procedure
including the concatenation with the time-inverted upslope
(similar to (1)), the amplitude and time normalization, the
Gaussian fitting (similar to (2)), and the coefficient correction
(similar to (3), (4), and (5)). In this case, the upslope is
considered to end at the absolute maximum of s(n), and
to begin at its previous zero crossing. An illustration of the

steps of this PDA technique can be observed in Fig. 1, and
the same PPG pulse with its modeled main and first reflected
waves can be observed in Fig. 2.
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Fig. 1. Steps of the PDA technique. Upslopes which are used to fit the
Gaussians are drawn with gross line.
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Fig. 2. PPG pulse used as example in Fig. 1 with its modeled main and
first reflected waves

C. Derived respiration signals

Four derived respiration (DR) signals were obtained from
the parameters of the modeling:

duA1(n) =
∑

i

A1,iδ (n− nBi) (7)

duB1(n) =
∑

i

B1,iδ (n− nBi) (8)

duC1(n) =
∑

i

C1,iδ (n− nBi) (9)

duT12(n) =
∑

i

(B2,i −B1,i) δ (n− nBi) , (10)

where superscript “u” denotes that the signals are unevenly
sampled, as PPG pulses occur non-uniformly in time. The
four DR signals are based on known PPG respiration-related
modulations: duA1(n) exploits the amplitude modulation [12];
duB1(n) exploits the STT modulation [13]; duC1(n) exploits the
width modulation [12]; and duT12(n) is related to the pulse
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transit time [13], which is well-known to be modulated
by respiration [14]. Similarly to [12], a median-absolute-
deviation outlier-rejection rule was applied, and a 4-Hz-
evenly-sampled version of each DR signal was obtained
by cubic spline interpolation. The evenly-sampled versions
of DR signals were denoted without the “u” superscript,
e.g., dA1(n) is the outlier-rejected evenly sampled version
of duA1(n). Figure 3 shows an example of DR signals.
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Fig. 3. Example of DR signals: a) dA1(n), b) dB1(n), c) dC1(n), and d)
dT12(n); and e) the plethysmography respiratory signal, denoted as xR(n).

Note that the four DR signals are obtained from one
sample per pulse, so the pulse rate (heart rate) is their
intrinsic sampling rate. This means that, similarly to all
methods exploiting PPG pulse features, DR signals will
not be able to follow a respiratory rate higher than half
the pulse rate because of the Nyquist-Shannon sampling
theorem. Thus, segments where mean pulse rate is lower
than twice the requested respiratory rate were discarded for
further analysis. According to this criterion, the percentage
of discarded segments was 19.72% for requested respiratory
rate of 0.5 Hz, and 49.28% for respiratory rate of 0.6 Hz.
No segment was discarded for lower rates.

D. Respiratory rate estimation

1) From DR signals: A respiratory rate estimate was
obtained for each segment from each DR signal similarly to
[15]. First, the power spectral density (PSD) was estimated
by a modified periodogram using a Hamming window. Then,
the respiratory rate was estimated as the absolute maximum
of the PSD in the respiratory band, which in this work was
considered from 0.075 Hz to 1 Hz.

2) From combination of DR signals: Different DR sig-
nals were combined for offering a more robust respiratory
rate estimation using the algorithm described in [15]. This
algorithm is based on a peakness-based PSD average, which
allow to take part in the average only to those PSD that have
a more peaky shape (more clearly indicating an oscillation
in the frequency of the maximum in the PSD).

3) From respiratory signal: The plethysmography-based
respiration signal was resampled to 4 Hz and the respiratory
rate was estimated from it by the same procedure followed
with the DR signals. This respiratory rate was taken as
reference in this work.

E. Performance measurements

Relative error of respiratory rate estimations from each DR
signal with respect to the respiratory rate estimated from the
reference respiratory signal (eR) was obtained.

III. RESULTS

Table I shows median and interquartile range (IQR) of
obtained eR for each method and respiratory rate. In addition,
the percentage of segments where eR was lower than 5%
(ReR≤5) is also shown. According to the plethysmography-
based respiration signal, subjects breathed at the requested
rate with a relative error of 0.00/0.65% (median/IQR).

TABLE I

MEDIAN AND IQR OF eR , AND R
eR≤5 , FOR EACH RESPIRATORY RATE.

COLUMN “COMB” STANDS FOR THE COMBINED ESTIMATION.

dA1(n) dB1(n) dT12(n) dC1(n) Comb
0.

1
H

z med(eR) (%) 0.00 0.00 0.00 0.00 0.00
iqr(eR) (%) 2.93 0.99 2.93 0.99 1.96
R

eR≤5 (%) 89.53 93.72 94.24 91.62 98.95

0.
2

H
z med(eR) (%) 0.00 0.00 0.00 0.00 0.00

iqr(eR) (%) 0.98 0.98 1.47 0.98 0.49
R

eR≤5 (%) 90.00 96.19 80.00 98.57 99.52

0.
3

H
z med(eR) (%) 0.00 0.00 0.00 0.00 0.00

iqr(eR) (%) 0.65 0.65 1.62 0.65 0.65
R

eR≤5 (%) 90.95 92.38 79.05 92.38 97.62

0.
4

H
z med(eR) (%) 0.00 0.00 -0.24 0.00 0.00

iqr(eR) (%) 0.49 0.49 3.84 0.49 0.49
R

eR≤5 (%) 88.15 91.94 76.78 94.31 95.73

0.
5

H
z med(eR) (%) 0.00 -0.19 -0.39 0.00 -0.19

iqr(eR) (%) 0.78 0.93 13.65 0.59 0.59
R

eR≤5 (%) 80.70 81.29 71.35 87.72 80.12

0.
6

H
z med(eR) (%) -0.41 -0.16 -0.49 -0.16 -0.16

iqr(eR) (%) 69.44 12.32 63.47 23.50 74.13
R

eR≤5 (%) 57.69 75.00 59.62 73.08 69.23

IV. DISCUSSION

This paper presents a novel technique to derive respiratory
rate from PPG signals, using morphological features of the
PPG pulse that are known to be mudulated by respiration.
A method based on the pulse width resulted particularly
interesting in [12], outperforming the other studied methods.
However, it is very affected by noise and morphological
changes that can be produced by many causes, e.g., a
vasoconstriction event making the reflected waves closer to
each other and to the main wave. PDA may help to overcome
this limitation. As a first step, a PDA technique is used in this
work to study how accurate it estimates the respiratory rate
from healthy subjects in non-noisy and stationary conditions.
However, the performance of the method should be further
evaluated during spontaneous breathing.

A modification of the PDA technique described in [10]
has been presented. This PDA technique allows to robustly
measure different morphological features of the PPG pulse.
In the presented technique, the waves are modeled using
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only their upslope considering that this upslope is much
less affected by the other waves than the the rest of the
wave. This physiology-related restriction remains the most
relevant particularity of the presented PDA technique with
respect to the other PDA techniques in literature, which
usually fit a model based on a superposition of waves at
once [7], [8], [9]. This restriction was imposed also in [10]
for the main wave while the rest of the PPG pulse (s(n)) was
considered to be related only to one reflected wave. In this
work, the rest of the PPG pulse is considered to be formed
by more than one reflected waves and so, the first reflected
wave was also modeled using only its upslope. Although
only 2 waves have been considered, the algorithm may be
recursively applied obtaining as much reflected waves as
desired if some parameters of subsequent reflected waves
are interesting for the application.

The pulse amplitude (A1), SST (B1), and width (C1) of
the main wave, as well as the time to the first reflected wave
(T12) have been measured. DR signals have been obtained
from these parameters and then, respiratory rate have been
estimated from them. These estimates were compared with
the respiratory rate obtained from a respiratory sensor based
on plethysmography, which is a widely accepted technique.
Table I shows that, in terms of median/IQR of eR, respiratory
rates from 0.1 to 0.4 Hz were estimated by all the studied
methods obtaining medians and IQRs of eR lower than 4%.
This was still observed for a respiratory rate of 0.5 Hz with
the exception of dT12(n). This suggest that these methods
are accurately estimating respiratory rates up to 0.4 or 0.5
Hz, depending on the method, while they are performing
less accurate at respiratory rate of 0.6 Hz. Similar behavior
was observed in [15]. This may be because respiration-
induced modulation probably have a less strong effect at
higher respiratory rates.

Different methods obtained the same median/IQR for
many cases, e.g., dA1(n), dB1(n), and dC1(n) for 0.3 and 0.4
Hz (0.00/0.65% and 0.00/0.49%, respectively). Therefore,
it results difficult to compare them to each other in these
terms. Because of this, an additional performance measure
was computed: ReR≤5. DR signal which obtained the higher
ReR≤5 in more cases was dC1(n) (4 cases: 0.2, 0.3, 0.4, and
0.5 Hz). Furthermore, dC1(n) never obtained an ReR≤5 3%
lower than the highest ReR≤5 in any case. This suggest that,
in terms of accuracy, dC1(n) should be chosen if using only
one DR signal. Similar observation was made in [12], where
the DR signal based on pulse width outperformed the other
studied DR signals based on pulse amplitude and rate.

An additional respiratory rate estimation was obtained by
combining the different DR signals by using an algorithm
previously published [15]. In terms of ReR≤5, this com-
bination outperformed all the estimates from DR signals
for respiratory rates from 0.1 to 0.4 Hz. Furthermore, the
combination never obtained the lowest ReR≤5 in any case.
This suggest that respiratory information in the different DR
signals is in part complementary. However, respiratory rate
from combination did not obtain the higher ReR≤5, indicating
that combination may offer less accurate estimates than some

of the used DR signals individually.

V. CONCLUSION

Results suggest that normal ranges of spontaneous respi-
ratory rate (0.1-0.5 Hz) can be estimated from PPG pulse
morphological features measured by the proposed PDA
technique. These features are more robust against noise
and morphological changes that usually occur in long-time
recordings, than similar features measured directly over the
raw PPG pulse. Further studies must be elaborated in order
to compare the performance of features measured using and
not using PDA during the above mentioned conditions.
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