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A Novel Method to Capture the Onset of Dynamic Electrocardiographic

Ischemic Changes and its Implications to Arrhythmia Susceptibility

Omid Sayadi, PhD; Dheeraj Puppala, MD; Nosheen Ishaque, MD; Rajiv Doddamani, MD; Faisal M. Merchant, MD; Conor Barrett, MD;
Jagmeet P. Singh, MD, PhD; E. Kevin Heist, MD, PhD; Theofanie Mela, MD; Juan Pablo Martinez, PhD; Pablo Laguna, PhD;
Antonis A. Armoundas, PhD

Background—This study investigates the hypothesis that morphologic analysis of intracardiac electrograms provides a sensitive
approach to detect acute myocardial infarction or myocardial infarction-induced arrhythmia susceptibility. Large proportions of
irreversible myocardial injury and fatal ventricular tachyarrhythmias occur in the first hour after coronary occlusion; therefore, early
detection of acute myocardial infarction may improve clinical outcomes.

Methods and Results—We developed a method that uses the wavelet transform to delineate electrocardiographic signals, and
we have devised an index to quantify the ischemia-induced changes in these signals. We recorded body-surface and intracardiac
electrograms at baseline and following myocardial infarction in 24 swine. Statistically significant ischemia-induced changes after
the initiation of occlusion compared with baseline were detectable within 30 seconds in intracardiac left ventricle (P<0.0016)
and right ventricle—coronary sinus (P<0.0011) leads, 60 seconds in coronary sinus leads (P<0.0002), 90 seconds in right
ventricle leads (P<0.0020), and 360 seconds in body-surface electrocardiographic signals (P<0.0022). Intracardiac leads
exhibited a higher probability of detecting ischemia-induced changes than body-surface leads (P<0.0381), and the right
ventricle—coronary sinus configuration provided the highest sensitivity (96%). The 24-hour ECG recordings showed that the
ischemic index is statistically significantly increased compared with baseline in lead I, aVR, and all precordial leads (P<0.0388).
Finally, we showed that the ischemic index in intracardiac electrograms is significantly increased preceding ventricular
tachyarrhythmic events (P<0.0360).

Conclusions—We present a novel method that is capable of detecting ischemia-induced changes in intracardiac electrograms as
early as 30 seconds following myocardial infarction or as early as 12 minutes preceding tachyarrhythmic events. (/ Am Heart
Assoc. 2014;3:e001055 doi: 10.1161/JAHA.114.001055)
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yocardial ischemia (MI) may establish the substrate for
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fatal ventricular tachyarrhythmic events (VTEs) both
acutely and over the long term."? Early diagnosis and risk
stratification of patients with acute MI is essential to guide
prompt intervention and optimal clinical outcome.
Electrocardiographic ST-segment monitoring has been
used widely to detect acute ML.>* In the standard 12-lead
ECG, ST-segment deviation is the most common determinant
of ongoing ischemia®® and a strong predictor of associated
mortality.” Sensitivity in detecting acute MI, however,
remains inadequately low.®'® Whether it is due to the
variability of the ischemia-induced changes in various ECG
leads, as shown by body-surface potential mapping'' or the
inaccuracy in detecting the elevated J-points,'? body-surface
ECGs may not reveal subendocardial’® and even severe
transmural ischemia.'*
With the advent of the implantable cardioverter defibrilla-
tor, defibrillation of ventricular tachyarrhythmias has resulted
in significant improvements in survival."> Recent evidence
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also suggests that continuous monitoring of a patient’s ST-
segment changes in intracardiac electrograms may allow an
implanted device to detect acute closure of a coronary artery
that could lead to a reduction in symptom-to-door time and
thereby potentially improve clinical outcomes.'® Furthermore,
it has been shown recently that the high-risk period for
sudden death of patients who survive acute MI extends
beyond the hospitalization period, mostly due to recurrent Ml
or extension of the infarcted area.'?

The preceding data provide strong evidence that early
detection of MI, in either the ambulatory ECG or from an
implantable device, is of significant therapeutic potential in
high-risk patients. This study investigates the hypothesis that
early onset of Ml may be captured through a novel method
that is based on a robust ECG delineator that accurately
estimates the Ml-induced depolarization and repolarization
changes and that those changes are more prominent in
intracardiac leads. We probed this hypothesis in a swine
model of acute M| and developed an algorithm for body-
surface and intracardiac electrograms to quantify changes of
the depolarization phase as well as the ST segment before
and after ischemia induction.

Methods

Animal Preparation

The animal studies were approved by the institutional review
board and the subcommittee on research animal care at
Massachusetts General Hospital.

The total study population comprised 24 male Yorkshire
swine (40 to 45 kg) that were anesthetized and instrumented
in the Animal Electrophysiology Laboratory at Massachusetts
General Hospital, as described previously.'” Each animal
was intubated and placed on a mechanical ventilator, and
anesthesia was maintained with isoflurane (1.5% to 2.5%).

Standard ECG electrodes were placed on the animal’s limbs
and chest. For intracardiac recording, percutaneous vascular
access was obtained in the jugular veins and femoral arteries
and veins using standard Seldinger techniques.'® Decapolar
catheters were placed under fluoroscopic guidance in the right
atrium, right ventricle (RV), coronary sinus (CS), and left
ventricle (LV). An inferior vena cava catheter was inserted as a
reference electrode for unipolar signals. An arterial line was
used to monitor invasive blood pressure. Regional Ml was
induced by balloon occlusion of the proximal left circumflex
coronary artery, using standard percutaneous cardiac cathe-
terization techniques. Ischemia was validated and confirmed
by hand injections of contrast into the coronary, in which case
no-flow as well as electrocardiographic changes were indica-
tions of full occlusion. In 4 animals, 24-hour Holter ECG
recordings were performed before and immediately after MI.

Equipment and Data Collection

Two standard body-surface signals (leads Il and V4) and 12
intracardiac unipolar electrocardiographic signals (from the
CS, LV, and RV catheters) were recorded through a Prucka
Cardiolab (GE Healthcare) electrophysiology system and
digitized at a sampling rate of 1 kHz by a multichannel 16-
bit data acquisition card (M-Series PCI-6255; National Instru-
ments). The Prucka system provided 16 high-fidelity analog
output signals with front-end signal conditioning as well as
isolation protection of the signal-analysis system from
defibrillation. Intracardiac electrograms were band-pass fil-
tered 0.05 to 500 Hz, with 60-Hz notch filter and gain 250 V/
V, and body surface signals were band-pass filtered 0.05 to
100 Hz, with 60-Hz notch filter and gain 2500 V/V, as
described previously.'” Data analysis was performed using
custom-written software in MATLAB (MathWorks Inc).

ECG Delineation Using Established Methods

We have implemented 4 commonly used threshold-based
methods to detect the onset and offset of ECG waveforms.
Prior to application of each method, a linear baseline adjust-
ment was performed for each beat. The methods are as follows:

1. Waveform: determines the onset and offset points at times
corresponding to 5% and 95% of the maximum normalized
amplitude.19

2. Power: identifies the onset and offset points at time bins
corresponding to 5% and 95% of the cumulative sum of the
signal power.?°

3. Absolute: is similar to the second approach except the
threshold is applied to the cumulative sum of the absolute
value of the signal.'??

4. Noise: estimates the standard deviation (SD) of a prede-
fined window (the noise window) of the baseline adjusted
waveform and determines the onset and offset points at
times when the signal exceeds 3 times the SD of the signal
in the noise window.??

ECG Delineation Using the Wavelet Transform

To overcome potential limitations of the established ECG
delineation methods, we sought to develop a method that
would prove robust in determining the complex annotations of
intracardiac electrograms.

The wavelet transform (WT) offers simultaneous interpre-
tation of the signal in both time and frequency using a
frequency-dependent window that allows high localization in
time for high-frequency signal components as well as
high-frequency resolution for low-frequency patterns (multi-
resolution analysis). The WT decomposes the signal as a
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combination of a set of basis functions obtained by means of
dilation and translation of a single prototype wavelet. In this
time-resolution description of the signal, higher frequency
components are characterized by the coefficients correspond-
ing to narrower basis functions resulting from lower scale
factors and vice versa.?®

We have developed an intracardiac ECG delineation
algorithm based on a previously developed method for
body-surface ECG delineation using the WT.?* The algorithm
starts with obtaining R-wave annotations through a 2-step
process of first identifying the R wave using a QRS detector
and then refining the R-wave location using cross-correlation,
as described previously.” Then, for each beat, the dyadic WT
of the signal is estimated for the first 5 scales, wherein most
of the energy of the signal lies. A quadratic spline is used as
prototype wavelet that corresponds to a derivative of a
low-pass smoothing function. This ensures that the wavelet
coefficients are proportional to the derivative of the filtered
version of the signal with a smoothing impulse response at
each scale.?® This approach allows the identification of
significant points in the ECG signal using the information of
local maxima, minima, and zero crossings of the WT
coefficients at different scales.

Once WT coefficients are estimated, a search window
relative to the R wave and depending on the RR interval is
defined. The number and polarity of the maximum modulus of
WT within this window and across different scales reflects the
characteristic points corresponding to ECG waveforms.?* To
accommodate the delineation of intracardiac signals, that
algorithm?* was modified to start with scale 2° for P-wave and
T-wave delineation. Moreover, we devised reduced amplitude
thresholds proportional to the root-mean-square value of the
WT at the corresponding scales. To accommodate the loss of
time resolution in the growing scales, we devised a multiscale
approach for P-wave, QRS, and T-wave delineation; therefore,
if a waveform boundary is not found in a specific scale, we
repeat the above process over higher scales.

Ischemic Marker of Intracardiac and Body
Surface Electrocardiographic Data

ST-segment changes have been well established as strong
predictors of acute M3 and VTEs.?® Also, several studies
have reported changes in the depolarization phase following
acute MI, in both animals?®?’ and humans.?®%?

We devised an index that reflects Ml-induced changes of
both ventricular depolarization and repolarization on a beat-to-
beat basis. The ischemic index is estimated as the absolute
value of the ratio of ST height to the amplitude of QR, where ST
height is defined as the mean ST amplitude over all points from
QRS offset to T-wave onset that are greater (ST elevation) or
smaller (ST depression) than the isoelectric baseline.®° If the

amplitude of the signal at QRS offset has opposite polarity with
that at T-wave onset, then we choose the longer segment (in
the QRS offset to T-wave onset interval) to estimate the ST
height. Thus, the ischemic index is independent of a lead-by-
lead variability of the signal amplitude.

A 4-step procedure was applied to compute the ischemic
index. First, preliminary R-wave peaks were obtained by
applying a software-based QRS detection algorithm to a body
surface or intracardiac lead. Then, for each lead, initial QRS
detections were refined using a template-matching QRS
alignment algorithm,” and abnormal beats (ie, premature
ventricular complexes and aberrantly conducted beats) were
identified and excluded. The third step consisted of deter-
mining the ECG waveform annotations of each beat using the
WT delineator. The characteristic points and waveform
boundaries were independently determined using the WT-
based technique for the body-surface, intracardiac unipolar
leads, and intracardiac far-field bipolar leads, individually. In
all leads, the isoelectric baseline was measured as the interval
following the P wave and preceding the QRS set. Because this
interval in CS leads is not flat, the interval following the T
wave and preceding the next P wave was considered as the
isoelectric baseline in these leads. Finally, the ischemic index
was estimated for each beat using the aforementioned
definition.

Statistical Analysis

Our results are presented as mean+SE for continuous
variables. The duration of the recording and mean heart rate
in each data set were compared before and after coronary
artery occlusion using the Wilcoxon matched-pairs signed-
rank test. Comparison of the percentage of premature
ventricular complexes before and after coronary artery
occlusion was performed using a generalized linear model
with repeated measurements and fitting this model using a
generalized estimating equation method. Bland-Altman agree-
ment analysis was performed for all ECG leads together, and
the mean difference and the limits of agreement were used to
evaluate degree of agreement between the automated point
annotation and the manual reference. We used a paired
nonparametric Wilcoxon signed-rank test to evaluate the
changes in the ischemic index from baseline to subsequent
measurements. Bonferroni correction was used to adjust the
significance level for multiple comparisons. Comparisons
between probabilities of detecting a significant change across
catheters was performed using Kruskal-Wallis analysis of
variance. Ischemic index changes from baseline to 24 hours
after Ml were analyzed using linear mixed-effects models with
random subject intercepts to account for repeated measures.
A univariate autoregressive model was used for dynamic
regression to describe time-dependent changes of ischemic
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index at baseline and after MI until sudden cardiac death.
Statistical analysis was performed using MATLAB and Stata
(StataCorp LP).

Results

Detailed description of the subjects involved in the study is
provided in the Table.

Evaluation of the ECG Delineation

Two expert reviewers provided manual annotations of Pgpget,
Poffset: ORSonsety ORSoffset: Tonset: and Toffset- The manual
annotations were used as the gold standard for evaluating
each of the delineation methods. Specifically, for each
subject, 200 baseline and 200 postocclusion beats of 2
body-surface, 3 CS, 4 LV, and 5 RV leads were given to 2
independent trained individuals. We developed a graphical
user interface to display high-resolution ECG beats and to
provide a custom-designed delineation tool that allowed the
user to annotate the waveform of the ECG. Finally, the
reference manual waveform annotations for each beat were
estimated as the average of the annotations provided by the 2
reviewers.

Figure 1 shows representative examples of body-surface
and unipolar intracardiac electrograms obtained before and
after coronary artery occlusion. For each beat, the manual
annotations (vertical lines) and the wavelet-based delineation
results (circles) are also provided.

We evaluated the accuracy of all 5 delineation methods at
baseline and after coronary artery occlusion, compared with
the manual annotations, in both body-surface and intracardiac
leads. Figure 2 shows the difference between the automatic
annotations obtained by each method and the average of the
2 sets of manual annotations for each ECG waveform. Linear

Table. Study Population Characteristics

regression (each algorithm versus manual annotation) using
all waveform annotations showed that wavelet-based delin-
eations provide the closest estimation to the manual anno-
tations both at baseline and after coronary artery occlusion.
Notably, the difference in the non—-wavelet-based methods is
more pronounced for points involving the ST segment (ie, QRS
offset and T-wave onset), most likely due to the pronounced
changes in that portion of the ECG waveform occurring during
acute MI.

To assess the degree of agreement between each of the
automated methods and the manual annotations, we used the
Bland-Altman approach to estimate the mean difference
and the SD of differences among all beat annotations
(6 annotations per beat) across all subjects. The mean
difference and the limits of agreement (defined as twice the
SD of differences) were estimated for wavelet, waveform,
power, absolute, and noise methods, respectively, at baseline
as 8.654+2.37, 50.61+10.26, 27.10+9.49, 38.50+8.38, and
48.08+9.71 ms and following coronary artery occlusion as
9.45+5.55, 46.40+12.71, 27.304+8.48, 38.47+11.31, and
43.14+£12.34 ms. The mean differences as well as the
margins of agreement for wavelet annotations are small
enough and indicative that WT most closely identifies
manually determined ECG time bins at baseline and following
balloon occlusion.

Intra- and Intersubject Variability Analysis of
Ischemic Index

Having established the WT as a robust method to accurately
assess the ECG delineation of body-surface and intracardiac
electrograms, we sought to examine the ability of this method
to capture subtle electrogram changes underlying an abnor-
mal electrophysiological substrate. Consequently, we evalu-
ated the hypothesis that the proposed ischemic index that

Study Measures Baseline Post-MI P Value
Acute MI Number of records 17 17 —
Heart rate (bpm) 109.36+12.98 110.72+16.09 0.65
PVC occurrence (%) 0.98+1.34 0.82+1.01 0.63
Pre-VTE Number of records 9 9 —
Heart rate (bpm) 111.90+15.55 106.05+8.26 0.25
PVC occurrence (%) 0.59+0.68 1.44+2.38 0.19
Holter Number of records 4 4 —
Heart rate (bpm) 112.70+7.31 151.01+£22.42 0.12
PVC occurrence (%) 0.82+1.22 1.65+0.68 0.37

Bpm indicates beats per minute; MI, myocardial infarction; PVC, premature ventricular complex; VTE, ventricular tachyarrhythmic event.
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Figure 1. Representative body-surface and intracardiac electrocardiographic beats at baseline (left
panels) and during acute myocardial ischemia (MI, right panels). The manual annotations (averaged for 2
independent reviewers) are shown by vertical lines, and the corresponding wavelet delineation results are
depicted by circles. Asterisks indicate R waves. CS indicates coronary sinus; LV, left ventricle; RV, right

ventricle.

accounts for changes in both ventricular depolarization and
repolarization would be a sensitive marker of acute ischemia,
especially for intracardiac electrograms.

To assess the intrasubject variability of the ischemic index,
we split the baseline recording in 2 parts and computed the
SD of the ischemic index for each subject and lead in the first
and second halves of the recording. We then quantified the
intrasubject variability as the difference between the 2 SDs.
A 1-sample t test was applied to the differences evaluated for
each lead across the whole set of subjects. The estimated
P values for the body-surface, CS, LV, and RV leads were 0.56,
0.96, 0.45, and 0.17, respectively, indicating that the
ischemic index has significantly low intrasubject variability
and presents high stability during a baseline recording, thus
providing a reliable reference for the evaluation of ischemia-
induced changes.

We further evaluated the intersubject variability by com-
paring the difference between the aforementioned 2 SDs with
the SD of the overall variability across all subjects. We used a
1-sample t test to compare the intrasubject variability to the
intersubject variability of the whole population for each of the
body surface and intracardiac leads. The P values for the body
surface, CS, LV, and RV leads were computed as 0.93, 0.95,
0.46, and 0.16, respectively. These results indicate that,
across all leads, there is not a statistically significant

difference of the ischemic index between intrasubject
variability and the SD of the whole baseline across subjects.
Consequently, we conclude that the intra- and intersubject
variability of the ischemic index is small, making it a reliable
index for the quantification of post-MI changes across
different subjects.

Dynamic Changes of Ischemic Index During
Myocardial Infarction

Temporal changes of the ischemic index measured at the last
minute of baseline prior to balloon inflation and following
coronary occlusion were computed for the body-surface and
unipolar intracardiac leads at different time bins, with a 30-
second resolution for the first 5 minutes after occlusion and a
1-minute resolution afterward. We also created far-field
bipolar signals obtained from leads in the RV and CS.'”
Figure 3 shows the dynamic changes of ischemic index at
baseline and during MI for body-surface, unipolar, and bipolar
intracardiac signals (n=17).

We observe that the ischemic index increases after the
onset of ischemia and that the ischemia-induced changes
are detectable on unipolar and bipolar intracardiac leads as
well as on body-surface leads; however, the timing of the
ischemia-induced changes is different across body-surface

DOI: 10.1161/JAHA.114.001055

Journal of the American Heart Association 5

Downloaded from http://jaha.ahajournals.org/ by guest on September 5, 2014

HDYVASHY TVNIDIYO


http://jaha.ahajournals.org/

Method to Capture Myocardial Ischemia Sayadi et al

Surface CS LV RV
Eidp B d=am) {5 oo
1M 1My 200 1M
g @@%Tééé @é%% o) . R . ERE
% -50 -50 -50 50
g %@ 22@ . 5 . s
£ oub é@g Bl 7 g% o g
%i BBt of Bl o Bgmm o Hgk
; 0@@5@ i 0@@@ 19 e o Tath
<l .40 -40 40 .40
7 e . i e B
EaM e P T
<
Efgﬁi%@@f%ﬁigﬁéTéﬁiQG%TQEﬂ@E%

8 ’6,;» % 6,%,/:* % %% 0:)’» %S %% g» %S

Figure 2. Comparison of methods used for body-surface and intracardiac ECG delineation. The distribution of
differences between manual annotations (averaged for 2 independent reviewers) and those obtained by the
wavelet-transform, waveform, power, absolute, and noise methods are presented for the onset and offset of P
wave, QRS complex, and T wave. Each set of differences has been shown at baseline (white boxes) and following
coronary balloon occlusion (gray boxes) for body surface and intracardiac CS, LV, and RV leads. Data are
presented as median (horizontal solid line), 25th to 75th percentiles (box) and 10th to 90th percentiles (error
bars). For each point and each lead, the wavelet annotations provide the smallest difference from the manually
identified reference points. CS indicates coronary sinus; LV, left ventricle; RV, right ventricle.
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Figure 3. Dynamic changes of ischemic index (n=17) at baseline and following myocardial infarction
(M) in body surface (A), unipolar intracardiac coronary sinus (CS) (B), left ventricle (LV) (C), right ventricle
(RV) (D), and triangular RV-CS (E) leads. For each time bin, the distribution of ischemic index is averaged
for all study subjects. The time bin width is 1 minute for baseline, 30 seconds for the first 5 minutes
following balloon occlusion, and 1 minute for 5 to 18 minutes after occlusion. Data are presented as
median (horizontal solid line), 25th to 75th percentiles (box) and 10th to 90th percentiles (error bars). The
limits of the distribution of ischemic index at baseline are shown with a gray box throughout the time
course of Ml to provide a visual means of comparing the one directional significance at each time bin. All
ischemic index distributions that are statistically greater than the baseline ischemic index distributions are

indicated by asterisks (all P<0.0022).

and intracardiac leads. Statistical comparison of the distri-
bution of ischemic index at each time bin during occlusion to
that at baseline reveals that the body-surface leads have the
largest duration to detection because the earliest significant
change is identified after 6 minutes (P<0.0022 at all
statistically significant time bins). For intracardiac leads,
the timing for the occurrence of significant changes varied
with lead type, ranging from 30 to 90 seconds after
initiation  of coronary occlusion (P<0.0002 for CS,
P<0.0016 for LV, P<0.0020 for RV, P<0.0011 for RV-CS,
at all statistically significant time bins). In particular, we
found that the triangular RV-CS lead configuration offers the
smallest duration to detection of the onset of acute ischemia
(30 seconds; P<0.0011) partly due to the broader 3-
dimensional view of the myocardium and a wider solid
angle to the heart when compared with unipolar leads from
intracardiac catheters.

In summary, these results support the hypothesis that the
ischemia-induced morphologic changes are most prominently

seen in intracardiac leads. Of note, we observed that the
ischemic index remained stably and significantly elevated
during coronary balloon occlusion.

Temporal Analysis of Ischemia Detection in
Body-Surface and Intracardiac Signals

To examine the time to ischemia detection using body-surface
and intracardiac signals and to investigate whether ischemia
detection using intracardiac leads improves the probability of
ischemia detection compared with body-surface electrograms
alone, for each time bin, we estimated the conditional
probabilities of a significant change (from baseline to
postocclusion) in the ischemic index for body surface, given
a significant change in the ischemic index measured from an
intracardiac lead (n=17).

In Figure 4A (left axis), we plot the probability that the
change in ischemic index from baseline to postocclusion
detected on a body-surface lead is significant given that the
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Figure 4. Acute ischemia detection in body-surface ECGs versus intracardiac electrograms (n=17). (A)
Probability of observing a statistically significant change in a body-surface lead given a statistically
significant change in the corresponding intracardiac lead for each of the coronary sinus (CS), left ventricle
(LV), right ventricle (RV), and triangular RV-CS intracardiac lead configurations (left axis, white box plots)
versus the probability of observing a statistically significant change in an intracardiac CS, LV, RV, or RV-CS
lead given that the change in the corresponding body surface lead is statistically significant (right axis, gray
box plots). For all intracardiac leads, the probability of observing a significant change in an intracardiac lead
given a significant change in a body-surface lead is always higher than the probability of observing a
significant change in a body-surface lead given a significant change in an intracardiac lead (P<0.0381).
Furthermore, the probability of observing a significant change in RV-CS given a significant change in a body-
surface lead is significantly higher than the probability of observing a significant change in RV (P<0.0158).
No statistical difference was found between any other 2 leads. (B) The probability of observing a significant
change in an intracardiac lead configuration given that a significant change has been observed in at least
one intracardiac lead for each of the CS, LV, RV, and triangular RV-CS lead configurations. The RV-CS
probability was found to be significantly larger than RV probability (P<0.0415). No statistical difference was
found between any other 2 leads. (C) Conditional probability (as a function of time) that the ischemic index
following MI exceeds 3 SDs of its baseline value given that a 3 SD increase has been observed in any other
lead configuration (body surface, CS, LV, RV, and RV-CS). Data are presented as median (horizontal solid
line), 25th to 75th percentiles (box), and 10th to 90th percentiles (error bars). *P<0.05.

change in ischemic index following balloon inflation is
significantly higher in an intracardiac lead from each of the
CS, LV, RV, and triangular RV-CS lead configurations (quan-
tified across all time bins). The probability (across subjects)
that the change measured from a body-surface lead is
significant is 0.81£0.27 when a CS lead shows a significant
change in the ischemic index, 0.80+0.28 when an LV lead
indicates a significant change, 0.80+0.27 when an RV lead
shows a significant change, and 0.80+0.27 when a lead from
the triangular RV-CS configuration shows a significant
increase in the ischemic index from baseline to postocclusion.

To explore the probability of ischemia detection using
intracardiac signals, in Figure 4A (right axis), we plot the
probability that the change in ischemic index from baseline to
postocclusion detected on an intracardiac lead configuration
is significant given that the change in ischemic index
measured from the body surface is significantly higher after
occlusion than at baseline for each of the CS, LV, RV, and
triangular RV-CS lead configurations (quantified across all
time bins). When the change of the ischemic index from
baseline to postocclusion in a body-surface lead is significant,
the probability that an intracardiac lead shows a significant
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change in the ischemic index is 0.9540.07 for CS, 0.90+0.17
for LV, 0.96+0.08 for RV, and 0.8840.12 for the triangular
RV-CS configuration.

Compared with the detection probabilities of body-surface
leads, we observed average improvement of 14%, 10%, 16%,
and 8% in the detection probabilities for CS, LV, RV, and RV-
CS leads, respectively. The results demonstrate that for all
intracardiac leads, the probability of observing a significant
change of the ischemic index in an intracardiac lead given a
significant change in a body surface lead is always higher than
the probability of observing a significant change in a body
surface lead given a significant change in an intracardiac lead
(P<0.0381), suggesting that intracardiac leads have higher
likelihood to detect acute ischemia. We found that the
probability of observing a significant change in RV-CS given a
significant change in a body surface lead is significantly higher
than the probability of observing a significant change in RV
(P<0.0158). No statistical difference was found between any
other 2 leads.

To examine which intracardiac-lead combination has a
higher probability of detecting ischemia-induced changes, in
Figure 4B, we plot the probability of observing a significant
change in an intracardiac lead configuration given that a
significant change has been observed in at least 1 intracar-
diac lead for each of the CS, LV, RV, and triangular RV-CS lead
configurations. We notice that the average probability that a
triangular RV-CS lead is positive is 0.96, that is, greater than
any other intracardiac lead configuration. Of note, the RV-CS
probability was significantly larger than the RV configuration
(P<0.0415). No statistical difference was found between any
other 2 leads.

Finally, to assess the time-dependent likelihood of each
lead to detect ischemia-induced changes, in Figure 4C, we
plot the conditional probability (as a function of time averaged
over subjects) of observing an increase in the ischemic index
exceeding 3 SD from each subject’s ischemic index at
baseline'® given that a shift beyond 3 SD has been observed
in any lead for each of the body-surface, CS, LV, RV, and RV-
CS lead configurations. The data are presented as sigmoidal
fit with the Boltzmann equation (y=A,+(A;—A,)/(1+exp
((x—x0)/dx)), in which A; and A, represent the minimum
and maximum probability, respectively; x, represents the time
to half maximum probability; and dx represents the slope of
the exponential function). To fit the model to the postocclu-
sion data only, we deployed a constrained nonlinear optimi-
zation subject to x,—5dx>0 to force the sigmoid rise to begin
after the start of occlusion.

Using this method, we obtained transition times of 398,
38, 25, 2, and 6 seconds and maximum probability of 0.75,
0.96, 0.83, 0.86, and 0.95 for body-surface, CS, LV, RV, and
RV-CS leads, respectively. Putting these results together, the
RV-CS lead-configuration system provides the most accurate

and rapid detection of ischemia-induced changes compared
with baseline than any other lead system.

The Ischemic Index During the 24-Hour Period
Following Myocardial Infarction

We used 24-hour Holter, 12-lead ECG signals (n=4) to
estimate the ischemic index at baseline (before MI) and
following MI. For each subject, the median ischemic index was
obtained every 1 hour during baseline and post-MI recordings.
Figure 5 shows the overall distribution of ischemic index at
baseline and during the 24 hours following MI.

Using mixed-model linear regression to assess the tempo-
ral changes of ischemic index from baseline to the 24-hour
phase after MI, we found a statistically significant increase in
lead I, aVR, and all precordial leads (P<0.0388). We observed
a marginally significant increase in aVL (P<0.0523) and aVF
(P<0.0607). No statistically significant change from baseline
to 24-hour recording after Ml was observed in other leads.

Temporal Analysis of Ischemic Index Preceding
Ventricular Tachyarrhythmic Events

To expand the prognostic value of the ischemic index beyond
short-term prediction of acute MI, we sought to assess its
utility in predicting VTEs.

We estimated the ischemic index before a VTE (n=9) during
the acute phase of ML. In Figure 6, we show the distribution of
the ischemic index in body-surface, unipolar, and bipolar
intracardiac signals up to 12 minutes before the onset of
VTEs. In body-surface leads, the ischemic index presented a
significant surge (compared with a baseline before occlusion)
2 minutes prior to the event (P<0.0464) and remained
marginally significant immediately before VTE (P<0.0927).
Compared with baseline, intracardiac ischemic index before
the onset of VTE was found to be significantly higher during
the last 2 minutes in CS (P<0.0022), the last 6 minutes in LV
(P<0.0464), the last minute in RV (P<0.0360), and the last
2 minutes in RV-CS (P<0.0055). Of note, the earliest signif-
icant surge in the ischemic index was observed 12 minutes
before the onset of VTE in RV-CS leads.

We further sought to probe the prognostic role of ischemic
index in a 12-lead ECG Holter recording of a subject that
experienced sudden cardiac death during the first 24 hours
after MI. In Figure 7, we present the dynamic changes of the
ischemic index during baseline (24-hour Holter recording
before MI induction) and the 13-hour phase after MI until
sudden cardiac death. The results obtained during the acute
phase of M| show sustained elevation of the ischemic index
that remains significantly higher than baseline for 3 hours
after MI (P<0.0001) and is significantly higher during the 2nd
to 11th hours of follow-up (P<0.0001). In addition, the
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Figure 5. The ischemic index estimated from 24-hour Holter ECG recordings at baseline and
immediately after myocardial infarction (MI; n=4). For each subject, the median ischemic index
estimated every hour during baseline was compared with its corresponding value after MI. Linear
mixed-effects model regression showed a statistically significant (*<0.05) increase in lead |, aVR,
and all precordial leads (P<0.0388) and a marginally significant (+0.05<P<0.1) increase in aVL
(P<0.0523) and aVF (P<0.0607). Data are presented as median (horizontal solid line), 25th to
75th percentiles (box), and 10th to 90th percentiles (error bars).
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Figure 6. Dynamic changes of ischemic index preceding ventricular tachyarrhythmic events (n=9) in
body surface (A), unipolar intracardiac coronary sinus (CS) (B), left ventricle (LV) (C), right ventricle (RV)
(D), and triangular RV-CS (E) leads in the animal model of acute myocardial infarction. The ischemic index
before the onset of ventricular tachyarrhythmic events was found to remain significantly higher than
baseline during the last 2 minutes in CS (P<0.0022), the last 6 minutes in LV (P<0.0464), the last minute
in RV (P<0.0360), and the last 2 minutes in RVCS (P<0.0055). In body-surface leads, the ischemic index
presented a significant surge 2 minutes prior to the event (P<0.0464) and remained marginally
significant immediately before ventricular tachyarrhythmic events (P<0.0927). *P<0.05; +0.05<P<0.1.
Data are presented as median (horizontal solid line), 25th to 75th percentiles (box), and 10th to 90th
percentiles (error bars). CS indicates coronary sinus; LV, left ventricle; RV, right ventricle.
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Figure 7. Temporal changes of the ischemic index following myocardial infarction (MI) compared with
baseline (n=1) until sudden cardiac death. The results demonstrate sustained elevation of the ischemic
index during the first hour after Ml that remains significantly higher than baseline for 3 hours after Ml
(P<0.0001; black asterisk), and the value of the ischemic index becomes significantly lower during the 2nd
to 11th hours after Ml (P<0.0001; gray asterisk). Specifically, the ischemic index shows a significant
increase 40 minutes before sudden cardiac death (P<0.0001 compared to baseline, black asterisk;
P<0.0001 compared with the value of the ischemic index during the 2nd to 11th hours after MI; gray
asterisk). Data are presented as median (horizontal solid line), 25th to 75th percentiles (box), and 10th to

90th percentiles (error bars).

ischemic index demonstrates a significant increase 40 min-
utes before death (P<0.0001 compared with baseline). Of
note, comparison of the ischemic index during the 2nd to
11th hours after Ml with baseline, showed a significant
increase 40 minutes prior to the event (P<0.0001).

Taken together, these findings suggest that an increase in
the ischemic index may play an important prognostic role in the
early detection of a VTE. Specifically, monitoring the intracar-
diac ischemic index from the triangular RV-CS leads may
provide earlier prediction of the impending arrhythmia onset.

Discussion

Early identification of acute Ml and prompt intervention may
help improve clinical outcomes. Body-surface ECG monitoring
is most commonly used to detect MI; however, it is less
sensitive to coronary artery events than intracardiac electro-
grams.”'® In contrast, ST-segment changes in intracardiac
electrograms have been shown to produce early warnings of
coronary occlusion associated with a median alert-to-door
time of 19.5 minutes for patients at high risk of recurrent
coronary syndromes, who otherwise present with delays of 2
to 3 hours.'® These observations demonstrate the potential
capacity of intracardiac signals to predict early onset of acute
ischemia and to deliver timely therapy either through an
implantable device or at a medical facility.

This study presents a comprehensive and systematic
demonstration of the utility of a novel method to monitor the
ischemia-induced changes in intracardiac and body-surface

signals. First, we propose a wavelet-based approach for the
accurate delineation of characteristic points in intracardiac
electrograms that is in excellent agreement with the manually
delineated electrograms and is robust to ischemia-induced
changes during MI. Second, we introduce an index to quantify
beat-to-beat changes observed in both ventricular depolariza-
tion and repolarization during ischemia; the index normalizes
the ST height to the QR amplitude so as to provide a normalized
subject- and lead-independent measure that accounts for both
d(epolarization31’32 and repolarization&5 changes in the pres-
ence of MI. Third, despite the dynamic beat-to-beat and
subject-to-subject variability of ECG morphology, our data
indicate that the ischemic index presents high stability as well
as very low intra- and intersubject variability under baseline
(nonischemic) conditions. Fourth, estimation of the ischemic
index from intracardiac signals provides a highly efficient and
accurate means of detecting the onset of an acute ischemic
episode or the progression of an ongoing ischemic episode.
Fifth, the intracardiac leads exhibit greater ability to detect MI-
induced changes compared with body surface ECGs. Sixth, the
ischemic index may serve as a predictor of VTEs.

Recent clinical studies investigating the predictive role of
intracardiac electrograms to detect life-threatening ventricular
arrhythmias®® or flow-limiting coronary obstruction'® have
successfully demonstrated that intracardiac ST-segment
monitoring can predict arrhythmic events. Specifically, Fisc-
hell et al'® reported early detection of the presence of acute
MI in patients at high risk for acute coronary syndromes.
Consistent with these findings, our results showed that
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monitoring the ischemic index can reliably predict the onset
of ischemia in intracardiac signals. In the whole study
population, the first statistically significant change of ischemic
index in body-surface leads was observed 6 minutes after
balloon inflation, whereas the unipolar intracardiac electro-
grams offered a significant change as early as 30, 60, and
90 seconds for LV, CS, and RV leads, respectively. Beyond the
setting of acute coronary syndromes, our data also suggest
that intracardiac detection of ischemia may play an important
role in the diagnosis and treatment of patients with “silent”
ischemia, which is likely underdiagnosed due to the lack of
effective screening tools and has been associated with
adverse clinical outcomes.*?

We further observed that adopting the triangular intracar-
diac lead configuration between the RV and CS catheters
provided the smallest duration in detecting the onset of acute
ischemia, that is, within 30 seconds after balloon occlusion of
the coronary artery (P<0.0011). This improvement (mani-
fested by a lower P value) may be due to the fact that RV-CS
lead configuration provides a broader 3-dimensional view of
myocardium and better localization of the ischemic event. In
addition, our results showed that in the acute stage of MI, the
probability of observing a significant change in an intracardiac
lead given a significant change in a body-surface lead is
always higher than the probability of observing a significant
change in a body-surface lead given a significant change in an
intracardiac lead (P<0.0381).

Assessing the 24-hour changes of ischemic index during
the chronic phase after Ml showed a statistically significant
increase in lead |, aVR, and all precordial leads from baseline
to ischemia (P<0.0388). Finally, we have been able to
demonstrate that ischemic index presents a significant surge
preceding VTEs (P<0.0360).

In conclusion, our findings support the hypothesis that
analysis of intracardiac signals provides early detection of
ischemia-induced electrocardiographic changes that exhibit
higher sensitivity than body-surface ECGs in determining the
onset of ischemia. Furthermore, monitoring the ischemic
index may present a potentially useful method in predicting
ischemia-induced VTEs. In view of the options of currently
available implantable cardioverter defibrillators, monitoring of
the proposed intracardiac ischemic index may be a potentially
clinically feasible means of alert regarding early onset of acute
ischemia associated with thrombotic occlusion in patients at
high risk for recurrent coronary syndromes and may provide
an early trigger of appropriate medical therapy.

Study Limitations

A limitation of the presented methodology, which uses the WT
to obtain ECG annotations to estimate the ischemic index, is
that it is defined for normal beats only; however, this

limitation is inherent to all methods that rely on processing
the morphology of ECG signals. Moreover, a complete
receiver operating curve analysis should be performed in a
study with a sufficiently large number of subjects to ensure
adequate power in establishing diagnostic ischemic index
thresholds and to assess the sensitivity and specificity of the
proposed method.
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