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Abstract—The present article proposes an ECG simula-
tor that advances modeling of arrhythmias and noise by
introducing time-varying signal characteristics. The simu-
lator is built around a discrete-time Markov chain model for
simulating atrial and ventricular arrhythmias of particular
relevance when analyzing atrial fibrillation (AF). Each state
is associated with statistical information on episode dura-
tion and heartbeat characteristics. Statistical, time-varying
modeling of muscle noise, motion artifacts, and the influ-
ence of respiration is introduced to increase the complexity
of simulated ECGs, making the simulator well suited for
data augmentation in machine learning. Modeling of how
the PQ and QT intervals depend on heart rate is also intro-
duced. The realism of simulated ECGs is assessed by three
experienced doctors, showing that simulated ECGs are dif-
ficult to distinguish from real ECGs. Simulator usefulness
is illustrated in terms of AF detection performance when
either simulated or real ECGs are used to train a neural
network for signal quality control. The results show that
both types of training lead to similar performance.

Index Terms—Arrhythmias, ECG signals, noise, respira-
tion, simulation models.
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I. INTRODUCTION

S IMULATED ECG signals have since long proven useful for
investigating crucial performance aspects of signal process-

ing methods under controlled conditions, ranging from simple
test signals to signals with composite characteristics, exempli-
fied by models for simulating maternal and fetal ECGs [1],
[2], [3], T wave alternans [4], and paroxysmal atrial fibrillation
(AF) [5]. These simulators have in common that they are based
on mathematical models of relevant physiological phenomena,
while they do not pretend to model biophysical mechanisms.

An emerging application of simulation is found in training of
classifiers developed for, e.g., ECG-based localization of atrial
flutter substrates [6], and photoplethysmogram-based detection
of brady- and tachycardia [7]. Once trained, classifier perfor-
mance may be tested on real signals. An important incentive
for training on simulated data is the scarcity of huge annotated
datasets; however, it remains to be shown whether the neces-
sary level of simulator sophistication can be achieved to make
training fully sustainable.

In the context of AF analysis, simulated ECGs have been
used to gain insight on how physiological and technical factors
influence detection performance with respect to, e.g., episode
duration, lead selection, and noise level [8], [9]. Depending
on the type of detector, i.e., whether rhythm-only, rhythm and
morphology, or segments of raw samples are explored, these
factors can have considerable influence on performance. Similar
insights are decidedly more difficult to achieve when using
annotated real ECGs. Another application of simulated ECGs is
performance evaluation of methods for f wave extraction [10],
[11], [12].

In several clinical studies, brief episodes of atrial tachycardia
(AT) and atrial runs have been associated with increased risk
of stroke beyond incident AF [13], [14]. Modeling of AT and
atrial runs, which so far has not received any attention in the
literature, may help uncover weaknesses of their algorithmic de-
tection. Moreover, ventricular ectopic beats (VPBs), bigeminy,
and trigeminy are of equal interest to model as they represent
important sources of falsely detected AF episodes. Increased
complexity of simulated ECGs should lead to results closer
to real-world performance than those obtained from simulated
ECGs which have been restricted to transitions between sinus
rhythm (SR) and AF.

Noise modeling is an essential part of any simulator aiming to
generate realistic signals which can challenge the performance
of a method. To account for time-varying spectral characteris-
tics, time-varying autoregressive (AR) models driven by white,
Gaussian noise have been proposed for modeling of baseline
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Fig. 1. Markov chain modeling of arrhythmias, comprising atrial tachy-
cardia (AT), bi-/trigeminy (BT), atrial fibrillation (AF), ventricular prema-
ture beat (VPB), and sinus rhythm (SR). Each arrow is associated with
a transition probability.

wander [1] and muscle noise [2]. In those studies, most model
parameters were estimated from the PhysioNet MIT–BIH Noise
Stress Test Database (NSTDB), resulting either in time-varying
filter parameter estimates [1] or fixed filter parameter estimates
made time-varying by letting the position of related pole pairs
vary according to a random walk model [2]. Concerning motion
artifacts, a time-invariant filtered white noise approach was
recently proposed for simulating textile sensor noise, assuming a
heavy-tailed, non-Gaussian probability density function (PDF)
of the white noise [15]. In ambulatory monitoring and exercise
stress testing, where motion artifacts can resemble heartbeats,
such an approach is unsuitable as white noise is a stationary
process.

The present article extends considerably the simulation model
for paroxysmal AF proposed in [5] by modeling atrial and
ventricular arrhythmias of particular relevance for AF analysis
(Sections III and IV). Novel approaches to statistical, time-
varying modeling of muscle noise, motion artifacts, and the
influence of respiration are presented, which serves to increase
the complexity of simulated ECGs, of particular relevance for
training machine learning models (Sections V and VII). More-
over, the proposed simulator accounts for how PQ and QT
intervals depend on heart rate (Section VIII). The realism of sim-
ulated ECGs is assessed by three experienced medical doctors,
and the usefulness of the simulator is illustrated by evaluating
AF detection performance using either real or simulated ECGs
for training (Section IX). While simulated ECGs in [5] were
composed of either synthetic or real components, the present
study deals only with synthetic components as real ones are
unsuitable for modeling of time-varying conditions.

The simulator code is freely available at [16].

II. ARRHYTHMIA MODELING FRAMEWORK

Transitioning between episodes of SR, AF, AT, and bi- and
trigeminy (BT) is modeled by a discrete-time Markov chain,
defined so that any of these arrhythmias is followed by SR,
see Fig. 1; see Section XI for a discussion of the Markov
model definition. The transitioning is defined by probabilities,
whereas the duration of episodes are defined by rhythm-specific
probability mass functions (PMFs) expressed in number of beats.
Hence, when simulating an ECG signal, the total duration of a
certain rhythm depends on the transition probabilities as well as
the properties of the PMFs. The multiple VPB states reflect that
an isolated VPB can occur in SR, AT, and AF, but not in BT;
thus, a VPB does not have to be followed by SR. Unlike a VPB,

which is modeled by its own state, an atrial premature beat (APB)
belongs to the AT state and has a one-beat duration. In certain
states, a number of probabilistic decisions have to be made, e.g.,
the type of APB or VPB to occur.

The durations of SR and AF episodes are modeled by their
respective exponential PMFs, combined with a criterion to ex-
clude episodes with few beats. The modeling of AT, VPBs, and
BT are described below in Sections III and IV.

The transition probabilities pSR−→AF, pSR−→AT, pSR−→BT,
pSR−→VPB, pAF−→VPB, pAT−→VPB, pAT−→SR, and pAF−→SR are set
to values in the interval [0,1], whereas pBT−→SR, pVPB−→AT,
pVPB−→SR, and pVPB−→AF are all set to 1. Rather than directly
defining the first-mentioned set of transition probabilities, they
can be defined in a more intuitive way by extending the well-
established notion of AF burden BAF, i.e., the percentage of
time spent in AF during the monitored period, to also apply to
the other arrhythmias, i.e., the burdens BAT, BVPB, and BBT.
Using the four burdens in combination with the mean episode
durations, the transition probabilities can be determined, see
Appendix A for details.

III. MODELING OF ATRIAL ARRHYTHMIAS

Two public, annotated databases, the MIT–BIH Arrhyth-
mia Database and the MIT–BIH Supraventricular Arrhythmia
Database [17], were analyzed to determine certain model char-
acteristics. The former database is annotated with respect to
beat type and rhythm, whereas the latter database makes no
distinction between atrial and nodal supraventricular beats and
therefore both types of beat are jointly analyzed.

A. Atrial Premature Beats

1) Rhythm: The RR intervals immediately preceding and
following an isolated APB, denoted dRR,p and dRR,f, respectively,
are related to the current RR interval dRR in SR, but modified by a
positive-valued, uniformly distributed parameter β that depends
on the type of APB. Expanding on the model in [5], the following
rules apply to generate dRR,p and dRR,f:

� APB with sinus node reset (APB1): dRR,p = βAPB1,pdRR,
dRR,f = dRR;

� APB with delayed sinus reset (APB2):dRR,p = βAPB2,pdRR,
dRR,f = βAPB2,fdRR;

� APB with compensatory pause (APB3): dRR,p =
βAPB3,pdRR, dRR,f = (2− βAPB3,p)dRR;

� Interpolated APB (APB4): dRR,p = βAPB4,pdRR, dRR,f =
(1− βAPB4,p)dRR; occurs only when dRR > 400 ms,

where βAPB1,p, βAPB2,p, βAPB3,p, and βAPB4,p are all< 1 except
βAPB2,f > 1. Each type of APB is associated with a probability
of occurrence pAPBi, i = 1, 2, 3, 4.

2) Morphology: The P wave and the QRST complex of
an APB are modeled by Hermite functions (see below for
definition) and Gaussian functions, respectively [5]. Since the
depolarization of atrial tissue differs between a sinus beat and
an APB, different sets of parameter values are used to generate
the respective P waves.

B. Atrial Tachycardia

The main types of AT are either focal, multifocal, or reentrant,
of which the first two are subject to modeling since both are
paroxysmal and occur as transitional rhythms between frequent
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Fig. 2. Histogram of atrial tachycardia episode duration and the fitted
probability mass function pAT(l) (solid line) proportional to e−bATl.

APBs and AF [18]. Focal AT originates from a single ectopic
focus within the atria and is defined by a heart rate exceeding
100 beats per minute (BPM), a regular rhythm, and a non-sinus
P-wave morphology that remains the same throughout an AT
episode. Multifocal AT originates from multiple ectopic foci and
is also defined by a higher than normal heart rate, however, the
rhythm is irregular with varying RR and PR intervals and at least
three distinct, non-sinus P-wave morphologies. Although the
model puts emphasis on focal AT, multifocal AT can, if desired,
be easily modeled using a different set of parameter values.

Fig. 2 presents the histogram of AT episode duration obtained
from the two above-mentioned public databases combined, high-
lighting an inversely proportional relation between the number
of episodes and episode duration l, expressed in number of beats.
This relation is modeled by a PMF pAT(l) accounting not only
for AT episodes (l ≥ 3), but also for isolated APB (l = 1) and
atrial couplets (ACs, l = 2):

pAT(l) =

⎧⎪⎪⎨
⎪⎪⎩
pAPB, l = 1;

pAC, l = 2;

aATe
−bATl, l = 3, . . . , 50;

0, otherwise.

(1)

Based on the two databases, the maximum episode duration is
set to 50 beats. The constant aAT ensures that pAT(l) sums to 1,
and the decay bAT is estimated using least squares (LS) fitting of
pAT(l), l = 3, 4, . . . , 50, to the histogram in Fig. 2.

The RR intervals immediately preceding and following an
episode are given by dRR,p = βAT,pdRR and dRR,f = βAT,fdRR,
whereas the RR intervals within an episode are given by

dRR,i = βATdRR +ΔdRR,i, i = 1, . . . , l. (2)

The parameters βAT,p, βAT,f, βAT, and ΔdRR,i are modeled by
uniform PDFs whose limits are determined from the public
databases. The uniform PDF ofβAT is based on the ratio between
the average of the three RR intervals immediately preceding
AT and the average of the RR intervals within an AT episode.
Whenever dRR,i in (2) is shorter than 300 ms, another ΔdRR,i is
generated until dRR,i exceeds 300 ms.

IV. MODELING OF VENTRICULAR ARRHYTHMIAS

A. Ventricular Premature Beats

1) Rhythm: A VPB is a single-beat arrhythmia and therefore
not associated with a PMF. The two RR intervals immediately
preceding and following a VPB, i.e., dRR,p and dRR,f, are based
on the current RR interval dRR, generated as follows:

� VPB with compensatory pause (VPB1): dRR,p =
βVPB1,pdRR, dRR,f = (2− βVPB1,p)dRR;

� VPB with noncompensatory pause and sinus node reset
(VPB2): dRR,p = βVPB2,pdRR, dRR,f = dRR;

� Interpolated VPB (VPB3): dRR,p = βVPB3,pdRR, dRR,f =
(1− βVPB3,p)dRR; occurs only when dRR > 400 ms,

where βVPB1,p, βVPB2,p, and βVPB3,p are all <1 and uniformly
distributed over an interval determined by established medical
knowledge. Each type of VPB is associated with a probability
of occurrence pVPBi, i = 1, 2, 3.. In AF and AT, VPB2 can only
occur.

2) Morphology: The QRS complex and the T wave of a
VPB are modeled by their respective linear combinations of the
orthonormal Hermite functions ϕj(t) [19], [20], [21], defined
by

x(t; τ, σ) =

J−1∑
j=0

cj(τ, σ)ϕj(σ(t− τ)), (3)

where

ϕj(t) = Hj(t)(2
jj!

√
π)−1/2e−t2/2, (4)

J is the number of functions, and cj(τ, σ), σ, and τ denote
amplitude, width, and position, respectively. The Hermite poly-
nomials are recursively given by Hj(t) = 2tHj−1(t)− 2(j −
1)Hj−2(t), j > 2, with H0(t) = 1 and H1(t) = 2t. Due to or-
thonormality, only two 2-dimensional optimization problems
need to be solved when fitting the Hermite functions to data,
one for the QRS complex and another for the T-wave, whereas
a 2 J-dimensional problem when fitting Gaussian functions as
done in, e.g., [1], [22], [23].

The segmentation of a VPB into QRS complex and T wave
may introduce a jump at the boundary, especially for sloping
ST segments. However, the jump may be reduced by adding a
logistic function to the model [24],

s(t; cs, σs, τs) =
cs

1 + e−σs(t−τs)
, (5)

where cs, σs, and τs denote amplitude, steepness, and position,
respectively.

To fit the Hermite and the logistic functions to a real 12-lead
VPB, the model parameters in (3) and (5) are estimated using an
efficient LS-based, iterative method described in Appendix B.
Then, the simulated X, Y, Z leads are obtained by applying
regression transformation to the simulated 12-lead VPB [25].
Thus, this approach differs from the one in [5] where the
simulated 12-lead beat was obtained by applying the Dower
transformation to the simulated X, Y, and Z leads.

B. Bigeminy and Trigeminy

Modeling of VPBs facilitates modeling of bigeminy, i.e.,
every second beat is a VPB, and trigeminy, i.e., every third beat
is a VPB. Markov chain modeling of transitions between SR and
BT is similar to that of SR and AT, except that a transition from
SR to BT is accompanied by a decision on whether bigeminy
or trigeminy should occur. The probability of bigeminy to occur
relative to trigeminy, denoted pB, is determined from the MIT–
BIH Arrhythmia Database (MITADB); thus, the probability of
trigeminy is (1− pB).

This database was also used to compute the histogram of
BT episode duration, i.e., the durations of bi- and trigeminy

Authorized licensed use limited to: Pablo Laguna Lasosa. Downloaded on November 24,2023 at 17:51:00 UTC from IEEE Xplore.  Restrictions apply. 



3452 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 70, NO. 12, DECEMBER 2023

Fig. 3. Histogram of bi- and trigeminy episode duration and the fitted
probability mass function pBT(l) (solid line) proportional to e−bBTl.

episodes combined into one histogram, see Fig. 3. Similar to
the AT histogram in Fig. 2, the BT histogram highlights an
inversely proportional relation between the number of episodes
and episode duration l, modeled by the following PMF:

pBT(l) =

{
aBTe

−bBTl, l = 4, . . . , 80;

0, otherwise.
(6)

From the database, the default minimum and maximum episode
duration were found to be 4 and 80, respectively, and the LS
estimate of the decay bBT was determined. The constant aBT
ensures that pBT(l) sums to 1.

When a transition from SR to BT occurs, the episode duration
is sampled from the PMF in (6). For bigeminy, sinus beats and
VPBs are placed one after the other, whereas, in trigeminy,
a VPB follows every other two sinus beats. In both bi- and
trigeminy, the RR intervals immediately preceding and follow-
ing a VPB are changed by βBT,p and βBT,f, respectively, whereas,
in trigeminy, the RR interval between the two sinus beats is
based on the current RR interval dRR. The uniform distributions
of βBT,p and βBT,f were determined by statistical analysis of bi-
and trigeminy episodes in MITADB.

V. MODELING OF TIME-VARYING NOISE

The modeling of muscle noise and motion artifacts, com-
monly observed in ambulatory monitoring and exercise stress
testing, is paid special attention. The filtered white noise ap-
proach, mentioned in the introduction, serves as the starting
point, but altered in several respects to account for prominent
characteristics such as a time-varying level of muscle noise and
a random occurrence pattern and randomly changing shape of
QRS-like motion artifacts. Hence, the noise added to the noise-
free ECG is assumed to consist of muscle noise xMN(n) and
motion artifacts xMA(n); concerning the modeling of baseline
wander, see Section XI. It should be noted that each lead is
corrupted by individual noise realizations, and, consequently,
no interlead correlation is introduced in the simulated ECG.

A. Muscle Noise

Muscle noise xMN(n) is modeled as a nonstationary AR(p)
process, defined by the following difference equation:

xMN(n) = a1,nxMN(n− 1) + · · ·+ ap,nxMN(n− p) + w(n),
(7)

Fig. 4. Typical examples of (a) time-varying muscle noise (the enve-
lope is displayed in red), and (b) several superimposed muscle noise
power spectra (logarithmic scale) displayed up to 100 Hz, computed
in successive 1-min intervals. Analyzed signals were recorded during
exercise stress testing [26].

where w(n) is white, Gaussian noise with time-varying vari-
ance σ2

w(n) and p is the model order. The time-varying pa-
rameters a1,n, . . . , ap,n are estimated using a two-step proce-
dure. Firstly, the parameters of a stationary AR(p) model, i.e.,
a1, . . . , ap, are estimated using amplitude-normalized, PQRST-
cancelled ECGs recorded during exercise stress testing [26].
Amplitude normalization, accomplished by means of the enve-
lope of the cancelled signal, is motivated by the large variation
in noise level. Since the spectral content of muscle noise is
confined to frequencies well below 100 Hz, parameter estimation
is performed on signals sampled at a rate of 200 Hz to ensure
a low-order AR model, taken to be p = 4. Hence, the sampling
rate of the model output needs to be increased to the rate of
the simulated ECG (1000 Hz). Secondly, the poles related to
â1, . . . , âp are made time-varying using a simple random walk
model [2].

While the spectral properties of muscle noise do not vary
much over time, the noise level itself can vary considerably—
two characteristics illustrated by Fig. 4. The following first-order
model of how the standard deviation σw(n) ofw(n) in (7) varies
over time is proposed:

xσw
(n+ 1) = νxσw

(n) + vσw
(n), (8)

σw(n) = max(σw,min,mσw
(n) + xσw

(n)), (9)

where vσw
(n) is white, Gaussian noise with variance σ2

v ; thus,
the variance σ2

x of xσw
(n) is σ2

x = σ2
v/(1− ν2). The initial

value xσw
(0) is set to 0 and the filter parameter ν is constrained

to [0,1]. The standard deviation σw(n) is composed ofmσw
(n),

defining the mean noise level of the simulated ECG, andxσw
(n),

defining its variation. While a constant mean noise level is used
as default, i.e., mσw

(n) ≡ mσw
, other definitions are certainly

possible, e.g., to let mσw
(n) gradually increase over time to

mimic the noise profile of an exercise stress test. The half-wave
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rectifier in (9) is introduced to ensure that σw(n) exceeds a
certain minimum level σw,min.

B. Motion Artifacts

The starting point for modeling motion artifacts is a train
of sparsely, randomly occurring spikes of different amplitudes
defined by a Bernoulli–Gaussian process, i.e., the spike train,
denoted y(n), is the product of a binary-valued Bernoulli pro-
cess b(n) and white, Gaussian noise z(n) with a uniformly
distributed variance σ2

z [27]. The PMF of b(n) is defined by

p(b(n)) =

{
pb, b(n) = 1;

1− pb, b(n) = 0,
(10)

where the probability pb is uniformly distributed. To mimic the
shape of motion artifacts, y(n) is fed to a filter whose impulse
response changes from spike to spike in a random fashion.
The impulse response associated with the k:th spike, denoted
hk(n;θk), is defined by an exponentially increasing part, lasting
up to sample Kk, followed by an exponentially decreasing part
lasting up to the filter length L− 1,

hk(n;θk) =

{
α−n
1,k, n = 0, . . . ,Kk − 1;

α−Kk

1,k αn−Kk

2,k , n = Kk, . . . , L− 1,
(11)

where θk = [α1,k, α2,k,Kk] with 0 � α1,k, α2,k < 1 and 0 �
Kk � L− 1. The parameters Kk, α1,k, and α2,k change from
spike to spike according to uniform PDFs.

To make the output of hk(n;θk), denoted u(n), smoother and
more realistic-looking, u(n) is bandpass filtered using a linear
filter with infinite impulse response, yielding

xMA(n) = b1,nxMA(n− 1) + · · ·+ bq,nxMA(n− q) + u(n),
(12)

where b1,n, . . . , bp,n are chosen so that the cutoff frequencies
of the filter are positioned at about 10 and 80 Hz and q set
to 4. Similar to (7), the poles of b1,n, . . . , bq,n vary over time
according to the above-mentioned random walk model.

Motion artifacts observed in recordings made during handheld
AF screening are typically broader in time and more pronounced
than those observed in ambulatory monitoring and exercise
stress testing modeled by (12). A simple approach to modeling
the former type of artifacts is to integrate the output in (12),
resulting in the following difference equation:

xMA(n) = xMA(n− 1) + b1,nΔxMA(n− 1) + · · ·
+ bq,nΔxMA(n− q) + u(n), (13)

ΔxMA(n) = xMA(n)− xMA(n− 1). (14)

The model in (13) is identical to the one in (12), except that
xMA(n) is replaced by ΔxMA(n) due to the integration.

VI. ARRHYTHMIA AND NOISE MODELING: EXAMPLES

Arrhythmia modeling is illustrated by Fig. 5, displaying
episode patterns with SR, AT, and AF, and Fig. 6, displaying
low-noise ECGs with VPB, APB, AT, AF, and BT.

Noise modeling is illustrated in Fig. 7 by simulated, single-
lead ECGs paired with similar-looking real ECGs extracted
from recordings made during exercise stress testing, ambulatory
monitoring, and handheld AF screening.

Fig. 5. Simulated episode patterns consisting of sinus rhythm (SR),
atrial tachycardia (AT), and atrial fibrillation (AF), generated using ar-
rhythmia burdens BAT = 0.05 and BAF = 0.5, and mean episode dura-
tions eAT = 5 beats and either (a) eAF = 50 beats or (b) eAF = 300 beats;
see Appendix A for parameter definitions.

Fig. 6. Simulated 10-s, low-noise ECGs in leads II (top) and V1

(bottom). (a) Interpolated ventricular premature beat (VPB) and atrial
premature beat in sinus rhythm, (b) atrial tachycardia, (c) VPBs in
atrial fibrillation, (d) ventricular bigeminy, and (e) ventricular trigeminy.
Displayed leads are the same as those of the MIT-BIH Arrhythmia and
Supraventricular Arrhythmia Databases.

VII. MODELING THE INFLUENCE OF TIME-VARYING

RESPIRATION

Respiration is manifested in the ECG by relatively periodic
changes in the electrical axis of the heart as well as changes
in heart rate. Since the respiratory frequency depends on the
degree of physical effort, the assumption of a fixed respiratory
frequency in [5] is generalized to become time-varying. Changes
in heart rate due to respiration are modeled by a time-varying
respiratory component of the heart rate variability (HRV) power
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Fig. 7. Single-lead, 10-s simulated ECGs (top) and similar-looking real
ECGs (bottom) with (a) muscle noise, (b) motion artifacts, common in
ambulatory monitoring and exercise stress testing, with muscle noise
added, and (c) motion artifacts common in handheld AF screening.
Simulated ECGs are generated using (7), (12), and (13), respectively.
ECGs in (c) are highpass filtered to facilitate presentation.

spectrum. While changes in heart rate are present in SR only,
changes in the electrical axis, modeled by rotation of the VCG
loop, are present also in arrhythmia.

The starting point is the respiratory interval tachogram, i.e.,
a series of successive respiration intervals Tr,0, Tr,1, . . ., which
can be transformed to a time-varying respiratory frequencyFr(t)
through the use of the inverse interval function [28].

A. Morphology Influenced by Time-Varying Respiration

The simulated, noise-free VCG signaluVCG(t) is transformed
by rotation, defined by the product of three planar rotations
around each of the X, Y, and Z axes,

x(t) = QX(t)QY(t)QZ(t)uVCG(t), (15)

where uVCG(t) is a 3× 1 vector and the rotation matrices

QX(t) =

[
1 0 0
0 cosϕX(t) sinϕX(t)
0 − sinϕX(t) cosϕX(t)

]
, (16)

QY(t) =

[
cosϕY(t) 0 sinϕY(t)

0 1 0
− sinϕY(t) 0 cosϕY(t)

]
, (17)

QZ(t) =

[
cosϕZ(t) sinϕZ(t) 0
− sinϕZ(t) cosϕZ(t) 0

0 0 1

]
, (18)

are defined by the angular signals ϕX(t), ϕY(t), and ϕZ(t).
Introducing a template respiratory cycle ψ(t), the angular

variation is assumed to be proportional to the amount of air
in the lungs, modeled as the product of two logistic functions
accounting for inspiration and expiration [29], [30],

ψ(t; δin, δex) =
1

1 + e−γin(t−δin)

1

1 + eγex(t−δex)
, (19)

where γin and γex define the steepness of inspiration and ex-
piration, respectively, and δin and δex are positive-valued and

uniformly distributed, defining the approximate duration of in-
spiration and expiration, respectively. The angular variation in
each of the leads o ∈ {X,Y,Z} is modeled by

ϕo(t) = ξo

∞∑
p=0

αo,pψ

(
t−∑p

q=0 Tr,q

sp
; δin,p, δex,p

)
, (20)

where ξo > 0 is the maximum variation (expressed in degrees),
αo,p is a uniformly distributed amplitude, Tr is the duration of
the template respiratory cycle, and sp = Tr,p/Tr is a scaling
factor ensuring that the p:th cycle has the duration Tr,p.

B. Sinus Rhythm Influenced by Time-Varying
Respiration

The HRV power spectrum is assumed to be composed of a
Gaussian, related to baroreflex regulation (“LF component”),
and another Gaussian, related to parasympathetic stimulation
(“HF component”) [23], see also [5]. For Ω ≥ 0, the time-
varying power spectrum is defined by

SRR(t,Ω) =
PLF(t)√
2πσ2

LF

e
− (Ω−2πFLF)

2

2σ2
LF +

PHF(t)√
2πσ2

HF

e
− (Ω−2πFr(t))2

2σ2
HF ,

(21)
and, due to symmetry, SRR(t,Ω) = SRR(t,−Ω). The powers
PLF(t) and PHF(t) and the center frequency of the HF com-
ponent, set to the respiratory frequency Fr(t), are time-varying,
whereas the widths σ2

LF and σ2
HF and the center frequency FLF

are time-invariant.
An RR interval signal dRR(t), whose properties are described

by (21), is generated by linear filtering of white noise vRR(t) so
that the LF component is the output of the time-invariant filter
hLF(t) and the HF component is the output of the time-varying
filter hHF(t;Fr(t)),

dRR(t) =
(√

PLF(t)hLF(t)+
√
PHF(t)hHF(t;Fr(t))

)
∗ vRR(t)

+mRR(t). (22)

The function mRR(t) is the time-varying mean RR interval.
Recalling that the power spectrum of filtered white noise, with
variance σ2

v,RR is given by SRR(t,Ω) = |H(t,Ω)|2σ2
v,RR, the

frequency response H(t,Ω) is identified as the square root of a
Gaussian in (21), which after use of the inverse Fourier transform
results in the following two impulse responses:

hLF(t) =
4

√
32

π5

√
σLF

1 + 2σ2
LFt

2
cos(2πFLFt), (23)

hHF(t;Fr(t)) =
4

√
32

π5

√
σHF

1 + 2σ2
HFt

2
cos(2πFr(t)t). (24)

The discrete-time implementation is accomplished by sampling
each impulse response symmetrically around t = 0 until its
envelope falls below 5% of its peak value; the same sampling
rate as that of dRR(t) and Fr(t) is used. Since the filters hLF(t)
and hHF(t;Fr(t)) are noncausal, each filter needs to be shifted
by half its length to become causal.

For a linearly increasing Fr(t) and a linearly decreasing
mRR(t), the angular function ϕX(t) and the RR interval signal
dRR(t) are illustrated in Fig. 8(a) and (b), respectively. The
resulting simulated ECG is illustrated in Fig. 8(c).
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Fig. 8. Time-varying respiratory frequency, linearly increasing from 0.2 to 0.5 Hz in a 60-s interval, influencing (a) the angular function ϕX(t)
(radians), partially describing the variation in the electrical axis, (b) the variation in RR intervals, visible at the end of the RR interval signal dRR(t)
(expressed in seconds), and (c) the simulated ECG in lead X. Noise level is gradually increasing to mimic an exercise stress test.

VIII. MODELING THE INFLUENCE OF HEART RATE ON THE

PQ AND QT INTERVALS

The proposed model accounts for the dependence of PQ
and QT intervals on heart rate, both crucial to deal with when
simulating ECGs in time-varying conditions.

A. PQ–RR Dependence

To account for the fact that the PQ interval depends on heart
rate at higher heart rates, a simple nonlinear, memoryless model
is introduced. The model builds on the physiological finding that
the PR interval depends on heart rate at higher heart rates, while
otherwise independent [31]. However, since the QR duration
does not change significantly at higher heart rates [32], the
dependence of the PQ interval dPQ(dRR(k)) on the preceding
RR interval dRR(k) of the k:th beat can be modeled by the
following expression:

dPQ(dRR(k))

=

{
dPQ0

+ κPQ(dRR(k)− dRR,cp), dRR(k) < dRR,cp;

dPQ0
, dRR(k) ≥ dRR,cp,

(25)

where dPQ0
is the baseline PQ interval observed at lower heart

rates, κPQ is the slope of the linear dependence, and dRR,cp is the
change point for the dependence. Thus, assuming that P wave
duration is independent of heart rate, P wave onset is positioned
dPQ(dRR(k)) seconds before QRS onset.

The parameters dPQ0
, κPQ, and dRR,cp can be estimated by

analyzing the dependence between PQ and RR intervals in
subjects performing exercise stress testing. Then, the range of
RR intervals is divided into BRR bins of equal width, and the
median of the PQ intervals contained in each bin is computed,
resulting in dmed(b) ≡ dPQ(dRR(b)), b = 1, . . . , BRR. The bin
corresponding to the change point is estimated by minimizing
the following LS error function with respect to b0:

ε(b0) =

b0∑
b=1

w(b)(dmed(b)− dPQ0
− κPQ(dRR(b)− dRR,cp))

2

+

BRR∑
b=b0+1

w(b)(dmed(b)− dPQ0
)2, (26)

Fig. 9. (a) Median of the PQ intervals contained in each RR interval
bin (red curve). Fitted function (black curve) is given by the estimates
d̂PQ0

= 152 ms, κ̂PQ = 0.358, and d̂RR,cp = 520 ms; d̂RR,cp is indicated
by a vertical dotted line. (b) Simulated ECG with PQ–RR dependence
modeled at low and high heart rates, and (c) simulated ECG without
modeling of PQ–RR dependence, causing the P waves to be incorrectly
hidden in the T-waves at a high heart rate.

thus yielding d̂RR,cp = dRR(b̂0). The weights w(b) are taken as
the number of subjects contributing to the b-th bin.

The estimation procedure is illustrated by analyzing ECGs
recorded from healthy subjects performing exercise stress test-
ing [33]. Following spatial periodic component analysis to im-
prove the signal quality, the PQ interval was determined using
wavelet-based delineation of P wave onset and QRS onset [34].
Fig. 9(a) shows the median of all PQ intervals in each of the
RR interval bins to which the function in (25) is fitted. Fig. 9(b)
and (c) show simulated ECGs with and without inclusion of
PQ–RR dependence, respectively. Without PQ–RR dependence,
P waves occur too far away from the QRS complex at high heart
rates, thus not reflecting normal electrophysiological behavior.

B. QT–RR Adaptation

The lack of QT–RR adaptation was the main concern raised
by the expert medical doctors when assessing the realism of
simulated ECGs in [5]. This issue is addressed by introducing
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an input–output model accounting for QT interval adaptation
to RR interval changes [35]; the adaptation is composed of a
fast, initial phase extending a few RR intervals and a slow phase
lasting for several minutes [36].

Since the model operates on a sample-to-sample basis, the RR
intervals dRR(k) and the QT intervals dQT(k) are both evenly
resampled at a rate of 4 Hz, resulting in xRR(n) and xQT(n),
respectively. The input–output relation between the preceding
RR intervals and the QT interval is defined by a finite impulse
response filter, whose output is denoted xRR(n), followed by a
memoryless nonlinear function. The impulse response h(n) is a
truncated exponential,

h(n) =
(1− αQT)

(1− αN
QT)

αn
QT, n = 0, . . . , N − 1, (27)

whose length N corresponds to 300 s based on physiological
considerations. The exponential decay αQT (0 < αQT < 1) is
related to the time constant τ through αQT = e−

1
τ , where τ is

set to 25 s [37]. Based on the results in [35], the model output
xQT(n) is taken to be inversely proportional to xRR(n),

xQT(n) = 0.49− 0.09

xRR(n)
. (28)

The QT interval of thek:th beat is then modified by resampling
the T wave while maintaining the QRS duration so that the
QT interval becomes equal to that indicated by the model, where
dQT(k) is taken from the corresponding xQT(n). The model for
QT–RR adaptation has proven useful not only in SR [35] but
also in AF [38].

IX. VALIDATION OF THE SIMULATION MODEL

Unless specified in the following, the simulated ECGs are
generated using the default parameter values listed in [16].

A. Signal Realism Assessed by Medical Doctors

The realism of the simulated ECGs was assessed using a
dataset consisting of 100 15-s simulated, single-lead ECGs and
another dataset consisting of 100 15-s real, single-lead ECGs
recorded during either ambulatory monitoring, exercise stress
testing and AF screening using a handheld device. Different
lead positions were included. The datasets were approximately
matched with regard to occurrence of arrhythmia and noise level.
The datasets were presented blindly to three medical doctors
with extensive experience in ECG interpretation, who were
asked to identify the simulated ECGs.

B. Quality Control and Training Using Simulated ECGs

Simulator usefulness is illustrated by a signal quality control
problem of identifying transient noise, abundant in AF screen-
ing, with the aim to reduce the number of falsely detected beats.
The problem was addressed using a convolutional neural net-
work (CNN) [39] to exclude false beat detections from the RR in-
terval series before performing rhythm-based AF detection [40].
Training of the CNN was based on a subset of 30-s ECGs of
the StrokeStop I screening database [41], where detected events
outputted by a QRS detector was manually annotated as true
or false. A disjoint subset of the StrokeStop I database was then
used for testing, manually annotated by experts to confirm AF in
the presence of noise, artifacts, and other non-AF arrhythmias.

TABLE I
OUTCOME OF REALISM ASSESSMENT BASED ON REAL AND

SIMULATED ECGS

Exactly the same problem is addressed here, except that simu-
lated ECGs are used instead for training. The training set consists
of true and false beat detections, produced using (13) with two
different settings of pb and σ2

z , defining the Bernoulli–Gaussian
process, so that either low or high levels of motion artifacts result.
The low level is given by uniform PDFs of pb and σ2

z defined by
the intervals [0.001, 0.01] and [0.01, 0.05], respectively, and the
high level by uniform PDFs defined by [0.1, 0.5] and [0.05, 0.1],
respectively. The overall muscle noise level mσw

is assigned a
uniform PDF defined by [10, 50] μV and σv = 0. While true
beat detections are known from the simulation of the noise-free
ECG, false detections are determined using a QRS detector: a
detected event is deemed false whenever its occurrence time
deviates more than 250 ms from that of a true beat detection.
In total, 33,453 true detections and 10,498 false detections are
obtained, i.e., about the same sizes as those used for training
and validation in [39]. The simulated ECGs are composed of
different combinations of SR, AT, AF, and bi- and trigeminy.

The CNN, trained on simulated ECGs, is tested on the above-
mentioned, disjoint subset of the StrokeStop I database, using
sensitivity (Se), false positive rate (FPR), and positive predictive
value (PPV) to describe AF detection performance.

C. AF Detection and Training Using simulated/real ECGs

Another illustration of simulator usefulness is provided by
addressing AF detection using a CNN either trained on simu-
lated ECGs and tested on real ECGs, or vice versa. Thus, the
approach taken here to AF detection differs from the one in
Section IX-B which involves classical threshold testing. The
data sets described in Section IX-A were employed for training
and testing, though slightly modified to ensure that the same
number of AF and non-AF records were included.

AF detection was based on a GoogleNet CNN fed with
RGB scalograms, obtained by computing the continuous wavelet
transform of the baseline-corrected and amplitude-normalized
ECG. Since the training sets were small, they were augmented
by randomly shifting each ECG 15 times in the range of 1 to
5 s. Moreover, the training sets were split by the ratio of 70:30,
where 30% were used for validation.

Depending on the rhythm which dominated the 15-s record,
each ECG was annotated as either AF or non-AF. Similar to Sec-
tion IX-B, the detector output was compared to the annotations
on a record basis.

X. RESULTS

A. Signal Realism Assessed by Medical Doctors

The outcome of the assessment is presented in Table I. Ideally,
from a simulation standpoint, the right column should be 100 to
indicate that all ECGs, whether real or simulated, are assessed
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TABLE II
QUALITY CONTROL AND RELATED AF DETECTION PERFORMANCE,

EXPRESSED IN TERMS OF SENSITIVITY (SE), FALSE POSITIVE RATE (FPR),
AND POSITIVE PREDICTIVE VALUE (PPV)

TABLE III
AF DETECTION PERFORMANCE IN TERMS OF SE, FPR, AND PPV

as realistic. The results in Table I show that the simulated ECGs
exhibit considerable realism since the average number assessed
as realistic (79 out 100) is about the same as that of real ECGs
(84 out of 100). The assessment of doctor #2 deviates from those
of the other two doctors as more simulated ECGs are assessed
as unrealistic.

B. Quality Control and Training Using Simulated ECGs

Table II presents AF detection performance when either real
or simulated ECGs are used for training of the CNN for quality
control. Using simulated ECGs, a slight decrease in the sensitiv-
ity results (0.5%), while FPR increases by 3.9%. Nonetheless,
compared to the performance obtained without quality control,
the improvement is still substantial.

C. AF Detection and Training Using simulated/real ECGs

Table III shows that the CNN-based AF detector performs
equally when simulated and real ECGs are used for training,
although real ECGs yield a modest increase in FPR and PPV;
the resulting performance is further discussed below.

XI. DISCUSSION

Simulation models have gone through a renaissance in re-
cent years thanks to the introduction of generative adversarial
network (GAN) models in machine learning. Such models can
generate ECGs indistinguishable from real ones—an achieve-
ment which has proven useful for improving classification and
denoising performance [42], [43]. When the aim is to understand
how algorithmic performance is influenced by various factors
such as the influence of f-waves on ECG-derived respiration [44]
or the influence of different lead transformations on the delin-
eation of the QT interval in the presence of AF [38], the proposed
simulator offers intuitive control of such factors through math-
ematical modeling, while no such control is offered by current
GAN models.

An important incentive for pursuing the present study is
the simulation of ECGs exhibiting a higher degree of com-
plexity/variability than those of the simulator in [5]. This is
achieved by modeling arrhythmias other than SR and AF and
by introducing time-varying signal and noise characteristics. In
doing so, the simulated ECGs are expected to have a broad
applicability in the realm of ECG analysis, especially when
robust detection and estimation methods are to be designed.
While the higher degree of detail advances the realism of simu-
lated ECGs mimicking those observed during AF screening and
monitoring, the achieved degree is likely insufficient to simulate
ECGs observed during drug evaluation, calling for modeling of
additional physiological factors.

The proposed modeling framework, building on a discrete-
time Markov chain, is easily expanded to include other ar-
rhythmias than those considered. The Markov chain is defined
so that any arrhythmia must be followed by SR, representing
a means to hold down the number of transition probabilities
to be set. This particular definition facilitates the modeling of
RR intervals inside an AT episode as they can be related to
RR intervals in SR. Even if this definition influences to some
extent the realism of the simulated ECGs, the evaluation of
algorithmic performance is likely not much influenced by the
transitions to SR, nor should be classifier training. However, if
SR-transitioning is unacceptable, transition probabilities from
one arrhythmia to another can be introduced. The Markov chain
model is well-suited to handle switching between different
rhythms with fixed burdens, whereas switching in the presence
of gradually changing burdens calls for a more advanced Markov
model with time-varying transition probabilities [45].

Noise represents an essential component of any ECG simu-
lator. Noise recordings may be obtained from real ECGs that
result from placing electrodes on the limbs in positions where
only noise is visible; the most well-known collection of such
noise recordings is the NSTDB. Another approach is to subtract
the cardiac activity from real ECGs using an average [26] or
median [46] beat, possibly in combination with a technique to
reduce the influence of QRS-related residuals [26]. Ideally, these
two approaches produce realistic noise, however, the electrodes
may not necessarily be placed at positions where the cardiac
activity is absent (in fact, residual activity can be observed in
some of the motion artifact recordings of the NSTDB), nor
does the average/median beat offer sufficient cancellation of the
cardiac activity when, e.g., ectopic beats occur or the influence of
respiration is large [10]. Another disadvantage is the half-hour
duration of the noise recordings, with implications on simu-
lation uniqueness. On the other hand, the proposed statistical
noise model can generate recordings of any length and offers
control of time-varying noise characteristics such as the power
spectrum of muscle noise and the shape/intensity of motion
artifacts.

Of the three main types of noise, i.e., baseline wander, mus-
cle noise, and motion artifacts, the first-mentioned is the least
critical to model and therefore not considered in the present
study. Filtered-noise models of baseline wander range from
linear, time-invariant, lowpass filtering [47] to time-varying AR
modeling [1], [2]; in both these cases, the input noise to the linear
system is white and Gaussian

The starting point of ECG simulation in [5] was the leads X,
Y, and Z to which noise was added, then transformed by the
Dower matrix to obtain the 12-lead ECG. Using the two-lead
NSTDB, lead Z was derived from leads X and Y by means of
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a memoryless, nonlinear transformation. When evaluating per-
formance, e.g., that of multi-lead principal component analysis
for f wave extraction [10], the results may be misleading due to
the artificially introduced interlead correlation. Using instead
the proposed noise model, not only is spatially uncorrelated
noise easily generated, but so can partially correlated noise, e.g.,
motion artifacts occurring at the same time in different leads but
with shapes that differ between leads thanks to the stochastic
impulse response in (11); use of the latter case requires a minor
modification of the noise model.

Several simulator parameters have been assigned default val-
ues derived from the thoroughly annotated MITADB, which,
despite its limited size, is commonly used for research in ECG
analysis. As a result, the simulator attempts to capture the
physiological variability of MITADB. In addition, the simulator
features models developed using other databases as well as
established medical knowledge.

The question ‘Does the simulation model generate realistic
ECGs?’ is not easily answered due to the difficulty to define
a ground truth to which the simulated ECGs can be assessed.
One answer is to let experienced medical doctors assess the
realism of simulated ECGs. While the significance of such an
assessment should not be exaggerated, it nonetheless provides
an indication of whether essential features are captured by
the simulated ECGs. Indeed, Table I shows that the doctors
had difficulties to distinguish simulated from real ECGs as the
number of simulated ECGs assessed as realistic does not differ
that much from the number of real ECGs assessed as realistic.
The main reason simulated ECGs are assessed as unrealistic is
due to that certain VPBs had too long coupling intervals and
too low QRS amplitudes—issues which are easily addressed
using other model parameter values, possibly in combination
with non-uniform PDFs of the βVPB-parameters. The number of
simulated ECGs assessed as unrealistic due to noise and artifacts
was about the same as the corresponding one of real ECGs, and,
therefore, it may be concluded that the noise models are realistic.

Table II demonstrates the potential of using simulated ECGs
to train a CNN so that false detections can be excluded before
AF detection takes place: the performance is essentially the same
irrespective of whether real or simulated ECGs are used for train-
ing. The slight difference may be attributed to the noise/artifact
models and a too limited variability in beat morphology. Indeed,
screening for AF is a scenario where sparse, imbalanced data is
typically encountered, exemplified by a study where 278 out
of 80,149 ECGs were interpreted as AF [41]. To address this
dramatic imbalance when training a CNN, the AF data set can
be augmented with simulated ECGs with similar characteristics
with respect to, e.g., AF burden, APB and VPB occurrence, and
noise.

The poor AF detection performance presented in Table III
is largely explained by the facts that training and testing is
performed on different data sets, small data sets contain varying
leads, and considerable signal complexity due to the presence of
various non-AF arrhythmias. However, these results should be
viewed in light of the survey recently presented in [9] which
shows that a large number of studies reporting near-perfect
AF detection performance make use of the same database for
training and testing and include the same patient in both the
training and the test sets. Concerning simulator usefulness, the
results in Table III which show that training using real ECGs
does not offer much better performance than does training using
simulated ECGs suggest that the simulated ECGs are realistic.

XII. CONCLUSION

The proposed ECG simulator advances the modeling of ar-
rhythmias and noise/artifacts by introducing time-varying sig-
nal characteristics with the aim to increase signal complexity.
The three-part validation suggests that the simulated ECGs are
realistic and therefore of use for the evaluation of algorithmic
performance in various applications. Such applications include
data augmentation of incomplete databases and benchmarking
of algorithms, e.g., for arrhythmia detection, noise detection,
ECG-derived respiration, and QT–RR adaptation.

APPENDIX A
TRANSITION PROBABILITIES OF THE MARKOV CHAIN MODEL

The transition probabilities of the Markov chain model in
Section II can alternatively be defined in terms of rhythm burden
and mean episode duration, applying to each of the arrhythmias
in the set G = {AT,AF,BT,VPB}. The rhythm burden Bg is
defined as the ratio of the expected arrhythmia duration Tg and
the total duration T of the simulated ECG,

Bg =
Tg
T
, g ∈ G. (29)

The mean episode duration eg , expressed in number of beats,
is determined from the PMFs pg(l), except for a VPB which
is a single-beat arrhythmia and therefore eVPB = 1. Moreover,
the average RR interval d̄RR,g , expressed in seconds, is needed
which, depending on arrhythmia, is determined by the models
in Section VII-B and [5], except for the average RR interval
d̄RR,VPB,g of a VPB occurring in g ∈ {SR,AT,AF} which is
determined by the RR interval preceding the VPB.

Although SR is not an arrhythmia, its presence is, in the name
of conformity, also associated with a “burden”, given by

BSR =
nSR eSR d̄RR,SR

T
, (30)

where nSR is the number of SR episodes and eSR is the mean of
the exponentially distributed SR episode duration (expressed in
beats). By definition, the rhythm burdens sum to one,

BSR +BAT +BAF +BBT +BVPB = 1. (31)

The BT burden, unlinked to a VPB state, is given by

BBT =
nSR pSR→BT eBT d̄RR,BT

T
, (32)

where pSR→BT is the transition probability between SR and BT.
Similar to (30), the AT and AF burdens are given by

BAT =
nAT eAT d̄RR,AT

T
, (33)

BAF =
nAF eAF d̄RR,AF

T
, (34)

where nAT and nAF are the number of AT and AF episodes,
respectively. The burden of the VPB states is split between the
SR, AT, and AF states, proportionally to BSR, BAT and BAF:

BVPB = BVPB,SR +BVPB,AT +BVPB,AF, (35)

BVPB,g =
ng pg→VPB d̄RR,VPB,g

T
, g ∈ {SR,AT,AF}, (36)
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where d̄RR,VPB,g depends on βVPB,p and βVPB,f introduced in Sec-
tion IV-A. Before the transition probabilities can be determined,
nSR, nAT, nAF, and dSR need to be determined, whereas T ,
eg , and d̄RR,g for g ∈ {SR,AT,AF} are assumed to be known.
The probabilities pBT→SR, pVPB→SR, pVPB→AT, and pVPB→AF are
always set to 1.

The number of AT and AF episodes can be related to the other
variables by realizing that the number of transitions to either the
AT states or the AF states is the sum of the transitions from the
SR state and the respective VPB states:

nAT = nSR pSR→AT + nAT pAT→VPB, (37)

nAF = nSR pSR→AF + nAF pAF→VPB. (38)

The number of SR episodes is determined by the insight that the
transition probabilities from SR to any of the arrhythmias in G
must sum to one,

pSR→VPB + pSR→AT + pSR→AF + pSR→BT = 1. (39)

Using the above equations, nSR is found to be

nSR =
BATd̄RR,VPB,ATT −BVPB,ATeATd̄RR,ATT

d̄RR,VPB,ATeATd̄RR,AT
+

BBTT

eBTd̄RR,BT

+
BAFd̄RR,VPB,AFT −BVPB,AFeAFd̄RR,AFT

d̄RR,VPB,AFeAFd̄RR,AF

+
BVPB,SRT

d̄RR,VPB,SRd̄RR,SR
. (40)

Due to the minus sign in the numerator of the first and third
addends, BVPB,AT and BVPB,AF need to be constrained by a
threshold that depends on BAT and BAF, respectively, to avoid a
negative nSR. The mean SR episode duration is given by

eSR = max

(
TBSR

nSRd̄RR,SR
, 1

)
. (41)

The desired transition probabilities are determined from (32),
(33), (34), (36), (37), and (38) together with that both
pAT→SR + pAT→VPB and pAF→SR + pAF→VPB are equal to 1.

APPENDIX B
FITTING HERMITE FUNCTIONS

Estimation of the Hermite function parameters τ and σ is
easily accomplished by the grid search minimization proposed
below. By including the logistic function in the model, a five-
dimensional minimization problem arises which here is solved
by an iterative, LS-based, two-step estimation procedure where
estimation of the Hermite parameters is followed by estimation
of the logistic parameters cs, τs, and σs, then repeated until a
stopping criterion is met. Although the procedure is suboptimal,
it has been found to converge to parameter estimates which
provide an excellent fit.

0. The isolectric segment of each beat is set to zero by subtracting
the amplitude just before Q wave onset. The procedure is
initiated by ĉs,0 = 0 and i = 1.

1. Let yi(t) be the “jump-corrected” observed signal x(t),

yi(t) = x(t)− s(t; ĉs,i−1, τ̂s,i−1, σ̂s,i−1). (42)

Then, τ and σ are estimated using the LS criterion

[τ̂i, σ̂i] = argmin
τ,σ

∣∣∣∣∣∣yi(t)−
J−1∑
j=0

cj,i(τ, σ)ϕj (t− τ, σ)

∣∣∣∣∣∣
2

,

(43)
where the amplitudes cj,i(τ, σ) are easily determined thanks
to orthonormality,

cj,i (τ, σ) =

∫ +∞

−∞
yi(t)ϕj(t− τ, σ)dt. (44)

2. The parameters defining the logistic function are estimated
by minimizing the LS criterion

[ĉs,i, τ̂s,i, σ̂s,i] = arg min
cs,τs,σs

|ei(t)− s(t; cs, τs, σs,)|2 ,
(45)

where ei(t) = x(t)−∑j cj,i(τ̂ , σ̂)ϕj(t− τ̂ , σ̂). To ensure

that the QRS-to-T transition at time tp is smooth, ĉ(QRS)
s,i and

ĉ
(T)
s,i must have the same value, accomplished by the following

modification:

ĉ
(w)
s,i =

s
(
tp; ĉ

(QRS)
s,i , τ̂

(QRS)
s,i , σ̂

(QRS)
s,i

)
+s
(
tp; ĉ

(T)
s,i , τ̂

(T)
s,i , σ̂

(T)
s,i

)
2s(tp; 1, τ̂

(w)
s,i , σ̂

(w)
s,i )

,

(46)

where w ∈ {QRS,T}. Using the resulting estimates, the fitted
function is given by

x̂(t) =

J−1∑
j=0

cj,i(τ̂i, σ̂i)ϕj (t− τ̂i, σ̂i)− ĉs,is(σ̂s,i(t− τ̂s,i)).

(47)
yielding the LS error εi = |x(t)− x̂(t)|2.

3. The iterations are stopped when εi drops below a certain
threshold (typically already after one or two iterations), no
longer improves after a certain number of iterations, or when
ĉ(QRS)
s,i and ĉ(T)

s,i have opposite signs. If none of these criteria is
fulfilled, i = i+ 1, step 1 is repeated.

The estimates ĉ0 = c0(σ̂, τ̂), . . . , ĉJ−1 = cJ−1(σ̂, τ̂), σ̂, τ̂ ,
ĉs, σ̂s, and τ̂s are saved in a library of synthesized VPBs.

For the 987 low-noise 12-lead VPBs extracted from the IN-
CART database [17] and saved in the library, J = 6 functions
were fitted to the QRS and J = 4 functions to the T wave of each
lead, resulting in an average fitting error of 5.4% irrespective of
whether the logistic function was used or not. Thus, VPBs can
be modeled by Hermite functions alone.
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