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Abstract 

Aims: Coronary Artery Disease (CAD) is one of the 

main causes of life-threatening ventricular arrhythmias 

(LTVAs) leading to sudden cardiac death. CAD slows 

ventricular conduction across individuals, manifesting as 

heterogeneous QRS morphologies. This study aimed to 

identify distinct clusters of CAD individuals based on QRS 

morphology using unsupervised learning, and investigate 

their association with LTVA risk.  

Methods: An average heartbeat was derived from 10-

second electrocardiograms (ECGs, lead I) from 1,458 

individuals diagnosed with CAD in the UK Biobank study. 

An unsupervised clustering algorithm based on 3-nearest 

neighbours was used to classify each individual, then we 

evaluated the association of each cluster with LTVA risk. 

Results: There were a total of 65 LTVA events in the 

population. The algorithm distinguished 3 distinct clusters 

of QRS-related morphological features, which 

significantly differed in terms of LTVA events rate. Cluster 

2, characterized by the lowest QRS amplitudes and widest 

QRS complexes, was strongly associated with LTVA risk. 

Conclusions: Our analysis has identified CAD 

individuals at risk of LTVA using the QRS morphology. 

The identified cluster could be used to tailor care and 

provide refined risk assessment in CAD individuals to 

apply specific prevention measures. 

 

 

1. Introduction 

Sudden cardiac death (SCD) is a leading cause of CVD 

mortality, becoming a public health problem accounting 

for an estimated 15% – 20% of all deaths [1]. Life-

threatening ventricular arrhythmias (LTVAs) can be a 

precursor of SCD, in 80% of cases SCD occurs in patients 

with underlying coronary artery disease (CAD) in people 

over 50 years old [1,2]. 

The surface electrocardiogram (ECG) offers a rapid 

assessment of the underlying cardiac electrophysiology in 

a low-cost and non-invasive way. In particular, the QRS 

complex morphologies on the ECG reflect the ventricular 

conduction velocity that is reduced in the presence of 

CAD, and is associated with higher LTVA risk [3].  

Machine learning techniques have been widely used in 

the literature as affordable approaches to diagnose CAD 

[4]. Recent studies based on unsupervised clustering 

algorithms have demonstrated to be able to interpret 

heterogeneous clinical data to discover clinically important 

CAD subgroups with distinct clinical trajectories (i.e., 

myocardial infarction, stroke, and mortality)[5] and 

identify risk phenotypes of CAD in patients undergoing 

single-photon emission computed tomography (SPECT) 

myocardial perfusion imaging (MPI)[6]. Despite these 

advances in risk stratification in CAD, significant 

challenges remain.  

Current non-invasive SCD risk stratification strategies 

are only based on the left ventricular ejection fraction 

(LVEF) and the presence and severity of heart failure 

symptoms to predict SCD risk in patients with CAD [2]. 

Risk stratification studies specific of LTVA in CAD based 

on ECG morphology have not yet been performed. The risk 

assessment of LTVA in CAD based on the ECG 

morphology could be easily scaled for population-level 

screening. The aim of this study was to identify distinct 

groups of CAD individuals based on QRS morphology 

through the application of unsupervised learning 

techniques, and to investigate their association with LTVA 

risk.  

 

 

2. Methods 

2.1. UK Biobank Study cohort 

The UK Biobank study is a large-scale biomedical 

cohort that contains up-to-date health information from 

half a million participants from the United Kingdom [7]. 

Our study population consisted of 1,458 individuals from 

the Imaging study diagnosed with CAD in the UK Biobank 
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study at the time of the ECG acquisition. CAD was defined 

according to the WHO International Classification of 

Diseases (ICD) as ICD-9 410 to 412, or ICD-10 I21 to I24 

and I25.2 [8].  LTVA events were defined by the ICD-10 

codes as I47.2, I49.0, I46.0, I46.1, I46.9, I47.0 or 

Classification of Interventions and Procedures codes 

(OPCS) K576, K641, X503 or X504 

LTVA risk was defined as LTVA mortality or 

admission to hospital with a LTVA diagnosis 6-months 

before or after the CAD diagnosis. The available 

information included collections of 10-second ECGS (lead 

I) recorded at rest and health electronic records for each 

subject considered in the study. 

 

2.2. Signal Preprocessing and QRS-waves 

characterization 

Preprocessing of the ECG signals involved baseline 

wander removal through cubic splines interpolation, low 

pass filtering at 40 Hz to remove electric and muscle noise, 

and removal of ectopic beats. An average heartbeat was 

derived from the filtered ECG signal. Also, average 

heartbeats with high signal-to-noise ratio were dismissed. 

A single-lead wavelet-based delineator[9] was used to 

locate QRS-waves onset, peak and end timings.  

After preprocessing, the characterization of ECG 

waveforms was performed by extracting a vector of 

features. QRS morphology was mathematically 

characterized by a combination of Hermite functions[10]. 

We considered four Hermite functions to recover most of 

the QRS energy due to high QRS heterogeneity among 

each individual. This was confirmed by visual inspection 

of the reconstruction. The reconstruction error and the 

width of the Hermite functions were included as 

parameters in the model. Also, standard QRS biomarkers 

were considered, such as QRS amplitude, up and down 

slopes [11] and duration. Initially, ten QRS-related 

morphological features were considered for this model, as 

represented in Figure 1. 

 

 

2.3. Identification of Clusters using QRS 

Biomarkers 

Prior to performing the clustering of ECG heartbeats, 

feature selection techniques were applied [12]. This step 

facilitates the learning task and reduces problems of 

multicollinearity. Multicollinearity undermines the 

statistical significance of an independent variable [13]. In 

this study, a filter type feature selection algorithm based on 

the correlation between each pair of features was 

implemented.  The correlation threshold was set to be 

larger than 0.8.  

Then, a k-means clustering algorithm based on 3-

nearest neighbors was used to classify each individual into 

3 distinct clusters. The distance between neighbors was 

evaluated using the Euclidean distance. The clustering 

analysis was performed blindly to clinical data. 

 

2.4 Statistical Analysis 

Statistical analysis was performed using Matlab 

(version R2022b). Statistical nonparametric tests (chi-

square test) were performed to evaluate the association of 

each of the clusters with LTVA risk. The Kruskal Wallis 

statistical test was used to compare differences in 

association with LTVA risk across all clusters.  

The Wilcoxon rank sum test was used to compare the 

distance within each cluster’s centroid for subjects who 

had a LTVA event versus those who hadn’t. Statistical 

significance was assumed when P < 0.05. 

 

 
Figure 1. Representation of the QRS-related features extracted to 

perform the unsupervised clustering model.  
 

 

3. Results 

From the 1,458 CAD individuals included in this study 

(median age of 70 years [IQR 9] and 84% male), there were 

a total of 65 LTVA events (4.46%) in the population. There 

were no demographic differences between individuals who 

suffered an LTVA event and those who did not.  

The final model included eight QRS-related 

morphological features, i.e., amplitude, width, Hermite’s 

coefficients, Hermite’s reconstruction error and Hermite’s 

function width. Upward and downward slopes were 

removed from the model due to a high correlation with 

QRS amplitude and width.  

The unsupervised clustering algorithm identified 3 

distinct clusters of QRS-related morphological features in 

CAD, which significantly differed in terms of LTVA 
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events rate as shown in Figure 2.  Cluster 2 showed the 

highest rate of LTVA events, compared to the other two 

(6.39%, P = 0.004, Figure 2). Cluster 3 exhibited the 

lowest rate of LTVA events (3.22%, P = 0.04).  Kruskal 

Wallis statistical test demonstrated significant differences 

in association with LTVA risk across all clusters (P = 

0.02). 

 

 
Figure 2. The unsupervised clustering algorithm identified three 

distinct clusters based on QRS-related morphological features.  

 

A median heart beat was calculated from the individuals 

in each cluster. Differences in amplitude and width of QRS 

complexes are observed in the representative median beat 

for each cluster in Figure 3. Cluster 2 (which exhibited the 

highest rate of LTVA events) was mainly characterized by 

lower QRS amplitude, and a wider QRS than clusters 1 and 

3. Cluster 3 exhibited narrower QRS complexes as shown 

in Table 1.   

QRS amplitude showed the most significant differences 

among the clusters (P < 0.005), being the lowest in Cluster 

2 (median 592.24 µV) compared to Cluster 1 and Cluster 

3 (median 1291.74 µV and 903.53 µV, respectively). As 

well as significant differences in the reconstruction error of 

the Hermite functions and the duration of the QRS 

complex. Also, differences in morphological variations 

were described by Hermite’s function coefficients 2 and 3 

which are related to higher variability in Q and S waves. 

Figure 4 offers a graphical representation of these 

differences among clusters. 

The distribution of sex and age revealed similar ratios 

in the three clusters, suggesting that the differences among 

clusters were not determined by these main cardiovascular 

risk factors.  

 

 
Figure 3.  Median beat representative of each cluster obtained by 

the 3-nearest neighbors clustering algorithm 

 

 

4. Discussion and Conclusions 

Our analysis has identified in an unsupervised manner a 

cluster of individuals (cluster 2) with CAD at risk of LTVA 

using the QRS morphology. This cluster exhibited the 

lowest QRS amplitudes and widest QRS complexes which 

are associated with slowed ventricular conduction and high 

risk of SCD [1,14]. In accordance to the previous findings, 

this cluster had the highest rate of LTVA events 

demonstrating a strong association with LTVA risk.  

Unsupervised learning techniques are able to identify 

hidden ECG morphological patterns to provide a refined 

risk assessment. The importance of unsupervised learning 

algorithms relies on the ability to cluster unlabeled data 

according to associations within the data. Therefore, 

unsupervised learning algorithms have become a useful 

Table 1. Median and Interquartile Range (IQR) results for the features in each cluster.  

Features 

All Cluster 1 Cluster 2 Cluster 3 

p-value Median [IQR] Median [IQR] Median [IQR] Median [IQR] 

Amplitude 824.02 [386.48] 1291.74 [235.97] 592.24 [177.19] 903.53 [180.68] < 0.001 

Width 84.00 [28] 84.00 [26] 86.00 [32] 82.00 [24] < 0.001 

Hermite Width  12.81 [2.40] 13.12 [2.36] 12.73 [2.71] 12.73 [2.07] 0.06 

Hermite Error 0.02 [0.01] 0.02 [0.01] 0.03 [0.02] 0.02 [0.01] < 0.001 

Hermite Coef. 1 2.58 [0.63] 2.62 [0.57] 2.56 [0.77] 2.56 [0.53] 0.24 

Hermite Coef. 2 0.35 [0.32] 0.39 [0.26] 0.31 [0.34] 0.36 [0.30] < 0.001 

Hermite Coef. 3 -0.57 [0.63] -0.57 [0.53] -0.54 [0.81] -0.59 [0.55] < 0.001 

Hermite Coef. 4 -0.09 [0.41] -0.04 [0.35] -0.12 [0.46] -0.08 [0.38] 0.42 
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tool to explore disease associations in clinical data, where 

the outcome is unknown.  

Identification of CAD individuals at risk of LTVA 

through unsupervised techniques offers an early and 

reliable measure of SCD risk allowing physicians to apply 

specific prevention measures among groups of individuals. 

The ECG-based unsupervised clustering study is a useful 

method to infer LTVA risk. Given that the ECG is a low-

cost, widely available non-invasive tool, this method could 

be scaled for non-invasive population-level screening. 

The QRS and T-wave morphologies on the ECG reflect 

the ventricular conduction velocity and dispersion of 

repolarization, respectively, keeping key information for 

early screening of SCD in a non-invasive manner. Further 

studies will investigate the contribution of additional 

LTVA risk factors in CAD. 

  

Figure 4.  Comparison of the QRS-related morphological features 

in each cluster.   
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