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Characterization of Spatio-Temporal Cardiac
Action Potential Variability at Baseline and
Under S-Adrenergic Stimulation by Combined
Unscented Kalman Filter and Double Greedy
Dimension Reduction
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Pablo Laguna

Abstract—Objective: Elevated spatio-temporal variability
of human ventricular repolarization has been related to in-
creased risk for ventricular arrhythmias and sudden cardiac
death, particularly under 3-adrenergic stimulation (3-AS).
This work presents a methodology for theoretical charac-
terization of temporal and spatial repolarization variability
at baseline conditions and in response to 3-AS. For any
measured voltage trace, the proposed methodology esti-
mates the parameters and state variables of an underlying
human ventricular action potential (AP) model by combin-
ing Double Greedy Dimension Reduction (DGDR) with au-
tomatic selection of biomarkers and the Unscented Kalman
Filter (UKF). Such theoretical characterization can facilitate
subsequent characterization of underlying variability mech-
anisms. Material and Methods: Given an AP trace, initial es-
timates for the ionic conductances in a stochastic version
of the baseline human ventricular O’Hara et al. model were
obtained by DGDR. Those estimates served to initialize
and update model parameter estimates by the UKF method
based on formulation of an associated nonlinear state-
space representation and joint estimation of model param-
eters and state variables. Similarly, 3-AS-induced phospho-
rylation levels of cellular substrates were estimated by the
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DGDR-UKF methodology. Performance was tested by build-
ing an experimentally-calibrated population of virtual cells,
from which synthetic AP traces were generated for baseline
and 3-AS conditions. Results: The combined DGDR-UKF
methodology led to 25% reduction in the error associated
with estimation of ionic current conductances at baseline
conditions and phosphorylation levels under 3-AS with re-
spect to individual DGDR and UKF methods. This improve-
ment was not at the expense of higher computational load,
which was diminished by 90% with respect to the individual
UKF method. Both temporal and spatial AP variability of
repolarization were accurately characterized by the DGDR-
UKF methodology. Conclusions: A combined DGDR-UKF
methodology is proposed for parameter and state variable
estimation of human ventricular cell models from avail-
able AP traces at baseline and under 3-AS. This method-
ology improves the estimation performance and reduces
the convergence time with respect to individual DGDR and
UKF methods and renders a suitable approach for compu-
tational characterization of spatio-temporal repolarization
variability to be used for ascertainment of variability mech-
anisms and its relation to arrhythmogenesis.

Index Terms—Cardiac electrophysiological models,
spatio-temporal variability, parameter estimation, joint
estimation, unscented kalman filter, double greedy
dimension reduction.

|. INTRODUCTION

LINICAL, experimental and computational studies have

demonstrated the important role of cardiac spatio-
temporal variability in electrical function at a whole range
of scales from the cellular action potential (AP) to the body
surface electrocardiogram [1]-[7]. Spatial variability refers to
electrophysiological differences between cardiac cells or regions
of cells and has been to some extent attributed to distinct
ionic current contributions to individual APs [8]-[12]. Temporal
variability refers to AP differences between cardiac beats and
has been suggested to arise from random fluctuations in ionic
currents as well as variations in intracellular calcium handling
[8], [10], [13]-[16]. Particularly regarding variability in ven-
tricular repolarization, i.e. in the return of ventricular cells to
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their resting state after a depolarization, numerous investigations
have associated elevated temporal and/or spatial variability with
pro-arrhythmicity and sudden cardiac death [17]-[21].

[-adrenergic stimulation (8-AS) has been shown to pro-
duce exaggerated increases in beat-to-beat variability of re-
polarization (BVR), particularly under conditions of reduced
repolarization reserve [2], [22], [23]. In vitro experiments in
isolated cardiomyocytes have suggested that this elevation in
BVR by §-AS is a relevant contributor to arrhythmogenesis by
the development of afterdepolarizations and triggered activity
[2], [9], [22], [24], [25]. In an in vivo animal model of long-
QT1 syndrome, 3-AS has been shown to induce increments in
both temporal and spatial dispersion of repolarization and to
facilitate the development of early afterdepolarizations (EADs)
and left ventricular aftercontractions, altogether providing the
substrate and triggers for the ignition of Torsade de Pointes,
a life-threatening ventricular arrhythmia [23]. Computational
investigations have further contributed to shed light into the
mechanisms underlying the relationship between 3-AS-induced
elevation in BVR and pro-arrhythmic risk [25]-[27]. Neverthe-
less, most of the computational approaches employed so far in
the literature do not concomitantly account for realistic modeling
of both cell-to-cell and beat-to-beat AP differences [21], [26],
[28]-[32], which should be fundamental to better understand
the relationship between BVR and arrhythmogenesis and its
modulation by 3-AS.

For the above reasons, the development of stochastic car-
diac computational AP models fed with information acquired
from human cells or tissues becomes of major interest. In
recent years, different methodologies have been proposed to
integrate information from cardiac AP signals, or from a set
of markers derived from them, by identifying the values of
parameters and/or state variables of an underlying electrophysi-
ological model. This allows obtaining a population of virtual AP
models representative of a set of experimental data of interest,
with the advantage of facilitating assessment of the causes and
consequences of BVR by simultaneous assessment of voltage
and ionic currents/concentrations. In [28]-[30], methodologies
based on Genetic Algorithms, Moment-Matching and Gaussian
Process Emulators were designed for parameter identification
at a population level, thus allowing to reproduce the overall AP
characteristics in the investigated cell population but hampering
individual identification of the parameters associated with each
cellular AP trace. In [31], [32] ionic parameters were estimated
from voltage signals by using Markov Chain Monte Carlo
(MCMC)-based methods, which enable parameter estimation
for each individual cell. However, on top of the high computa-
tional load associated with these methods, they do not account
for beat-to-beat variability and do not provide an estimation
for other non-measurable state variables of the model, such as
ionic concentrations or channel open probabilities, as neither
do the methods proposed in [28]-[30]. In a work of ours [33],
a methodology based on nonlinear state-space representations
[34] and the Unscented Kalman Filter (UKF) [35] was proposed
to identify the parameters and state variables of stochastic hu-
man ventricular AP models. This methodology provided robust
one-to-one model parameter and state estimation for each AP

trace individually, but the computational load was high and it
required a long AP signal for accurate estimation.

On the basis of the above described limitations, a methodol-
ogy for AP model parameter and state estimation that combines
fast methodologies based on biomarkers‘ information with other
more complex methodologies based on AP traces’ information
could be most useful. When condensing AP data into a set
of biomarkers, it is important to keep a sufficient amount of
information to avoid any risk of degradation in the estimation.
To ensure this, the number of biomarkers, also called dictionary
entries, can be potentially substantial (hundreds, thousands, ...)
and even higher than the sample size. In this regime, various
phenomena can appear, referred to as curse of dimensionality
[36], which require data processing to improve classification or
regression. Recent studies have addressed this by using Double
Greedy Dimension Reduction (DGDR) [37]. In DGDR, the pa-
rameter estimations from AP signals are obtained by building a
low-dimensional classifier input, which is generated by project-
ing the dictionary entries into a low-dimensional linear subspace
to improve the success rate of a given classification problem.
This linear subspace is automatically built by a sparse linear
combination of the dictionary entries to prevent any over-fitting
risk [38].

The present study proposes the combined use of DGDR-
and UKF-based methodologies to extract information from AP
signals at baseline and under 3-AS. Initial DGDR parameter
estimates are used to initialize and/or update subsequent UKF
estimates so as to facilitate that these remain close to their actual
values. To assess the performance of our proposed methodology,
a population of stochastic human ventricular cell models is
constructed and used to run simulations at baseline conditions
and following 8-AS. Methodological performance is first tested
over the synthetic AP signals generated for baseline conditions,
from which a set of ionic current conductances are inferred
for each virtual cell. In a second step, the methodology is
tested over synthetic AP signals of the same population fol-
lowing 3-AS, from which the phosphorylation levels of a set
of cellular substrates are inferred, considering the previously
identified ionic conductances. The ability of our methodol-
ogy to characterize spatial and temporal variability in human
ventricular repolarization is demonstrated, showing remarkable
improvement with respect to the individual use of DGDR- or
UKF-based methods while keeping the computational load at
affordable levels.

To the best of our knowledge, this is the first work where a
biomarker-based estimation method, like DGDR, and an AP-
driven method, like the one grounded on state-space represen-
tations and UKEF, are combined to obtain a more robust and
faster parameter and state variable identification for cardiac
AP models. Another major novelty of the present work lies on
the fact that parameters and state variables of an underlying
cardiac AP model are not only identified for baseline conditions,
but, importantly, for 3-AS conditions. This is particularly rele-
vant provided the role of 3-AS in modulating spatio-temporal
ventricular repolarization variability and facilitating the devel-
opment of arrhythmias at tissue and whole-heart levels. Our
work thus provides an important tool to assess mechanisms
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underlying cardiac spatio-temporal variability and identify those
with pro-arrhythmic potential.

Il. METHODS
A. Stochastic AP Models at Baseline and Under -AS

1) Stochastic Human Ventricular ORd Model: A stochastic
version of the O’Hara-Virag-Varr6-Rudy (ORd) human ventric-
ular epicardial AP model [39] was developed to account for
BVR. Following the subunit-based approach described in [8],
the set of ordinary differential equations (ODEs) describing ion
channel gating for the four principal currents active during AP
repolarization, namely Iy (slow delayed rectifier potassium
current), I, (rapid delayed rectifier potassium current), [y,
(transient outward potassium current) and /1, (L-type calcium
current), were transformed into stochastic differential equations
(SDESs) by adding a stochastic term of the form shown in Eq. 1
for a generic ionic gate x4, where x,_ is the steady-state value
and 7, is the time constant of this generic ionic gate x:

Lgs — x‘th n \/xgoo + (1 -2z )74 dw
T ngNg

ey

dxgy =
g

The added stochastic term containing the increments of a
Wiener process (dw) multiplied by a factor inversely propor-
tional to the number of ion channels (N,) of the corresponding
type was added to the deterministic term defining x, gating.
By including this stochastic term with an accurately estimated
number of channels, realistic fluctuations in the ionic gates and
the whole-cell ionic currents are reproduced, which are the
source for BVR in cellular AP. The number of channels N,
associated with Ik, Ixr, Iy, and Ic, g, were calculated by di-
viding the default ionic conductance values in the ORd model by
the corresponding single channel conductances experimentally
reported in the literature, as described in [33].

2) B-Adrenergic Signaling Model: 3-AS effects were mod-
eled following the approach described in [26], where a modified
version of the Xie ef al. model [40], with definition of graded
and dynamic phosphorylation levels of cellular protein kinase A
(PKA) substrates, was used. The Xie et al. model was updated
from the original 3-adrenergic signaling formulation proposed
in [41] to slow down the Ik, phosphorylation and dephospho-
rylation rate constants to fit experimental observations. PKA-
mediated phosphorylation of phospholemman was accounted
for in [40] by increasing the Na™-K* (NaK) pump affinity for
intracellular Na™ concentration.

B. Synthetic Data

A population of stochastic AP models was constructed to re-
produce the experimentally reported inter-individual variability
in human ventricular electrophysiological properties. An initial
population of virtual cells was generated by using a Monte-Carlo
method in which the conductances of eight main ionic conduc-
tances were varied in the range +100% of their nominal values
in the ORd model, with those currents being: Ixs; Ixr; L1}
Ioqr; inward rectifier potassium current, I51; sodium current,

TABLE |
CALIBRATION CRITERIA FOR HUMAN VENTRICULAR CELL MODELS

AP characteristic  Min. accept. value Max. accept. value
Under baseline conditions ( [39], [42], [43])

APDgg (ms) 178.1 4427

APD50 (ms) 106.6 349.4

RMP (mV) -94.4 -78.5

Voeal (mV) 73 -
Under 90% 1 s block ( [39])

AAPDgg (%) -54.4 62
Under 70% I, block ( [44])

AAPDgq (%) 34.25 91.94
Under 50% I block ( [45])

AAPDgg (%) -5.26 14.86

Naj’ concentration under baseline conditions ( [46])
Max. conc. (uM) 39.27

Caf+ concentration under baseline conditions ( [47])
Max. systolic (M) 2.23
Max. diastolic (uM) 0.40

Inq; sodium-calcium exchanger current, In,cq; and sodium-
potassium pump current, I, g . This corresponded to definition
of eight multiplying conductance factors, namely O, O, 040,
Ocars Ox1,ONas ONaCas ONak, varying between O and 2. From
the 8000 initially generated models, only 2373 models pre-
senting electrophysiological properties within physiologically
plausible limits were retained, with those limits shown in Table 1
as determined based on [39], [42]-[47]. The quantified proper-
ties at baseline included AP duration (APD) at 90% (APDg)
and 50% (APDjq) repolarization, resting membrane potential
(RMP), peak membrane potential (Vea) and maximal concen-
trations of intracellular sodium (N aj‘) and calcium (Ca?+). Also,
the percentage of change in APDgg (AAPDy) after potassium
current inhibitions were computed for each individual cell and
used as part of the calibration process. The retained models
represent virtual cells with distinct ionic properties.

To simulate a range of potentially different 3-AS effects in
the constructed population of stochastic AP models, multiplying
factors 0ycar, Orxs and 0fnqx for the PKA phosphorylation
levels foar, fics and fqx Were varied so that these phospho-
rylation levels ranged between the values at baseline (i.e. without
Isoproterenol (ISO)) and the values after application of an ISO
dose of 1 uM associated with maximal effects. This population
of phosphorylation levels, generated by using a Monte-Carlo
method, was combined with the above described population of
stochastic AP models to obtain a global population of 2373 mod-
els with 11 simultaneously varying parameters. This population
was divided into training and validation subpopulations with
2000 and 373 models, respectively.

AP traces of 1100 beats were simulated at baseline and
under 3-AS, respectively, by applying 1-ms rectangular stimulus
pulses of 52 pA/pF amplitude delivered at 1 Hz pacing frequency.
The Euler-Maruyama scheme was used to solve the SDEs with
an integration time step of dt = 0.02 ms that ensured numerical
convergence. The last 100 beats of each condition (baseline,
B-AS) were used for further analysis to ensure convergence had
been reached.
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Independent standard Gaussian noise was added to the syn-
thetically generated AP data, as described in [33], to simulate
recording noise as in experimentally acquired data. These noisy
APs were input to the estimation methodologies tested in this
study.

C. State-Space Formulation and Augmented States

1) State-Space Formulation: The stochastic version of the
ORd model with unknown ionic conductance factors (for base-
line conditions) or phosphorylation levels (for 5-AS condi-
tions) was formulated as a non-linear discrete-time state-space
model [34] following the approach described in [33]. In these
state-space models the only measured variable was considered
to be transmembrane voltage, while there were a number of
hidden variables, including ionic concentrations and opening
probabilities of ionic gates.

For baseline conditions, model parameters to be es-
timated were the factors multiplying the nominal con-
ductances of Ixs, Irxr, lio, Icarn. Ik1, INas INaca
and Iy.x. Hence, the vector of static model parameters
was 0 = {0k, 0kr,0t0,0car,0k1,0Na, ONaCas ONaKk }, TED-
resenting variations in the ionic conductances relative to the
default values in the ORd model, I; = I; orqflj, Where j €
{Ks,Kr,to,CaL, K1, Na, NaCa, NaK }.Note that the same
factor ¢; applies to the number of ion channels of each species:
N; = N, ordf;, as the unitary conductance of each ionic
species was assumed to be constant based on reported exper-
imental findings [48].

For 3-AS conditions, model parameters to be estimated were
the factors multiplying the phosphorylation levels of the PKA
substrates whose phosphorylation had a remarkably higher im-
pact on the AP as evaluated in performed computational tests,
which were [k, Icqr, and Ingi currents [49], in agreement
with findings reported for other (-adrenergic signaling mod-
els [50]. Consequently, the vector of static model parameters
was 0 = {0¢ks,0¢car, 0fNax }. representing variations in the
phosphorylation levels fxs, foqr and fy.x relative to the
default values in the modified Xie model, f; = f; xic0;, where
j € {Ks,CaL, NaK}.Forboth baseline and 3-AS conditions,
the vector 6 of model parameters was estimated for each given
input AP trace.

The state-space representations were of the form:

x(k) = f(x(k = 1),q(k - 1),0) 2
y(k) = h(x(k)) +r(k), 3)

where the process equation (Eq. 2) was defined by a non-linear
function f(-) with three different input vectors: x(k), containing
the state variables of the stochastic AP model; q(k) representing
non-additive process noises related to Wiener increments; and 6
containing the model parameters to be estimated. On the other
hand, the measurement equation (Eq. 3) was defined by the
function h(-) relating the measured variable (transmembrane
voltage) with the vector of the model state variables. In this
study, y(k) = v(k) + r(k), where v(k) represents the noiseless
AP and r(k) was assumed to be an additive white Gaussian
noise.

2) Augmented State-Space: To perform joint estimation of
model parameters and state variables for a given input noisy AP,
the state-space representation of Eq. (2)—(3) was reformulated as
described in [33]. In brief, state augmentation [34] was applied
to convert the static parameter vector € into a time-varying
parameter vector 6(k) using a random walk model with drift:

“

where (k) represents an artificial noise whose components
were defined by i.i.d. zero-mean Gaussian processes with very
small variance. An augmented state vector z(k) was built by
joining the state variable vector x(k) with the new parameter
vector O(k) and the process noise vector q(k):

0(k) = 0(k —1) + 8(k),

T
[x(k). (k). B(k)

The previous process (Eq. 2) and measurement equations
(Eq. 3) were replaced with:

z(k) = fa(z(k — 1)) + €(k) (©)
y(k) = ha(z(k)) +r(k), ©)

where f, and h,, are the augmented versions of f and h, respec-
tively, and e(k) contains noises related to the Wiener increments
of the stochastic AP model represented by q(k) and to the new

parameter vector 61 (k) represented by d(k).

z(k) = &)

D. Individual and Combined DGDR- and UKF-Based
Methods

1) DGDR: The DGDR method was used to estimate the
parameters of the stochastic AP model, which represent part
of the components of the augmented state vector z(k). DGDR is
based on high-dimensional data analysis and aims at mitigating
the curse of dimensionality [36] by projecting data into a low
subspace through a sparse linear combination of the dictionary
entries. In this work, the dictionary entries comprised a set of
biomarkers and combinations of them, with these biomarkers
related to AP amplitude and duration, such as Vycqr, RMP
and APD at different repolarization levels, biomarkers related to
BVR, such as short and long-term variability, as well as wavelet
decomposition of the input AP signal. In [37], data projection
is performed such that a classification success rate is maximal,
which can be achieved by maximizing a score function based
on the distributions of the projected data of each class. To apply
the DGDR method to regression problems, the cost function
was replaced by an /2 norm that minimizes the error between
the actual values of the ionic conductances or phosphorylation
levels and a sparse linear combination of the dictionary entries
in a training set:

ng

Z wigi — 0

i=1

®)

w, = argmin
Wi

22

where w; are the weights to be determined, n is the number of
dictionary entries, g; is the i*" dictionary entry of the training
set and 6. are the known values of the parameters in the training
set.
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Fig.1. Left panel: Estimated (f¢,1,) vs actual (8¢, 1,) values of the fac-
tor multiplying maximal I, in the training and validation populations.
Right panel: Density of the absolute error in the estimation of ¢, for
the training and validation sets.

As in [37], the early stopping criterion was applied on a
validation set to avoid over-fitting risk, which leads to a sparse
combination of the dictionary entries and the weight vector
(lw|leo < ng). Thus, given a new AP trace in the validation
set, the learned linear combination was applied to estimate
the model parameters. For this study the number of extracted
dictionary entries was 889, of which 100 were selected for the
linear combination, as this already led to improvements in all
estimation errors below 1073 when adding a new dictionary
entry over the training set. The linear combination of 100 entries
was a good choice to minimize the cost function in the training
set while avoiding over-fitting in the validation set. As expected,
the dictionary entries selected for the estimation of each model
parameter were strongly related to the AP phase where the ionic
conductances or phosphorylation factors have a more dominant
role. As an example, the most relevant biomarkers for estimation
of O, and O, were related to the AP upstroke velocity and
RMP, respectively.

A learning phase was separately performed for each of the
model parameters to be estimated. The selected dictionary
entries were not the same, which is a direct consequence of
the goal-oriented concept of the DGDR method and ensures a
certain explanation of the selected entries. The full process for
the training step took around 3 hours on about 50 processors
for the estimation of the eight ionic current conductances at
baseline and proportionally less for the estimation of the three
phosphorylation levels under 5-AS. Once the learning phase
was performed, the estimation of a new sample was immediate
(scalar product between two vectors).

This training process was performed over a population of 2000
models while evaluation was carried out over 373 models, lead-
ing to adequate levels of accuracy. Fig. 1 (left panel) illustrates
an example of ¢, estimation by DGDR, showing the uniform
dispersion of the point cloud that provides a measure of the
uncertainty in the estimation. In addition, the DGDR method led
to similar accuracy levels for training and evaluation populations
as can be observed in Fig. 1 (right panel) where the distribution
of the absolute error between the actual (6-,7) and estimated
(éC’a 1) parameter values is shown. Similar results were obtained
in the estimation of the other model parameters. These results

served to support the adequacy of separating the population into
a training set of 2000 models and a validation set of 373 models.

2) UKF: The UKF [35] was used to estimate the states of
the nonlinear state-space formulation described by Eq. (6)—(7),
which provides estimates for the parameters and state variables
of a stochastic human ventricular cell model for any given AP
trace. The values of three UKF setting parameters, commonly
denoted by «, 5 and k, were set to define the spreading of Sigma-
Points around the mean state estimates (controlled by « and k)
and to reflect prior knowledge of states’ statistical distributions
(controlled by /). In this work, « = 1, # = 0 and kK = 3-L
were set [51], being L the number of states (L = 71 for baseline
and L = 68 for 3-AS conditions). This led to a value for the
spread of the state covariance matrix corresponding to /7y =
1.7321, in accordance with feasible values [52], and to sums of
weights of means and covariances equal to one: Zf-io Wi(c) =1,
EZL W(m -1

Two add1t10na1 hyper-parameters were set in the UKF imple-
mentation, which determine the process noise variance 05 (the
same for all components of the model parameter vector) and
the measurement noise variance o2. A range of values for o
were tested and the one rendering best performance was selected.
The value for 02 was set to 1 mV [33].

The initialization of the mean and covariance matrix of the
state vector was obtained from the training population. The state
variables related to stochastic AP model parameters (represent-
ing multiplying factors for ionic conductances at baseline and for
phosphorylation levels under 3-AS) were constrained to remain
in the interval [0, 2].

3) Combined UKF-DGDR: DGDR and UKF methods were
combined to enhance their individual characteristics in terms
of estimation accuracy and computational cost. In particular,
DGDR was used for initialization and updating of UKF esti-
mation to take parameter estimates closer to their actual values
and to avoid local minima in the estimation:

Initialization (INI): The model parameter estimates obtained
by DGDR were used to initialize the corresponding elements
of the state vector, which was subsequently estimated by UKF.
DGDR provided estimates for both the mean of the parameter
vector, 0PGPR and its covariance matrix, PPGDPE,

Updating (UP): The model parameter estimates obtained by
DGDR were used to update the UKF-based parameter estimation
in each cardiac cycle. At the end of each cycle, the corresponding
elements of the state vector estimated by UKF (mean Z; and
covariance matrix P) were updated according to the estimates

for the mean P SPR gnd covariance matrix PPSPR obtained
by DGDR as follows:

d = 2PSPR —Hz, 9

S = HP,HT 4 pPGDR (10)

Kup =P HTS™, (11)

with z2PGPR — [On,, ¢DGDR Ony|, where On, isa N, x 1

zero vector and On, is a N, x 1 zero vector, and His a (N, +
Ny + Ng) x (N; + Ng + N,) matrix of 0 values everywhere
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except for the last Ny x Ny submatrix occupied by an identity
matrix. In the above, Ny is the number of model parameters, N,
is the number of model state variables and IV, is the number of
Wiener processes.

The UKF-based updated estimates for the mean and the
covariance matrix of the state vector were:

Zj

Py

(12)
(13)

=2, + Kypd
= (In, — K,,H)Py.

up

up

E. Performance Evaluation

The performance of DGDR, UKF and their combination was
evaluated for estimation of eight ionic current conductances at
baseline conditions and for estimation of three phosphorylation
levels under 3-AS conditions. In the latter case, the values for the
eight ionic conductances were set at those estimated at baseline.
The estimation performance was evaluated by [33]:

1) AP Estimation: The root mean square error between the
original noiseless AP trace and the estimated AP trace was
calculated over the last 5 cycles,

b=\ e Y otk — o),

where K is the number of samples contained within the last
N = 5 cycles.

2) State and Parameter Estimation: The mean absolute error
between the actual and estimated values of each state was
calculated over the last 5 cycles,

(14)

Kn—1

1 A~
" = T I;_O {12 (k) — 2;(k)|} . (15)

where z; is the actual value of the state variable j and Z; is the
estimated value, with j = 1,..., L, being L the length of the
augmented state vector z(k).

A global accuracy measurement 7jg of model parameter esti-
mation was defined as the average of the mean absolute errors
M,,% = 1,..., Ng,corresponding to all estimated model param-
eters:

_ 1
Ne = MZ%’,
6 co

(16)

where 7, is the mean relative error for model parameter 6’ € 0
and M = 8 (for conductance factors) or M = 3 (for phospho-
rylation factors).

3) Reproducibility of AP Markers: AP-derived biomarkers
were calculated from the noiseless AP trace and from the
estimated AP trace calculated according to the estimated val-
ues for the model parameters. AP biomarkers comprised mean
and standard deviation of APDgq (in the following denoted
by APD) and short-term variability (STV) of APD calculated
as the average distance perpendicular to the identity line in
the Poincaré plot [33], in both cases evaluated over the last
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=
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R
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Fig. 2. Average of mean absolute parameter estimation error E[7,] in

the ORd model as a function of the standard deviation of the process
noise oy.

30 cycles:

N
1
MAPDgy = Z APDgo(n),

n=1

a7

1 N
SAPDgy = \/N—l anl(APDgo(n) — MaPDy, )2,  (18)

— Nil [APDyg(n + 1) — APDgo (n)|

(N —1)v2 (19

n=1

[ll. RESULTS
A. Implementation of UKF Method

The performance of the UKF method as a function of the
process noise standard deviation oy is illustrated in Fig. 2, which
shows the mean parameter estimation error in the ORd model
when varying oy by several orders of magnitude. The minimal
average error E[7y] was achieved for oy = 10~8, which was
used for all subsequent analyses. In the case of the root mean
square error in AP estimation, &,, its values were minimally
affected by the choice of oy for all tested oy values.

In the following sections the estimation performances of the
DGDR and UKF methods individually and in combination are
presented.

B. Combined DGDR and UKF Methods:
Initialization Effects

The use of the estimates obtained by DGDR for the mean,
OPGDR  and the covariance matrix, PPGPR of the model
parameter vector as initialization for the UKF method led to two
important benefits. On the one hand, it reduced the time required
for the estimates to reach convergence, in turn diminishing the
computational cost. On the other hand, it led to more accurate
estimates, as shown in Fig. 3 for the estimation of 6, in one of
the models of the population at baseline conditions. While for
the individual UKF method more than 40 beats were required
for the estimation error to be below 0.04, when the combined
UKF+INI method was used the number of required beats was 5
for that particular example.
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Fig. 3. Example of actual 6y, value and time course of 0y, as

estimated by DGDR, UKF and UKF+INI methods for a virtual cell at
baseline.
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Fig. 4. Example of actual 0k, value and time course of éK,,. as
estimated by DGDR, UKF and UKF+UP methods for a virtual cell at
baseline.

C. Combined DGDR and UKF Methods:
Updating Effects

The use of the estimates obtained by DGDR for the mean,
GPGDR  and the covariance matrix, PPGPR_ of the model
parameter vector to update the UKF estimation at the end of
each beat helped to retain the parameter estimates close to the
actual parameter values and to reduce the uncertainty in the
estimation, as confirmed by a reduction in the estimation covari-
ance matrix. Additionally, this UKF+UP approach diminished
the convergence time and, thus, the associated computational
cost. The benefit of using the DGDR-derived estimates for UKF
updating is illustrated in Fig. 4 for the estimation of 6, in one
of the models of the population at baseline conditions. When
only UKF is employed, the parameter estimates may fall in a
local minimum and may never reach a value close to the actual
one. As can be observed from the figure, the UKF and UKF+UP
estimates were the same for the first beat whereas the updating
subsequently led to remarkably enhanced results.

D. Performance Comparison

The performances of the individual DGDR and UKF methods
and their combinations, either by initialization and/or updating,
were assessed in terms of the average mean Eijy] and average
standard deviation E[a,,] of the absolute error. Top panel of
Fig. 5 illustrates E[7] for the five evaluated methods at base-
line conditions. As can be seen from the figure, the individual
DGDR and UKF methods led to approximately the same level
of error (E|[G,,] values of 0.1806 and 0.1775, respectively),
with a larger associated computational cost in the case of the
UKF method. The combination of DGDR and UKF remarkably
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>
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=
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£
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m L L L L L
DGDR UKF UKF+INI ~ UKF+UP UKF+INI+UP
Fig. 5. Average over the validation population at baseline of mean

(top panel) and standard deviation (bottom panel) of absolute parameter
estimation error 74 for the five evaluated methods.

improved the estimation performance, either when combined
through initialization or through update and, particularly, when
combined through both (E[7,,] values of 0.1526 for UKF+INI,
0.1396 for UKF+UP and 0.1350 for UKF+INI+UP). Bottom
panel of Fig. 5 presents the estimation uncertainty for the five
evaluated methods. As can be observed, initialization and up-
dating by DGDR contributed to reduce the parameter estimation
uncertainty of the UKF method.

Fig. 6 shows boxplots for the mean absolute error in the
estimation of each ionic conductance factor by each of the five
evaluated methods at baseline conditions. As can be observed
from the figure, the combined UKF+INI+UP method presents
better performance than the individual DGDR and UKF methods
for practically all estimated factors. The most accurate results
were obtained for 6 ,, with median estimation errors 0 N being
lower than 0.05. On the other hand, the least accurate results were
obtained for Ok s, Onaca and On ok -

Fig. 7 presents results related to estimation uncertainty. Fig. 7,
left panel, illustrates the time course of the estimation uncer-
tainty quantified by the square root of the covariance matrix
V/Pnor in the estimation of Oy, for one virtual cell in the
population at baseline conditions. As can be observed from the
figure, the combination of DGDR and UKF presented lower
uncertainty than the individual DGDR and UKF methods, with
the impact of updating being notably larger than that of initializa-
tion. Fig. 7, right panel, provides an additional characterization
of the estimation uncertainty quantified by the number of beats
required by each UKF-based method to reach the same value of
the averaged standard deviation of the absolute estimation errors
as the individual UKF. The impact of updating on the reduction
of the estimation uncertainty is clear from this figure too.

E. Replication of AP Traces and Biomarkers at Baseline

The performance of the five proposed methods to replicate
AP traces at baseline conditions was assessed by generating
APs from the ORd model with the different sets of estimated
parameters and by comparing them with the input AP traces.
Also, the comparison was established in terms of AP-derived
biomarkers like APD and STV. Fig. 8, left panel, shows the
probability density function of the differences between the APD
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Fig. 6. Boxplots of absolute estimation errors 7, for the factors mul-
tiplying ionic current conductances calculated for the five evaluated
methods. Statistically significant differences by Wilcoxon signed-rank
test (p-value < 0.05) are denoted by *, while non-significant differences
are denoted by n.s, for a number of cells equal to 373.
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Fig. 7. Left panel: Time course of estimation uncertainty in terms of
square root of covariance matrix v/ Py, for each of the five evaluated
methods. Right panel: Number of beats required by each evaluated
method to reach the same level of accuracy as the UKF method,
as quantified by the averaged covariance over all estimated model
parameters.

from the input AP trace and the APD calculated from the esti-
mated AP trace for DGDR, UKF and UKF+INI+UP. Similarly,
Fig. 8, right panel, shows results for STV. As can be observed
from the figure, the combined UKF+INI+UP method provides
the best fitting to the actual data, as confirmed by the fact that
the distributions of AAPD and ASTV are more concentrated

Baseline conditions
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0.1 . UKF
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>
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B
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Fig. 8. Probability density function of AAPD (left panel) and ASTV
(right panel) for the validation population, with AAPD (ASTV, respec-
tively) calculated as the difference between APD (STV, respectively)
from the input AP trace and APD (STV, respectively) from the estimated
AP trace for each evaluated method under baseline conditions.
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Fig. 9. Boxplots of absolute estimation errors ny for the factors multi-
plying ISO-induced phosphorylation levels calculated for three evaluated
methods. Statistically significant differences by Wilcoxon signed-rank
test (p-value < 0.05) are denoted by =, while non-significant differences
are denoted by n.s, for a number of cells equal to 373.

around 0. On the other hand, the DGDR method presents reduced
accuracy for APD estimation, although very similar to UKF and
UKF+INI+UP for STV estimation.

F. Estimation of Phosphorylation Factors, AP Traces and
Biomarkers Under 3-AS

Considering the ionic conductance estimates obtained for
baseline conditions, the next step was to test the performance
of DGDR, UKF and UKF+INI+UP to estimate the phosphory-
lation levels for the validation population of models under 3-AS
effects. Fig. 9 shows boxplots of the mean absolute errors 77, for
the estimation of the three ISO-induced phosphorylation levels.
As can be observed from the figure, the UKF+INI+UP method
increased the accuracy in the estimation of 0y s and 0 ¢ y o ¢ With
respect to the individual DGDR and UKF methods, whereas for
0 rcor, UKF was slightly better in terms of median absolute error,
but not in terms of averaged absolute error (79 = 0.34 for both
methodologies). Taking together the three estimated factors for
the phosphorylation levels and results over the whole validation
population, the combined UKF+INI+UP method led to a re-
duction in the averaged mean absolute error, E[7jg|, of 15.29%
and 20.01% with respect to the individual use of DGDR and
UKEF, respectively. The average mean absolute errors, E[#j], for
ISO-induced phosphorylation level factors were higher (0.38,
0.40 and 0.32 for DGDR, UKF and combination respectively)
than those obtained for ionic conductance factors due to the fact
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Fig. 10.  Probability density function of AAPD (left panel) and ASTV
(right panel) for the validation population, with AAPD (ASTV, respec-
tively) calculated as the difference between APD (STV, respectively)
from the input AP trace and APD (STV, respectively) from the estimated
AP trace for each evaluated method under 3-AS conditions.
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Fig. 11.  Actual and estimated APs (mean over 100 beats) calculated

from the set of estimated parameters by each evaluated method at
baseline (left panel) and under 5-AS (right panel) for one of the virtual
cells in the validation population.

that the error in the ionic conductance estimation was propagated
into the phosphorylation level estimation.

Fig. 10, left panel, shows the probability density function of
the differences between the APD from the input AP trace and the
APD calculated from the estimated AP trace after estimation of
the ionic conductances at baseline and phosphorylation factors
under 8-AS for DGDR, UKF and UKF-INI-UP. Fig. 10, right
panel, shows analogous results for STV. Again, the combined
UKF-INI-UP provided the best fitting for both AAPD and
ASTYV, whereas the DGDR method presented the highest dif-
ferences between actual and estimated APD and comparable
performance to UKF and UKF+INI+UP in the case of STV.

As an illustration of the above results, Fig. 11 shows the actual
and estimated APs (mean over 100 beats) calculated from the
set of estimated parameters by each of the evaluated methods
for a cell in the validation population. Both at baseline and
under (3-AS, the AP estimated by DGDR+UKF remarkably
better matched the actual AP as compared to those obtained
by DGDR or UKEF individually. Not only the mean AP, but
also the variability over 100 beats was better reproduced by
DGDR+UKEF as compared to DGDR and UKF.

IV. DISCUSSION

A novel approach based on the combined use of the Dou-
ble Greedy Dimension Reduction (DGDR), with automatic
selection of biomarkers, and the Unscented Kalman Filter (UKF)

has been proposed as a method for joint estimation of parameters
and state variables of computational human ventricular stochas-
tic models from given input AP traces. By using this combined
methodology, different sets of ionic parameters, namely ionic
current conductances and phosphorylation levels of cellular
substrates, are estimated for each given individual AP trace at
baseline conditions and following 5-AS. The use of complete
AP traces and a collection of AP-based biomarkers contributes
to the identifiability of the model parameters and state variables
in the estimation problem. The proposed methodology outper-
forms individual DGDR and UKF methods and has an afford-
able computational cost. It allows realistic characterization of
spatio-temporal variability at baseline and following 3-AS, thus
enabling improved investigation of variability mechanisms and
arrhythmic risk prediction. This can prove fundamental to assess
the role of 3-AS in leading to exaggerated increases in BVR that
facilitate the occurrence of arrhythmic events in certain cases
but not in others [27]. In the following, relevant characteristics
of the proposed methodology as well as major benefits and
shortcomings associated with its use are discussed.

A. DGDR Method

The DGDR method was used to obtain estimates for the model
parameters, which were subsequently fed to the UKF method to
build the combined DGDR-UKF method. Methods similar to
DGDR have been used for other applications, although using
strategies different from those used here.

A key factor in the performance of the DGDR method involves
a correct training phase. To obtain high levels of estimation
accuracy, training should be performed over large populations,
which in the case of this study corresponds to a large set of
synthetic AP traces. Confirmation on the appropriateness of
the training population dimension was provided by the fact
that similar estimation errors were attained in both the training
and validation populations. If training dimension had not been
sufficient, estimation uncertainty in the validation population
would have been much greater than that obtained in the training
population. The time required to obtain the estimation dictio-
naries from the training population was just three hours, being
subsequent calculation of parameter estimates immediate (scalar
product of two vectors) when given a new AP trace of the
validation population.

B. UKF Method

After formulating the estimation problem as a nonlinear state-
space representation where a noisy voltage trace is considered
as the observed variable and SDEs defining a human ventricular
cell model are used to describe the process equations, the UKF
method was applied for joint model parameter and state vari-
ables, providing not only mean estimates but also measurements
of estimation uncertainty. UKF has been used in many other
studies, but not with the same purpose as here.

When using the UKF, appropriate calibration of its hyper-
parameters oy and o,., representing process and measurement
variances, respectively, is a critical point to achieve high levels
of accuracy. According to our results, an inadequate selection of
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these hyperparameters may lead to an increase in the estimation
error above 50% of the value attained for optimally adjusted o
and o, values. Based on a previous work of ours [33], o,- was set
to 1 mV, equal to the variance of the measurement noise added to
the clean synthetic AP signal. In the case of gy, which is closely
related to the convergence speed and potentially oscillatory
behavior of the estimates, its value was set to oy = 1078, as this
value led to a minimum average mean absolute error in parameter
estimation, as shown in Section III-A. This value is in the range
of feasible values shown in our previous work [33], with a slight
difference in the optimal value justified by the fact that a higher
number of model parameters were estimated in the present study
as well as to the fact that a subunit-based formulation of SDEs
for ionic gates, rather than the channel-based formulation used
in [33], was here employed.

C. Combined DGDR-UKF Method by Initialization
and Updating

The use of DGDR estimates for both initialization and updat-
ing of the UKF estimates has been demonstrated to play a very
significant role in improving the estimation performance. To the
best of our knowledge, this is the first time these two methods are
combined. On the one hand, providing an initialization for the
UKF method in terms of its mean and covariance matrix based
on DGDR estimates allowed reducing the mean estimation error
and the uncertainty around it. Also, the convergence time was
remarkably diminished, as described in Section III-B. As a proof,
the combined DGDR initialization + UKF approach required
approximately 35% of the number of beats than the individual
UKF method to reach the same level of estimation uncertainty.

On the other hand, updating the UKF estimates at the end
of each cardiac beat by using the DGDR estimates allowed the
solution of the combined method to remain within a relatively
narrow range around the actual parameter values and avoided the
estimation to fall into local minima. In addition, it contributed to
accelerate estimation convergence, reducing by more than 95%
the number of beats required by the UKF method to reach the
same level of uncertainty. It is interesting to highlight that this
updating process improved the estimation of not only the mean
and covariance of the model parameters, but also of all other
model state variables.

The combined DGDR-UKF method provides relevant advan-
tages as compared to other methods used in the literature for
similar purposes. The DGDR-UKF method renders a one-to-one
matching between input AP traces and the sets of estimated pa-
rameters, whereas other methods based on Genetic Algorithms,
Moment-Matching or Gaussian Process Emulators provide only
parameter estimates at a population level [28]-[30]. In addition,
when comparing the DGDR-UKF method with other methods
rendering individual parameter estimates, such as Markov Chain
Monte Carlo (MCMC)-based methods [31], [32], the DGDR-
UKF method presents lower computational cost. Also, it is able
to deal with beat-to-beat variability and to provide estimates
of not only the model parameters but also of the hidden state
variables, thus improving the global estimation accuracy.

The enhanced performance and reduced convergence time
attained by the combined DGDR-UKF method are particulary
relevant for subsequent studies aimed at investigating repolar-
ization variability from human ventricular experimental voltage
traces, which are commonly of short duration.

D. Estimation of lonic Current Conductances at Baseline

Eight ionic current conductances were estimated at baseline
conditions, as variations in those conductances have been postu-
lated to be major factors for spatial (cell-to-cell) AP variability
[81, [9], [11], [12], [28]. Other studies in the literature have
addressed estimation of ionic current conductances, even if
not in all cases for as many currents as in this work and not
always considering temporal (beat-to-beat) AP changes but just
focusing on a steady-state AP [29], [31], [33]. In the present
study, stochastic human ventricular cell models accounting for
temporal variability were developed to improve the estimation
accuracy by considering dynamic information additional to the
static information commonly considered in the literature. The
eight estimated model parameters were multiplying factors for
the conductances of six major ionic currents (Ixs, Ixr, Ito,
Icar, Ix1, Ing) and the maximal values of In,cq and Inqx
with respect to their nominal values in the ORd model.

The least accurate results with our DGDR-UKF method, as
well as with all other tested methodologies (individual DGDR
and UKF methods and UKF with only initialization or updating
from DGDR), were obtained for 6 5, in line with results reported
in [33]. This can be due to the intrinsic characteristics of the ORd
model, in which the Ix current has little influence on the AP,
and consequently on AP-derived biomarkers, at baseline condi-
tions. Other experimental and computational studies support this
outcome regarding the limited influence of I, on the AP shape
and duration at baseline [40], [53], [54]. Since a wide range of
Ok s values generate little differences in the corresponding AP
traces, accurate identification becomes challenging. This issue is
framed within the context of identifiability and observability and
may be solved in future studies by complementing the estimation
process with signals obtained while stimulating the cells at other
pacing frequencies or under ionic current blocks. Similarly, the
estimation errors associated with 0., and 0, x Were among
the highest for all tested methodologies, which can in this case
be due to the longer time scale required for In,cq and Inqx
variations to impact the AP.

Of note, estimation of 6, rendered much higher errors when
the DGDR method was used as compared with any of the other
methods involving UKF. This can be attributed to the fact that
none of the defined AP-derived biomarkers may be closely
related to the AP notch, which is the AP phase where this
current has the largest influence. Similarly happened with 01,
for which estimation errors where higher for DGDR than for any
UKF-based method. In this case, despite considering biomarkers
in the DGDR method like the resting membrane potential, which
are expected to contribute to 61 identification, the UKF-based
methods can deliver more accurate results because they use all
samples of the AP trace, both during the AP as well as during
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the resting phase, and thus have more information to adjust 6 k1
estimation.

E. Estimation of Phosphorylation Levels of Cellular
Substrates Under B-AS Conditions

The phosphorylation levels corresponding to the three cellular
substrates most significantly contributing to AP changes under
[B-AS, as determined from performed computational tests, were
estimated using our proposed DGDR-UKF method and com-
pared with other tested methods. To the best of our knowledge,
this is the first study where the phosphorylation levels of a
[-adrenergic signaling model have been estimated, together
with other state variables, based on the static and dynamic
AP changes induced by S-AS. The results obtained with our
proposed combined method were generally better than those of
individual DGDR and UKF methods. Nevertheless, it should be
noted that the average mean absolute errors obtained for phos-
phorylarion levels under 5-AS were higher than those obtained
for ionic conductances at baseline. This can be partly explained
because the errors in the estimated baseline conductances were
propagated to the estimation of the phosphorylation levels, as the
latter were calculated based on the corresponding APs estimated
at baseline.

Although simultaneous estimation of ionic conductances and
phosphorylation levels under 5-AS could be thought of, this
turns out to be unfeasible due to the multiplicative relation of
ionic conductances and phosphorylation levels in the coupled
electrophysiological-adrenergic signaling model. On the basis
of such multiplicative relation, many combinations of conduc-
tance and phosphorylation level values could lead to the same
estimation results even if the estimated parameter values were
in fact far from their actual values.

F. Characterization of Spatio-Temporal AP Variability
From Parameter Estimates

It is a main purpose of this study to propose a method suitable
for investigation of temporal and spatial variability in human
ventricular repolarization, with one-to-one identification of an
underlying computational AP model for each experimentally
available voltage trace. Provided data is available at baseline
and under 3-AS conditions, our proposed DGDR-UKF method
can identify the specific electrophysiological and adrenergic
signaling characteristics at those two conditions. Our method
was indeed able to precisely reproduce the AP shape, duration
and variability of individual AP traces, rendering statistical
distributions of the errors in the estimation of APD and STV
remarkably more concentrated around O than those obtained
with other tested methods, particularly when comparing with
the DGDR method.

On top of the DGDR-UKF method rendering better match
between actual and estimated AP-derived biomarkers than other
methods, it led to improved match between actual and estimated
voltage traces, as illustrated in Section III-F. This can be justified
on the basis that our methodology provides estimates of not only
the parameter values but of the complete vector of model state
variables, which allows for more accurate AP reconstruction.

G. Limitations and Future Studies

In this work a total of 11 different human ventricular cell
model parameters have been identified, corresponding to 8
ionic current conductances at baseline and 3 phosphorylation
levels under 3-AS. Future studies could include estimation of
additional ionic currents conductances (e.g. for Icap, Inabs LKxb
or Icq), phosphorylation levels (e.g. for ryanodine receptors,
phospholamban or troponin I) or time constants of ionic gates
(.8 Turs» Tws1 OF Tyi1). Also, stochasticity could be added to
other ionic currents like the late sodium current, which can have
a relevant contribution to BVR.

To test the performance of our proposed methodology for
estimation of model parameters and one-to-one replication of
AP traces and AP-derived biomarkers, synthetic voltage traces
were generated at 1 Hz stimulation frequency. Future studies
could test the extent to which the estimation performance is
improved by applying the proposed DGDR-UKF method onto
voltage traces obtained at different stimulation frequencies. In
addition, voltage traces could be generated under different ionic
blocks to offer additional information to be used for parameter
identification, which could prove particularly useful for identi-
fication of Ok, ONaca> ONak» Whose estimation was the most
challenging in the present work.

A set of AP-derived biomarkers were used in the DGDR
method and, consequently, in the DGDR-UKF method. Those
biomarkers reflect AP characteristics related to its upstroke,
repolarization and resting potential as well as temporal APD
variability. Novel AP-derived biomarkers reflecting additional
information from the AP notch and plateau phases could help in
the identification of model parameters, like 6,, and 6, thus
globally improving the performance of the DGDR method and
of the combined DGDR-UKF method.

This study has presented the combined DGDR-UKF method
and has assessed its performance over a large set of synthetically
generated AP traces. As a next step, the proposed method could
be tested over experimental AP traces recorded from human
ventricular cardiomyocytes or even extend the method to be
applied onto voltage traces measured from human ventricular
tissues. This would allow identification of underlying computa-
tional tissue models with representation of cell-to-cell electrical
coupling.

V. CONCLUSION

A novel methodology based on the combined use of Double
Greedy Dimension Reduction (DGDR), with automatic selec-
tion of biomarkers, and the Unscented Kalman Filter (UKF)
has been proposed to estimate parameters and state variables of
an underlying human ventricular action potential (AP) model
for any given input voltage trace. The proposed methodol-
ogy is tested over synthetic voltage traces generated from an
experimentally-calibrated population of stochastic human ven-
tricular cell models at baseline and under S-adrenergic stim-
ulation. The combined methodology remarkably improves the
estimation performance of individual DGDR and UKF methods
while reducing the computational cost. The estimated ionic
current conductances at baseline conditions and phosphorylation
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levels of cellular substrates under $-adrenergic stimulation allow
for computational characterization of spatio-temporal ventricu-
lar repolarization, which can prove very useful to investigate
variability changes induced by disease or drugs, uncover its
underlying ionic mechanisms and establish a relationship with
arrhythmic risk.
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