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A B S T R A C T

Background : Slow adaptation of the QT interval to abrupt changes in heart rate (HR) can enhance ventricular
heterogeneity and has been suggested as a marker of arrhythmic risk. Most investigations on QT rate adaptation
lag have been performed in response to step-like HR changes. However, abrupt HR changes are difficult to
induce or observe in ECG recordings under ambulatory conditions.
Objective: We aim to evaluate the power of indices related to the QT lag in response to ramp-like HR changes
in stress test to assess CAD risk.
Methods: We quantified the lag between the actual QT series and the memoryless expected QT series, which
was obtained by fitting a hyperbolic regression model to the instantaneous QT and HR measurements in stages
where their behavior could be assumed stationary. The proposed methodology was applied to analyze ECG
stress tests of a subset of 448 patients presenting different risk levels for Coronary Artery Disease (CAD). The
QT lag was estimated separately in the exercise and recovery phases.
Results: An increase in the estimated QT lag during exercise (from 25 to 36 s) and a decrease during recovery
(from 57 to 39 s) were associated with higher CAD risk. The difference between these lags showed significant
capacity for CAD risk stratification.
Conclusion: The QT lag in response to HR changes can be quantified from a stress test. QT lag values in
response to ramp-like HR changes are in ranges comparable to those quantified from abrupt HR changes and
show clinical significance to stratify CAD risk.
1. Introduction

Coronary artery disease (CAD) is the first cause of death worldwide
and often leads to Sudden Cardiac Death (SCD) [1]. Elevated repo-
larization heterogeneity in the ventricular myocardium can promote
ventricular fibrillation resulting in SCD [2]. This dispersion can be
exacerbated as different ventricular cells present distinct patterns of
repolarization adaptation in response to heart rate (HR) changes.

In recent years, large research efforts have been focused on develop-
ing noninvasive strategies based on ECG features to define biomarkers
to assess the ventricular repolarization dispersion [3]. For example, the
T-wave, reflecting ventricular repolarization in the ECG, and the QT
interval, measuring the overall duration of ventricular depolarization
and repolarization, have been widely investigated to analyze the risk
of severe arrhythmias on top of other purposes like identification of
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exercise-induced myocardial ischemia [4–6]. The first-ECG-derived-
biomarkers objective is to stratify patients for arrhythmic risk, prevent-
ing arrhythmias generated from ventricular repolarization alterations.
[7,8].

One ECG derived marker that reflects spatio-temporal ventricular
repolarization dispersion and has shown capacity for SCD risk identi-
fication is the time lag of QT interval accommodation to HR changes
(QT/RR hysteresis). Previous studies have highlighted the importance
of determining normal and abnormal ranges of QT adaptation dynamics
in response to sudden changes in HR as a possible way to charac-
terize the risk for cardiac arrhythmias and SCD [9]. In particular, an
increase in the QT rate adaptation time in survivors of acute myocardial
infarction has been related to higher likelihood of dying from an
arrhythmic cause [10,11]. Other studies have measured the rate adap-
tation of the QT interval after sudden HR changes due to conversion
of atrial fibrillation and have postulated that delayed QT adaptation
746-8094/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
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Table 1
Demographic information in patient groups including HR and QT median values (±
nterquartile range), in windows 𝑊𝑗 , 𝑗 ∈ {1, 2, 3}, HR𝑊𝑗

and QT𝑊𝑗
, respectively.

ECG-LR COR-LR COR-MR COR-HR p-value

Clinical variables

Gender [M/F] 130∕83 33∕26 16∕8 121∕31 <0.001
Age (years) 49.0 ± 20.0 52.0 ± 12.8 57.0 ± 15.5 62.0 ± 14.0 <0.001
BMI 25.5 ± 5.5 25.9 ± 6.9 27.1 ± 6.8 26.8 ± 4.8 <0.001

ECG derived variables

HRW1
(bpm) 80.3 ± 19.7 73.8 ± 16.5 73.6 ± 14.4 65.0 ± 15.2 <0.001

HRW2
(bpm) 167.1 ± 20.2 155.1 ± 31.1 140.0 ± 28.1 116.2 ± 26.3 <0.001

HRW3
(bpm) 98.5 ± 19.7 91.8 ± 21.8 86.9 ± 19.3 73.2 ± 15.0 <0.001

QTW1
(ms) 364.1 ± 37.8 380.0 ± 42.0 377.2 ± 32.9 394.2 ± 40.6 <0.001

QTW2
(ms) 249.6 ± 24.1 268.5 ± 45.8 285.6 ± 32.6 311.4 ± 38.9 <0.001

QTW3
(ms) 343.4 ± 44.8 361.4 ± 49.3 366.7 ± 44.1 387.0 ± 32.1 <0.001

Results are statistically significant (𝑝 < 0.05) between pairs of groups: Gender : COR-HR
with ECG-LR and COR-LR; BMI: ECG-LR with COR-HR; Age, HR𝑊1

, HR𝑊3
, QT𝑊1

, QT𝑊2

and QT𝑊3
: ECG-LR with COR-LR, COR-MR and COR-HR, COR-LR with COR-HR, and

COR-MR with COR-HR. HR𝑊2
: all pairs of groups are statistically significant.

could be a potential risk factor for proarrhythmia [12,13]. To shed
light on the cell and tissue mechanisms underlying QT/RR hysteresis
and the relationship with arrhythmic risk, experimental, clinical and
simulated electrophysiological methods have been used and potential
underpinnings have been described [8,14–17].

The QT interval adaptation to sudden changes in HR was evalu-
ated in [10,18,19], and found to follow an exponential-like pattern,
implying an underlying first-order system component between RR and
QT [20]. This phenomenon occurs on top of beat-to-beat QT interval
variability, which is commonly quantified under stationary conditions
and can thus provide complementary information [21]. However, the
presence and availability of abrupt HR changes (or step-like HR) in
Holter recording is not always guaranteed and its distribution can be
very variable from subject to subject.

Alternatively, HR changes are observed during an exercise stress
test, where the adaptation time of the QT interval to HR changes can be
estimated. The easily induced HR changes and the wide range of that
reflected during the test offers the opportunity to assess the dynamics of
the QT interval in response to changes in HR [5,22]. These HR changes
follow a trend comparable to a ramp. Theoretically, the ramp-response
of a first-order system is characterized by another ramp delayed by a lag
of the same value as the time constant of the step-response [23]. Thus,
the use of this test for QT lag estimation is suggested in our work.

Considering that the relationship between the RR and QT time series
can be modeled by a first-order system followed by a non-linear relation
[20], we suggest expressing the relationship by these two separate
blocks and focus on the linear block to characterize the QT lag. We
propose a methodology to compute the lag during a stress test as the
delay between actual QT and a series of QT values instantaneously
estimated (i.e., without memory) from the RR series. This estimated lag
should provide clinical information equivalent to that provided by the
time constant of the QT response to a step-like HR change. Preliminary
results from an exploratory analysis were presented in [24], where the
QT lag was automatically derived from ECG signals recording during
an exercise stress test.

This procedure requires to measure the QT from exercise stress test
ECGs, where the influence of noise, artifacts and even the eventual
overlapping of T-wave and P-wave at very high HR complicate the
delineation of the T-wave end. Recent studies investigating stress test
ECGs incorporate manual delineation to compute the T-wave end, thus
implying that the number of patients is necessarily reduced [25], or
they simply do not study the dynamics of the QT interval at high
HR [26,27]. Therefore, we study and propose different automated
procedures in this work to improve the QT delineation in this changing
scenario.
2

The work here presented has three main objectives, all related to
the estimation of the QT lag during an exercise stress tests: (1) to assess
different lead-space reduction (LSR) techniques for robust computation
of the T-wave end in stress test recordings -Section 2-; (2) to develop
a method to compute the QT lag during a stress test and propose three
different markers related to such QT lag in response to a ramp-like
HR change -Section 2-; and (3) to evaluate the power of the proposed
markers to assess CAD risk -Section 3-. The QT lags quantified in our
study were compared with previous studies that evaluated the QT
response to a step-like HR change to verify if they took values in a
similar range -Section 4-.

2. Methods

2.1. Database

A total of 528 ECG signals recorded from patients undergoing stress
test ECG at Tampere University Hospital (Finland), aimed to character-
ize patients at high risk of cardiovascular morbidity and mortality [28],
were analyzed. A continuous ECG was recorded at a sampling frequency
of 𝐹𝑠 = 500 Hz with CardioSoft exercise ECG system (Version 4.14,
GE Healthcare, Freiburg, Germany), with the Mason-Likar modified
12-lead system. The stress test was performed in a bicycle ergometer.
The initial workload varied from 20 W to 30 W, with the load being
increased stepwise by a fixed, patient-specific quantity in the range
10–30 W every minute (for females 10–20 W) based on physicians
evaluation of patient’s condition. This patient-specific quantity is not
annotated at the database. Workload was removed immediately after
the exercise peak. A total of 80 patients were discarded due to the
presence of large artifacts, early finished test or frequent ectopic beats,
which did not allow to calculate the QT interval series along the stress
test.

Patients were classified into four groups according to their likeli-
hood for CAD. The ECG-LR (LR refers to Low Risk) group was based
solely on information from clinical history and the ECG (those patients
did not undergo angiography). The remaining patients were classified
according to the results of the coronary angiography (COR) depending
on whether they presented less than 50% (COR-LR), between 50 and
75% (COR-MR), or more than 75% (COR-HR) of luminal narrowing
of the diameter of at least one major epicardial coronary artery or
main branches. LR, MR, and HR referring to Low, Mild and High Risk,
respectively. All the coronary angiographies were analyzed by the same
cardiologist. So, there were 213, 59, 24 and 152 subjects in ECG-
LR, COR-LR, COR-MR and COR-HR groups, respectively. Demographic
variables and the main information relating to ECG parameters of each
group are shown in Table 1.

2.2. Signal preprocessing

The ECG was subject to filtering prior to delineation of its wave
boundaries. First, high-frequency noise and artifacts were attenuated by
using a 6th-order Butterworth low-pass filter, with cut-off frequency of
50 Hz, implemented in a forward–backward version to avoid ECG dis-
tortion by guaranteeing linear phase. Afterwards, baseline wander was
attenuated using cubic spline interpolation, for which the isoelectric
level at each beat was estimated as the averaged value of the filtered
ECG in a 20-ms window starting 80 ms before the QRS fiducial point
taken as the R point of the QRS complex.

2.3. Enhancement of 𝑇 -wave end delineation by spatial signal transforma-
tion

Two ECG lead-space reduction (LSR) techniques were applied to
the 8 independent standard leads: Principal Component Analysis (PCA)
[29] and Periodic Component Analysis (𝜋CA) [30]. These allowed
to generate new transformed leads that improve signal-to-noise ratio
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Fig. 1. (a) Example of ECG from 8 independent standard leads recorded during a stress
test in mV, (b) their corresponding 8 transformed leads, in mV, obtained with G𝜋CA3,𝑜
and (c) obtained with PCA, where the emphasized T-waves at TL1 can be appreciated.

(SNR), where delineating waves and extracting features were more
accurate, like the QT interval, eventually subject to further processing.
This is particularly relevant in the usually very noisy stress test ECG
signals. The spatial lead transformation was computed by applying a
transformation matrix Ψ𝑇 to the original leads:

𝐲(𝑛) = Ψ𝑇 𝐱(𝑛). (1)

here 𝐱(𝑛) is the data vector containing the values of the signals in the
leads, at sample 𝑛, columnwise:

(𝑛) =
[

𝑥1(𝑛) 𝑥2(𝑛) … 𝑥𝐿(𝑛)
]𝑇 ,

nd 𝐲(𝑛) contains the corresponding transformed leads:

(𝑛) =
[

𝑦1(𝑛) 𝑦2(𝑛) … 𝑦𝐿(𝑛)
]𝑇 .

To calculate the transformation matrix, Ψ, a time window learn-
ng period was selected, whose data were piled in matrix X𝑞 , which
ontains signal excerpts corresponding to T-waves from 𝐾 beats in the
elected window. The T-wave excerpt for each 𝑘th beat was taken from
ample 𝑛QRS(𝑘) + (25 + 1.2RR1∕2

𝑚 )𝐹𝑠∕1000 to 𝑛QRS(𝑘) + (300 + 1.2RR1∕2
𝑚 )

𝑠∕1000, where 𝑛QRS(𝑘) is the QRS complex fiducial point [31], and
R𝑚 is the median RR interval value (in milliseconds) in the learning
indow. Each 𝑘th beat, 𝑙th lead T-wave has a length of N samples and

s expressed in vector notation as:

𝑘,𝑙 =
[

𝑥𝑘,𝑙(1) 𝑥𝑘,𝑙(2) ⋯ 𝑥𝑘,𝑙(𝑁)
]𝑇 . (2)

he T-waves from all 𝐿 leads of the 𝑘th beat were put together into
atrix 𝐗𝑘:

𝑘 =
[

𝐱𝑘,1 𝐱𝑘,2 ⋯ 𝐱𝑘,𝐿
]𝑇 , (3)

here each column contains the 𝑛th samples from the 𝑘th beat T-waves
n all the L leads.

Finally, the matrix X𝑞 was constructed by concatenating the 𝐗𝑘
atrix from all 𝐾 beats:

𝑞 =
[

𝐗1 𝐗2 ⋯ 𝐗𝐾
]

(4)

Two spatial reduction strategies were considered:

• Principal Component Analysis (PCA): this method yields trans-
formed leads guided by a maximum-variance concentration crite-
3

rion [29]. The orthogonal transformation matrix, now 𝜳 ≡ 𝜳 PCA,
is the eigenvector decomposition matrix of the 8 × 8 inter-lead
ECG autocorrelation matrix 𝐑X𝑞

,

𝐑X𝑞
𝛹PCA = ΨPCA𝛬, (5)

with 𝐑X𝑞
estimated from the learning data matrix as

�̂�X𝑞
= 1

𝐾𝑁
X𝑞X𝑞

𝑇 , (6)

and Λ being a diagonal matrix containing the eigenvalues of
𝐑X𝑞

sorted in descending order. 𝜳 PCA contains column-wise the
corresponding eigenvectors.

• Periodic Component Analysis (𝜋CA): A spatial transformation based
on periodic component analysis [32] can be used to maximize a
given periodicity in the transformed lead. In [30], this 𝜋CA trans-
formation was proposed to emphasize beat-to-beat periodicity in
the transformed lead, making use of the beat-to-beat coherence
observed in the ECG signal. In highly noisy recordings with low
SNR, as stress test ECG, the first transformed lead of PCA can
contain noise when this is dominant or comparable in energy
(variance) to the true (noiseless) ECG signal. In this study, we
hypothesized that the periodicity maximization criterion used by
𝜋CA will filter out noise, even in cases of low SNR, provided that
it does not have the beat periodicity of the signal. The transfor-
mation matrix, now 𝜳 ≡ 𝜳 𝜋CA, is derived as the generalized
eigenvector matrix of a matrix pair, ordered in ascending order
of eigenvalue magnitude [30]. The 𝜋CA transformation can be
further generalized, G𝜋CA 𝜳 ≡ 𝜳G𝜋CA, if it is considered that
ECG signals are 𝑝-beat periodic [13] with 𝑝 taking values from 1
up to 𝑃 , G𝜋CA𝑃 . Then, the generalized eigenvector problem,

𝐑𝑃
𝛥X𝑝,𝑞

ΨG𝜋CA = 𝐑X𝑞
ΨG𝜋CAΛ, (7)

including the matrix pair
(

𝐑𝑃
𝛥X𝑝,𝑞

,𝐑X𝑞

)

[13], is solved. The spatial
correlation of the non-periodic residual, 𝐑𝑃

𝛥X, is estimated as:

𝑅𝑃
𝛥X𝑝,𝑞

= 1
𝑃𝐾𝑁

𝑃
∑

𝑝=1
𝛥X𝑝,𝑞𝛥X𝑇

𝑝,𝑞 , (8)

with

𝛥X𝑝,𝑞 = X𝑝,𝑞 − X𝑞 . (9)

The matrix X𝑝,𝑞 is X𝑞 shifted p beats forward. When G𝜋CA𝑃 is
applied with 𝑃 = 1 (minimizing the non- beat-to-beat periodic
component), it results in the regular 𝜋CA, G𝜋CA1 ≡ 𝜋CA [30].

The selection of the signal excerpt where to learn the transformation
matrix can be relevant for the study. The eigenvector accounts for a
kind of smoothed version of the different T-wave morphologies con-
tained in the learning window, aiming to generate a transformed lead
better suited for T-wave delineation. Nevertheless, the large dynamics
of the HR in stress test could generate doubts about the stability and
suitability of this smoothed eigenvector as the best suited when derived
from the whole recordings. For this reason, we propose to explore two
strategies: unique learning of the transformation matrix on a selected
learning window, or a relearning of the transformation matrix every
150 s. The latter was introduced to better account for the long-term
T-wave changes (not beat-to-beat), which are the ones relevant to
estimate the QT lag from the trend series differences. Depending on
the selected strategy for learning the matrix Ψ, six variants of the two
LSR techniques were proposed.

• 𝜋𝐂𝐀: or G𝜋CA1, where the transformation was learnt in each
signal window of 150 s, recalculating the Ψ matrix in each
window, for 𝑃 = 1.
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Fig. 2. Schematic diagram of the relationship between the RR and QT interval series
during a stress test. First, a non-linear transformation 𝑔 (⋅, 𝛼, 𝛽) is applied to the RR
series to obtain an instantaneous memoryless QT series 𝑑𝑖

QT(𝑛). This is followed by a
first-order linear system (impulse response ℎ(𝑛)) generating the QT series 𝑑QT(𝑛), which
allows computing the QT memory as the lag between the QT series 𝑑𝑖

QT(𝑛) and 𝑑QT(𝑛)
QT series.

Fig. 3. Diagram for the QT time lag computation process, in the exercise and
recovery phases of a stress test using either unmodified or modified instantaneous QT
series estimation (𝑑i,u

QT(𝑛) and 𝑑i,m
QT (𝑛) respectively). Broken lines denote accessory input

information required for estimation of the parameters 𝛼 and 𝛽.

• G𝜋𝐂𝐀3: where the transformation was learnt in each window of
150 s with recalculation of the Ψ matrix, with 𝑃 = 3.

• 𝜋𝐂𝐀𝑜: G𝜋CA1,𝑜, where the Ψ matrix was estimated once using
the first 150 s at the onset of the signal, and then the same
transformation Ψ was applied to the rest of signal, with 𝑃 = 1.

• G𝜋𝐂𝐀3,𝑜: The Ψ matrix was estimated once using information at
signal onset, in the first 150 s, and then applied to the complete
signal, with 𝑃 = 3.

• 𝐏𝐂𝐀: PCA technique where Ψ matrix was reestimated in each
window of 150 s.

• 𝐏𝐂𝐀𝑜: PCA technique where Ψ matrix was estimated once at the
signal onset, using the information of the first 150 s, and then
applied to the complete signal.

An example of the 8 standard leads of an ECG recording and the
transformed leads of both LSR techniques are shown in Fig. 1. It can be
observed how the T-wave in the first transformed lead, in TL1, of both
G𝜋CA3 and PCA, is emphasized, being more remarkable for G𝜋CA3.
T-wave delineation is then performed.

2.4. QT memory lag estimation methodology

After studying the best LSR technique to delineate the T-wave end
point, 𝑛Te(𝑘), the computation of the RR and QT series was calculated.
The process to estimate the time lag of the QT interval series following
the RR interval series could be divided in two main steps: the cal-
culation of an expected instantaneous memoryless, HR-dependent QT
interval series (corresponding to the non-linear QT to RR dependency),
and the QT time lag estimation between the real QT, and the instanta-
neous memoryless HR-dependent QT interval series (related by a linear
system). The process is summarized in the diagram of Fig. 2. Moreover,
a more detailed diagram about the calculation of the different lags was
represented in Fig. 3.
4

2.4.1. RR and QT series estimation
The single-lead wavelet-based algorithm [33] was used to extract

both the RR, 𝑑RR(𝑘), and the QT, 𝑑QT(𝑘), intervals series from each
lead. After single-lead delineation, a multi-lead (MLeads) strategy was
applied to the delineation marks of the 8 independent standard leads
to assign a unique mark to a beat. Using those unique marks, the time
series 𝑑RR(𝑘) = 𝑛QRS(𝑘) − 𝑛QRS(𝑘 − 1) was calculated and the QRS onset
point, 𝑛QRSo(𝑘), was estimated. The T-wave end points, 𝑛Te(𝑘), were
extracted either from the multi-lead delineation strategy or alterna-
tively by computing a single-lead delineation in the first transformed
lead 𝑦1(𝑛) (TL1) for each of the six variants of the LSR techniques
described before, from which the time series 𝑑QT(𝑘) = 𝑛Te(𝑘) − 𝑛QRSo(𝑘)
was calculated.

Outlier values of both 𝑑RR(𝑘) and 𝑑QT(𝑘) series, identified as those
deviating by more than ±10% or ±5%, respectively, from the running
median of each series computed over 40 consecutive beats were re-
placed with the corresponding median value. Subsequently, missing
points were interpolated using a piecewise cubic Hermite polynomial.
In most cases, these missed points were near stress peak and there was
not a long time interval without any QT measure. Using piecewise cubic
Hermite polynomial avoids overshoots and a larger oscillation if the
data are not smooth. This process helped to emphasize the series trends
and facilitate the estimation of the QT memory lag, which was based
on a mean square error criterion. Finally, 𝑑RR(𝑘) and 𝑑QT(𝑘) series were
interpolated to 4 Hz to have uniformly sampled 𝑑RR(𝑛) and 𝑑QT(𝑛) time
series. Examples can be observed in Fig. 5a.

To compare the performance of the six different LSR transformation
techniques presented in Section 2.3, the variability of the raw unfiltered
interpolated QT interval series, without removing outlier values, 𝑑𝑟QT(𝑛),
was estimated as the power of the 0.04 Hz cut-off high-pass filtered
interval series, separately in exercise and recovery phases. Under the
assumption that delineation errors are uncorrelated to the (method-
invariant) physiological variability of the QT interval, the power of the
filtered series (QTV) includes both the natural variability of QT interval
(common for the seven methods) and the power of the delineation
errors. Therefore, QTV was considered as a surrogate for delineation
performance: the lower QTV, the better performance. Some interpo-
lated QT interval series, before and after removing outlier values,
𝑑𝑟QT(𝑛) and 𝑑QT(𝑛) respectively, are shown in Fig. 4, where T-wave
delineation was performed in a transformed lead in some examples.
The automatic process to compute the onset of the exercise ramp and
the end of the recovery ramp is described in Section 2.4.3.

2.4.2. Expected instantaneous memoryless HR-dependent QT
Before calculating the time lag of the 𝑑QT(𝑛) series following the

𝑑RR(𝑛) series during the assumed linear HR trends in the stress and
recovery phases, we realized that an intermediate series had to be
computed. This new series kept the temporal variation of 𝑑RR(𝑛), but
their values were comparable to 𝑑QT(𝑛) series. This is a consequence
of the non-linear relationship between the RR and QT time series, in
addition to a delay well modeled by a first order system [20]. We
separated these two blocks, see Fig. 2, and restricted the analysis to
the linear part, which characterizes the QT memory lag. Specifically,
we first considered a non-linear block component that relates the RR
with the corresponding QT if conditions were stationary, generating
the so called expected instantaneous memoryless, HR-dependent QT
interval denoted as 𝑑𝑖QT(𝑛). This was followed by the linear block that
just introduced the memory connecting 𝑑𝑖QT(𝑛) with the actual QT value
𝑑QT(𝑛). Then, the lag was obtained as an estimate of the delay between
the ramps of these two series when the input was of the ramp-like type.
This modeling is the same already presented in [20], but with a shift in
the order of the linear and nonlinear blocks. The 𝑑𝑖QT(𝑛) series contains

the QT values that would correspond to each 𝑑RR(𝑛) value if the HR
was stationary in previous beats. To compute 𝑑𝑖 (𝑛), the following
QT
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Fig. 4. Examples of 𝑑QT(𝑛) series using, (a) and (d), the multi-lead strategy with the 8 independent standard leads, (b) and (e), the first G𝜋CA3,𝑜 transformed lead, and (c) and (f)
the first PCA transformed lead to compute the 𝑇𝑒 points. The first row correspond to the 𝑑𝑟

QT(𝑛) series and the second row to the 𝑑QT(𝑛) including the running median filter for
utlier rejection.
Fig. 5. Example of the procedure for time lag estimation in an ECG-LR subject. (a) Overploted boxes over 𝑑RR(𝑛) series defining the three windows, 𝑊1 ,𝑊2, and 𝑊3, used to estimate
𝛼 and 𝛽 parameters. (b) Ramp delimitation onset, and end, sample points in exercise (𝑛𝑒,𝑜, 𝑛𝑒,𝑒) and recovery (𝑛𝑟,𝑜, 𝑛𝑟,𝑒), with their corresponding lags obtained by minimizing the
MSE criteria between 𝑑QT(𝑛) and 𝑑𝑖,𝑢

QT(𝑛 − 𝜏). (c) Graphical representation of the procedure to obtain the 𝛥QT value to modify 𝑑QT(𝑛) at the 𝑊2 window in stress peak using 𝜏𝑒,𝑢
erived as in (b). (d) The corresponding exercise and recovery time lags obtained after regression estimation from the modification of the QT values in (c).
xpression was used, where 𝑔𝑓 is one of the regression models shown
n Table 2:
�̃�
QT(𝑛) = 𝑔𝑓 (𝑑RR(𝑛); 𝛼, 𝛽), (10)

here the tilde over 𝑑X(𝑛), X ∈ {QT,RR}, indicates that the series are
xpressed in seconds, 𝑑X(𝑛) = 𝑑X(𝑛)∕1000, rather than milliseconds. The
alues of the parameters 𝛼 and 𝛽 for the 𝑔𝑓 regression models of Table 2

were obtained by fitting [𝑑QT(𝑛), 𝑑RR(𝑛)] data pairs, from three windows
simultaneously: 𝑊1 taken before the stress onset (40 s), 𝑊2 taken at the
stress peak (20 s) and 𝑊3 taken before the test end (40 s). The values
of 𝑑QT(𝑛) and 𝑑RR(𝑛) were assumed to be stationary in these windows
and representative of the subject instantaneous QT-to-RR dependency.
These window areas are marked with boxes in Fig. 5(a). The four
regression models considered in the study were parabolic (𝑓 ≡ Par),
linear (𝑓 ≡ Lin), hyperbolic (𝑓 ≡ Hyp) and logarithmic (𝑓 ≡ Log).
Model parameters were estimated using weighted least squares with
the data in 𝑊1, 𝑊2 and 𝑊3, where 𝑊2 was replicated twice to have the
three regions equally weighted in the estimation.
5

The assumption of stationarity at the stress peak, 𝑊2, is question-
able, but it was included to account for the whole excursion of RR
when evaluating the QT-to-RR dependency. To mitigate this drawback,
two different strategies to estimate the regression parameter values, �̂�
and 𝛽, were considered. As one strategy depends on an initial QT lag
calculated with the other strategy, a block diagram that summarizes
this computation is shown in Fig. 3.

QT-to-RR regression estimation from the unmodified QT series. In this
approach, corresponding to the top block of Fig. 3, the window 𝑊2 was
taken to be symmetric around the minimum value of 𝑑RR(𝑛) at the stress
peak, thus including QT values from HR acceleration and deceleration
phases, with opposite effects on the QT interval. We hypothesized that
this definition of 𝑊2 will compensate for the QT dynamics under HR
acceleration and deceleration and it will make the mean QT-to-RR
relationship not far from that under stationary conditions.

From the three windows 𝑊1, 𝑊2 and 𝑊3, a least-squares fit of the
unmodified (actual) [𝑑 (𝑛), 𝑑 (𝑛)] data pairs was performed for each
QT RR
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tested regression model and patient-specific values of �̂� ≡ �̂�𝑢 and 𝛽 ≡ 𝛽𝑢
ere obtained, where the subscript ‘‘𝑢’’ stands for use of unmodified data

n their estimation. The corresponding expected instantaneous, mem-
ryless, HR-dependent QT interval series, 𝑑𝑖,𝑢QT(𝑛), was calculated all

long the stress test (exercise and recovery) by applying the regression
ormula in (10) for each of the regression models in Table 2, making
se of the �̂�𝑢 and 𝛽𝑢.

T-to-RR regression estimation from the modified QT series. The second
pproach, corresponding to the bottom block of Fig. 3, tried to account
or the fact that the RR and QT series being at comparable stationary
tates may not hold at the stress test peak, i.e. window 𝑊2, since QT
equires some seconds after the HR trend changes to converge to a new
tationary state. Therefore, we propose to modify the actual QT values
t peak window 𝑊2 by a fixed amount, which accounts for the delay
e know the trend of QT series has in following RR trend changes. So

he resulting [QT, RR] pairs, after QT modification, will be a better
omparable stationary QT-to-RR dynamic in window 𝑊2. An initial
T lag value calculated at the exercise, ‘‘𝑒’’, phase from the QT series
stimated in the unmodified, ‘‘𝑢’’, approach described in Section 2.4.2,
𝑒,𝑢, was computed using the method presented in Section 2.4.3. This
𝑒,𝑢 was used to modify the 𝑑QT(𝑛) values at window 𝑊2, generating a
modified series 𝑑QT𝑚

(𝑛) = 𝑑QT(𝑛) − 𝛥QT, denoted by subscript ‘‘𝑚’’. The
subtracting factor 𝛥QT results from multiplying 𝜏𝑒,𝑢 by the absolute
value of the QT series slope at the stress peak, 𝑠𝑒 (𝛥QT = 𝜏𝑒,𝑢 × 𝑠𝑒).

The 𝑠𝑒 value was calculated as the absolute value of the slope of
the linear fit to the QT series from the selected end of the exercise
ramp, 𝑛𝑒,𝑒, defined in Section 2.4.3, to the point associated with the
lowest 𝑑QT(𝑛) value, see Fig. 5c. In doing so, it was assumed that the QT
values that represent the QT-to-RR stationary dependency at 𝑊2 were
the real ones, 𝑑QT(𝑛), but decreased by the quantity 𝛥QT, which is an
estimate of the value that would have been attained if the stress phase
had lasted for an extra 𝜏𝑒,𝑢 time at the same HR, required to converge
to the QT stationary value. Thus, the modified data pairs in 𝑊2 became
[𝑑QT𝑚

(𝑛), 𝑑RR(𝑛)], which were used together with data in 𝑊1 and 𝑊3 to
estimate the modified model parameters values �̂� ≡ �̂�𝑚 and 𝛽 ≡ 𝛽𝑚. A
raphic example of this process can be seen in Fig. 5c. The resulting
ime series estimated after applying the same regression formula as in
10) was denoted as 𝑑𝑖,𝑚QT(𝑛).

For both strategies, the root mean square error

𝑢
rms =

√

√

√

√

1
3 × 40 × 4

∑

𝑛∈{𝑊𝑗}

(

𝑑QT(𝑛) − 𝑑𝑖,𝑢QT(𝑛)
)2

, (11)

and

𝜀𝑚rms =

√

√

√

√

1
3 × 40 × 4

∑

𝑛∈{𝑊𝑗}

(

𝑑QT𝑚
(𝑛) − 𝑑𝑖,𝑚QT(𝑛)

)2
, (12)

measuring the goodness of fit of the QT-to-RR relationship in the fitting
windows 𝑊𝑗 , 𝑗 ∈ {1, 2, 3}. This value was used to evaluate the model
fitting. Note that 𝑑QT𝑚

(𝑛) ≡ 𝑑QT(𝑛) in 𝑊1 and 𝑊3.

2.4.3. QT time lag estimation
The time lag between 𝑑𝑖QT(𝑛) and 𝑑QT(𝑛) time series (example in

Fig. 5b and d) was estimated as the 𝜏 resulting in a minimum Mean
Square Error (MSE) difference between the 𝑑QT(𝑛) ramp segment, dur-
ing stress or recovery, and their corresponding delayed 𝑑𝑖QT(𝑛 − 𝜏)
ramp segment. This estimation was performed separately at stress and
recovery, and the time lag providing the minimum MSE, 𝜏𝑒 in stress or
𝜏𝑟 in recovery, was estimated by comparing the curves from exercise
onset, 𝑛 = 𝑛𝑒,𝑜, to exercise end, 𝑛 = 𝑛𝑒,𝑒, for 𝜏𝑒, and from recovery
onset, 𝑛 = 𝑛𝑟,𝑜, to recovery end, 𝑛 = 𝑛𝑟,𝑒, for 𝜏𝑟, as marked in Fig. 5b.
This procedure was followed for both QT unmodified and modified
strategies at 𝑊2 for regression parameter estimation, see Fig. 5b and
6

d.
The difference between the adaptation lags in stress and recovery,
𝛥𝜏 , was also computed and studied as an additional marker to stratify
for CAD risk:

𝛥𝜏 = 𝜏𝑟 − 𝜏𝑒. (13)

An automatic procedure was designed to determine exercise and re-
covery ramp boundaries (i.e. onsets and ends). The exercise onset, 𝑛𝑒,𝑜
(analogously the recovery end, 𝑛𝑟,𝑒), was taken as the point resulting in
minimum mean squared differences between 𝑑𝑖QT(𝑛) series and a piece-
wise linear approximation consisting on a plateau (incline, for 𝑛𝑟,𝑒) until
he candidate point, followed by a subsequent incline (plateau, for 𝑛𝑟,𝑒).
n mathematical terms, the search for 𝑛𝑒,𝑜 resulted from minimizing the
ollowing cost function [34]:

𝑒,𝑜 = argmin
𝑘
(𝐽 (𝑘)), (14)

here

(𝑘) =
𝑘−1
∑

𝑛=𝑀1

(

𝑑𝑖QT(𝑛) − 𝑓𝑏(𝑛)
)2

+
𝑀2
∑

𝑛=𝑘

(

𝑑𝑖QT(𝑛) − 𝑓𝑎(𝑛)
)2

. (15)

he functions 𝑓𝑏(𝑛) = 𝑎𝑏 + 𝑏𝑏𝑛 and 𝑓𝑎(𝑛) = 𝑎𝑎 + 𝑏𝑎𝑛 were the best linear
odels fitted in the least squares sense of 𝑑𝑖QT(𝑛) series before and

fter the candidate sample point 𝑘, respectively, being 𝑀1 = 1 and
2 = 𝑛𝑝 − 800, with 𝑛𝑝 the sample corresponding to stress peak value.

nalogously, for 𝑛𝑟,𝑒 the same minimization was performed, but now
1 = 𝑛𝑝 + 320 and 𝑀2 is the last sample in 𝑑𝑖QT(𝑛).
The end of the exercise ramp, 𝑛𝑒,𝑒, was defined as the first sample

or which 𝑑𝑖QT(𝑛) shortened from 𝑛𝑒,𝑜 by a percentage, 100𝛾𝑒% of the
otal reduction reached at the stress peak:

𝑒,𝑒 = argmin
𝑛

|

|

|

|

𝛾𝑒
(

𝑑𝑖QT(𝑛𝑒,𝑜) − 𝑑𝑖QT(𝑛𝑝)
)

−
(

𝑑𝑖QT(𝑛𝑒,𝑜) − 𝑑𝑖QT(𝑛)
)

|

|

|

|

. (16)

n a similar way, the onset of the recovery ramp, 𝑛𝑟,𝑜, was identified as
he first sample for which 𝑑𝑖QT(𝑛) increased by a percentage 100𝛾𝑟% of
he total increase reached at 𝑛𝑟,𝑒:

𝑟,𝑜 = argmin
𝑛

|

|

|

|

(1 − 𝛾𝑟)
(

𝑑𝑖QT(𝑛𝑟,𝑒) − 𝑑𝑖QT(𝑛𝑝)
)

−
(

𝑑𝑖QT(𝑛𝑟,𝑒) − 𝑑𝑖QT(𝑛)
)

|

|

|

|

.

(17)

The optimum threshold values 𝛾∗𝑒 and 𝛾∗𝑟 were chosen as the ones
maximizing the significance of the estimated 𝜏 in separating CAD risk
groups. 𝛾𝑒 = 1 and 𝛾𝑟 = 0 are equivalent to placing 𝑛𝑒,𝑒 and 𝑛𝑟,𝑜,
respectively, at the stress peak 𝑛𝑝.

To estimate the significance, firstly, the threshold values were var-
ied in the range [0.30, 1.00], for exercise, and in the range [0.00, 0.70],
for recovery, in steps of 0.05, to calculate the corresponding delays,
Fig. 6a and b. Then, the p-value for the comparison between each pair
of groups was calculated along the different thresholds, Fig. 6c, and
d. Lastly, the mean 𝑝-value, 𝑝𝑚, of the ones obtained for groups pairs
who has resulted in significant differences in more than half of the
considered thresholds, was calculated in exercise, 𝑝𝑒𝑚, and recovery 𝑝𝑟𝑚,
respectively, Fig. 6e, and f. The selected thresholds 𝛾∗𝑒 and 𝛾∗𝑟 were
the ones corresponding to minimum of 𝑝𝑒𝑚 and 𝑝𝑟𝑚, for exercise and
recovery, respectively.

2.5. Coronary artery disease risk quantification and statistical analysis

The QT lag had been estimated on the CAD patients described in
Section 2.1 and analyzed for its value as CAD risk predictor. All data
are presented as median value ± interquartile range. In multiple com-
parisons, Kruskal–Wallis test is used to assess differences in continuous
clinical and ECG variables.

Mann–Whitney U test was applied to continuous variable pairwise
comparisons, also when assessing the three proposed markers, i.e. 𝜏𝑒,
𝜏𝑟 and 𝛥𝜏 , selecting the best LSR variant in computing 𝑑QT(𝑛) and in the

selection of 𝛾𝑒 and 𝛾𝑟. Chi-square test was applied to assess differences
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Fig. 6. (a) 𝜏𝑒,𝑢 and (b) 𝜏𝑟,𝑢, values function of the position of 𝑛𝑒,𝑒, and 𝑛𝑟,𝑜, obtained by varying thresholds 𝛾𝑒 and 𝛾𝑟, respectively. (c), and (d), plot the corresponding p-values
from (a), (b), respectively, for distinguish between different pairs of patient groups. The broken lines correspond to the significant level, 𝑝 = 0.05. (e) Evolution of 𝑝𝑒𝑚 obtained
by varying thresholds 𝛾𝑒, and (f) 𝑝𝑟𝑚 varying 𝛾𝑟. For 𝑝𝑒𝑚 and 𝑝𝑟𝑚 calculation the 𝑝-values corresponding to group pairs having at least half of the studied thresholds resulting in
significant 𝑝-values, below dotted lines in panels (c) and (d), are taking into account. Selected thresholds 𝛾∗𝑒 and 𝛾∗𝑟 are marked with red arrows.
c

w

c
𝛾

in the categorical variable Gender (v𝑔). 𝑝 < 0.05 was considered statis-
tically significant. The Pearson correlation coefficient was calculated
to analyze the relationship between demographic parameters and the
proposed QT lag markers. In case of categorical variable gender, a t-
test was used to study the group differences between the two gender
groups.

Also, a linear mixed model was built for each of the three proposed
markers, following the equation:

z𝑖𝑗 =
(

𝜆0 + 𝑢𝑖
)

+ 𝜆1v𝑎𝑖,𝑗 + 𝜆2v𝑏𝑖,𝑗 + 𝜆3v𝑔𝑖,𝑗 + 𝜖𝑖𝑗 (18)

where z is one of the proposed markers, z ∈ {𝜏𝑒, 𝜏𝑟, 𝛥𝜏}, 𝜆 are the fixed-
effects regression coefficients, 𝑢𝑖 is the random intercept parameter for
each of the four risk groups, v𝑎𝑖,𝑗 is the age, v𝑏𝑖,𝑗 is the BMI, v𝑔𝑖,𝑗 is the
gender variables, and 𝜖 represents the residuals. The subscripts 𝑖 and 𝑗
refer to 𝑖th risk-group and 𝑗th patient, respectively.

The Spearman correlation coefficient was computed to study the
correlation between each of the proposed QT rate adaptation markers
and the degree of stenosis. As the exact degree of stenosis of each
patient was unknown and only information on the range of stenosis for
each risk group was available, a fixed degree of stenosis was defined
for all patients in the same risk group, which corresponded to the mean
value of the corresponding range. Thus, patients belonging to COR-LR
(stenosis < 50%), COR-MR (stenosis between 50 and 75%), and COR-
HR groups (stenosis between 75 and 100%) were assigned with stenosis
levels of 25%, 65,5%, and 87.5%, respectively.

3. Results

Demographic information for each patient group together with
median HR and QT values in windows 𝑊𝑗 , 𝑗 ∈ {1, 2, 3}, HR𝑊𝑗

and
QT𝑊𝑗

, respectively, are given in Table 1. Median (and interquartile
range) age, BMI and the proportion of males vs females were higher
7

in groups with higher CAD risk. Median HR at stress peak, HR𝑊2
,

decreased significantly with increasing CAD risk.
The QT series 𝑑QT(𝑛) was calculated by delineating the ECG in the

first transformed lead TL1 after applying each of the six different LSR
variants of the methodology described in Section 2.3. Fig. 4 presents,
in the first row, the unfiltered 𝑑𝑟QT(𝑛) series before applying the median
filter. In the second row, the corresponding 𝑑QT(𝑛) series after applying
the median filter are displayed, evidencing that the presence of outlier
values can modify the shape of the 𝑑QT(𝑛) series trend. To compare
the different methods, the power of the 0.04 Hz high-pass filtered
𝑑𝑟QT(𝑢) series, QTV, was computed during both exercise and recovery

phases for all subjects and results are shown in Fig. 7. Median QTV
was lower for any LSR technique than when a multi-lead delineation
strategy was used to obtain the 𝑛Te(𝑘) points. Also, 𝜋CA-based meth-
ods showed better results than PCA, both in exercise and recovery.
Moreover, from Fig. 7 it can be seen that there are no significant
differences among 𝜋CA-based methods. Therefore, G𝜋CA3,𝑜 method
was selected for the analysis of the clinical data since calculating
the transformation matrix once avoids introducing additional abrupt
variations in the QT interval series which could occasionally appear
due to significant transformation matrix changes when moving along
consecutive windows.

The mean and standard deviation of �̂� and 𝛽 values estimated
to generate the expected 𝑑𝑖,𝑢QT(𝑛) and 𝑑𝑖,𝑚QT(𝑛) series, together with the

orresponding 𝜀rms, are shown in Table 2. The lowest 𝜀rms was obtained
with the hyperbolic model, so the 𝑑𝑖,𝑢QT(𝑛) and 𝑑𝑖,𝑚QT(𝑛) were calculated

ith this model for the remaining part of the 2rbox analysis.
Fig. 6 presents the 𝑝-values obtained for patients classification ac-

ording to CAD risk with time lags obtained for different thresholds
𝑒 in fixing the exercise end, 𝑛𝑒,𝑒, and 𝛾𝑟 in fixing recovery onset, 𝑛𝑟,𝑜,

points. To choose optimum 𝛾∗𝑒 and 𝛾∗𝑟 , we analyzed the mean 𝑝-value 𝑝𝑒𝑚
𝑟 𝑒
and 𝑝𝑚 evolution. The pairs of groups selected to calculate the mean 𝑝𝑚
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Table 2
Mean and standard deviation values for the coefficients �̂� and 𝛽 of different models, and the root mean square error, 𝜀rms, in milliseconds. Each fitting was computed using as
unmodified QT series, 𝑑𝑖,𝑢

QT(𝑛), as modified QT series, 𝑑𝑖,𝑚
QT(𝑛).

𝑓 𝑑𝑖
QT(𝑛) = 𝑔𝑓 (𝑑RR(𝑛); 𝛼, 𝛽) ECG-LR COR-LR COR-MR COR-HR

Parabolic log/log (Par) 𝑑𝑖
QT(𝑛) = 𝛽(𝑑RR(𝑛))𝛼

𝑑𝑖,𝑢
QT(𝑛)

�̂�𝑢 0.52 ± 0.08 0.49 ± 0.09 0.47 ± 0.08 0.42 ± 0.07

𝛽𝑢 0.43 ± 0.03 0.43 ± 0.03 0.43 ± 0.03 0.42 ± 0.02

𝜀𝑢rms 8.79 ± 5.27 9.02 ± 6.56 8.74 ± 4.81 7.34 ± 5.66

𝑑𝑖,𝑚
QT(𝑛)

�̂�𝑚 0.55 ± 0.09 0.51 ± 0.10 0.49 ± 0.09 0.46 ± 0.08

𝛽𝑚 0.44 ± 0.04 0.44 ± 0.04 0.43 ± 0.03 0.42 ± 0.02

𝜀𝑚rms 9.67 ± 5.56 9.88 ± 7.09 9.38 ± 5.36 8.12 ± 5.81

Linear (Lin) 𝑑𝑖
QT(𝑛) = 𝛽 + 𝛼 𝑑RR(𝑛)

𝑑𝑖,𝑢
QT(𝑛)

�̂�𝑢 0.30 ± 0.07 0.27 ± 0.07 0.25 ± 0.07 0.22 ± 0.05

𝛽𝑢 0.15 ± 0.03 0.17 ± 0.04 0.18 ± 0.03 0.21 ± 0.03

𝜀𝑢rms 10.44 ± 5.88 10.57 ± 7.16 10.00 ± 5.60 8.39 ± 6.19

𝑑𝑖,𝑚
QT(𝑛)

�̂�𝑚 0.31 ± 0.07 0.29 ± 0.07 0.26 ± 0.07 0.23 ± 0.05
𝛽𝑚 0.14 ± 0.03 0.16 ± 0.04 0.17 ± 0.04 0.19 ± 0.03
𝜀𝑚rms 11.25 ± 6.12 11.35 ± 7.58 10.58 ± 6.05 9.16 ± 6.33

Hyperbolic (Hyp) 𝑑𝑖
QT(𝑛) = 𝛽 + 𝛼

𝑑RR (𝑛)

𝑑𝑖,𝑢
QT(𝑛)

�̂�𝑢 −0.08 ± 0.01 −0.09 ± 0.02 −0.09 ± 0.02 −0.10 ± 0.02
𝛽𝑢 0.47 ± 0.03 0.49 ± 0.04 0.50 ± 0.04 0.51 ± 0.04
𝜀𝑢rms 5.12 ± 3.55 5.87 ± 3.92 5.18 ± 2.48 5.13 ± 4.69

𝑑𝑖,𝑚
QT(𝑛)

�̂�𝑚 −0.08 ± 0.01 −0.09 ± 0.02 −0.10 ± 0.02 −0.11 ± 0.03
𝛽𝑚 0.48 ± 0.04 0.50 ± 0.04 0.50 ± 0.04 0.52 ± 0.05
𝜀𝑚rms 5.49 ± 3.48 6.31 ± 4.13 5.55 ± 2.70 5.63 ± 4.76

Logarithmic (Log) 𝑑𝑖
QT(𝑛) = 𝛽 + 𝛼 ln(𝑑RR(𝑛))

𝑑𝑖,𝑢
QT(𝑛)

�̂�𝑢 0.16 ± 0.02 0.16 ± 0.03 0.15 ± 0.03 0.15 ± 0.03
𝛽𝑢 0.42 ± 0.02 0.42 ± 0.03 0.42 ± 0.02 0.41 ± 0.02
𝜀𝑢rms 6.90 ± 4.33 7.53 ± 5.62 7.40 ± 3.86 6.49 ± 5.23

𝑑𝑖,𝑚
QT(𝑛)

�̂�𝑚 0.17 ± 0.03 0.16 ± 0.03 0.16 ± 0.03 0.16 ± 0.03
𝛽𝑚 0.42 ± 0.03 0.44 ± 0.03 0.42 ± 0.03 0.42 ± 0.02
𝜀𝑚rms 7.53 ± 4.43 8.17 ± 5.93 7.87 ± 4.22 7.13 ± 5.32
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were [ECG-LR,COR-HR] and [COR-LR,COR-HR], as these were found
to be significantly different for at least half of the analyzed threshold
values (see Fig. 6c). In the recovery case, the pairs of groups selected to
calculate the mean 𝑝-value 𝑝𝑟𝑚, were: [ECG-LR,COR-HR], [COR-LR,COR-
HR], [ECG-LR,COR-MR] and [COR-LR,COR-MR]. It can be observed
from the figure how the closest the ramps delimitation gets to the stress
peak (lower 𝛾𝑟, higher 𝛾𝑒), the lowest the significance is. 𝛾∗𝑒 and 𝛾∗𝑟 were
taken where 𝑝𝑒𝑚 and 𝑝𝑟𝑚 already converged to a stable minimum plateau,
specifically in the extreme of these plateau that provided the largest
ramps, that is the largest 𝛾𝑒 and lowest 𝛾𝑟 within the plateau, Fig. 6,
so to guarantee reliable 𝜏 estimates. After inspection of Fig. 6e and f,
values of 𝛾∗𝑒 = 𝛾∗𝑟 = 0.55 were selected.

The estimated lags between 𝑑𝑖,𝑢QT(𝑛) and 𝑑QT(𝑛) for each group are
shown in Fig. 8. The mean lag 𝜏𝑒,𝑢, 𝜏𝑒,𝑢, increased with CAD risk
(Fig. 8a). Statistically significant differences were only found between
low risk groups and COR-HR group. A reverted behavior was observed
for mean lag 𝜏𝑟,𝑢, as observed from Fig. 8b, where the lag was re-
duced with CAD risk. In this case, statistically significant differences
were found between ECG-LR with COR-MR and COR-HR groups, and
between COR-LR with COR-MR and COR-HR groups too.

In view of this asymmetric behavior, the difference in the adap-
tation time 𝛥𝜏 was also computed and results are shown in Fig. 8c,
𝛥𝜏𝑢 = 𝜏𝑟,𝑢 − 𝜏𝑒,𝑢, was larger in ECG-LR and COR-LR patients than in
COR-MR (𝑝 = 0.064, 𝑝 = 0.451, respectively) and COR-HR (𝑝 < 0.001,
𝑝 = 0.002, respectively) patients.

Moreover, the results of the Pearson correlation coefficient between
each proposed QT lag marker and the three demographic variables are
presented in Table 3. We can observe a modest linear relationships
between the confounding variables and the proposed markers, even
if p-values indicate statistical significance. The linear mixed model of
the demographic variables reflects a variance of the random parameter
of 3.7% (16 of 435), 8.2% (44 of 538) and 9.2% (102 of 1207) for
𝜏𝑒,𝑢, 𝜏𝑟,𝑢 and 𝛥𝜏𝑢 , respectively, of the total variance of the model, which
was composed by both the variance of the random parameter and the
residual variance.

To better assess the capacity of the proposed markers to discrimi-
nate between low and high CAD risk groups, the analysis was repeated
8

f

Table 3
Correlation results between the proposed markers and the demographic variables, being
𝜌 the Pearson correlation coefficient.

𝜏𝑒,𝑢 𝜏𝑟,𝑢 𝛥𝜏𝑢

𝜌 𝑝-value 𝜌 𝑝-value 𝜌 𝑝-value

Age 0.14 0.01 −0.12 0.04 −0.16 <0.01
BMI 0.11 0.05 −0.25 <0.01 −0.23 <0.01
Gender – <0.01 – <0.01 – <0.01

but clustering together the two low-risk groups into a new ALL-LR
group. Results are shown in Fig. 9, where it can be confirmed that 𝜏𝑒, 𝜏𝑟
nd 𝛥𝜏 are able to distinguish between low and high CAD risk patients.

The same analysis was performed using the 𝑑𝑖,𝑚QT(𝑛) series. According

to the results shown in the second half of Fig. 8 boxes, the effect of
modifying the QT values at stress peak before regression parameter
estimation caused the exercise lag to increase and the recovery lag to
decrease. However, the tendency and significance of the lag values with
CAD risk was the same: the higher the CAD risk, the larger 𝜏𝑒,𝑚 and the
maller 𝜏𝑟,𝑚.

Finally, the Spearman correlation coefficient values between the
efined degree of stenosis and the proposed QT rate adaptation mark-
rs, 𝜏𝑒, 𝜏𝑟 and 𝛥𝜏 , were 0.25, −0.19, and −0.24, respectively, when
alculating the delays from the unmodified series, and 0.25, −0.20, and
0.21 when calculating the delays from the modified series.

. Discussion

New biomarkers for CAD risk stratification are proposed, which
stimate the time lag between the QT interval series and an estimated
nstantaneous memoryless QT series during the exercise and recovery
hases of a stress test, being the aim to have a different, easy to
stimate, QT memory value.

Computing the T-wave end in ECG signals recorded during a stress
est or a high HR values is challenging. Here, we computed the QT
nterval series, 𝑑QT(𝑛) using different variants of spatial lead trans-
ormation methodologies. Higher variance of estimated QT values is
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Fig. 7. QT trend fitting error quantified by QTV power values calculated both, in
exercise and in recovery, areas for delineation at TL1 in the 6 LSR techniques and for
multi-lead delineation strategy, and displayed a boxplots to show the median values
and extend to a maximum of 1.5 × IQR. *denote 𝑝-value < 0.001.

bserved when multilead selection rules are applied to the QT values
btained on the eight independent standard leads using a wavelet-based
elineator (Fig. 4a), as compared to applying the same delineator after
pace reduction transformations. Visual examples in Fig. 4 are in agree-
ent with numerical quantification of the QT variability power QTV

esults in Fig. 7. Computing the T-wave end in any TL1 is more stable
hat applying multilead delineation rules after single-lead delineation
n standard leads. Concretely, better performing are obtained with
CA-based techniques than with PCA-based ones for ECG delineation
uring stress test. Results show that all PCA-based techniques provide
imilar 𝑄𝑇𝑉 results and, analogously, all 𝜋CA-based techniques render
imilar results.

Our results are in line with previous studies that have used 𝜋CA-
ased techniques to emphasize beat-to-beat periodic components in
olter ECG [13,30] and found them to present superior performance

han PCA or single-lead delineation strategies when high noise contam-
nation is present.

It can be observed in Fig. 4, bottom row, that all methodologies
resent smooth QT traces. The large outlier contamination in Fig. 4a
top row from multi-lead delineation) clearly introduces a distortion
n the median filtered trace, which could affect the lag estimation, cir-
umstance that is clearly attenuated in the transformed lead delineation
hown in Fig. 4b, and c. Other Blind Source Separation methods, as ICA,
ould had been considered, but the fact that 𝜋CA-based incorporates
priory available knowledge of the beat-to-beat T-wave periodicity

tructure, focusing on the transformation on the T-wave enhancement,
ead us to restrict the analysis to 𝜋CA leaving ICA evaluation for future
ork developments.

To estimate the expected instantaneous memoryless, HR-dependent,
T interval series, three windows are selected, 𝑊1, 𝑊2 and 𝑊3, as-

umed to contain stationary RR and QT series from where to estimate
9

he 𝛼 and 𝛽 parameters needed in (10). Stationary series guarantee that t
he dominant dependency between RR and QT is mostly driven by the
on-linear block, and so, well suited to estimate 𝛼 and 𝛽. However, the
tationarity of those segments is not really guarantee, even they are
he most likely available candidates for that at the test. If the patients
ould have complementary ECG recordings, with better stationary

onditions and with large enough ranges of RR, the 𝛼 and 𝛽 estimations
ould be redirected to those recordings.

The presented methodology implies switching the blocks of the
odel presented in [15] (see Fig. 2). This is motivated by the fact

hat the lag between 𝑑𝑅𝑅(𝑛) and 𝑑𝑄𝑇 (𝑛) cannot be measured directly
ue to the different range of values of their ramps. So, the non-linear
lock was applied before, obtaining the instantaneous memoryless HR-
ependent QT series, 𝑑𝑖𝑄𝑇 (𝑛). Then, this ramp-like instantaneous QT was
onsidered as the input series of the linear first-order system, where the
T adaptation time is calculated. The non-linear relation between RR
nd QT, see (10), applied to the usual range of RR values, does not
esult in larger deviation from a ramp than those already present at
R series, see e.g. Fig. 5, and then the assumption that a ramp-like RR
eries implies a ramp-like QT series can be considered valid for this
urpose.

Related to the identification of onset and end of the ramps for the
elay computation, two considerations can be done. First, an automatic
lgorithm would not be necessary in cases where well annotated ex-
rcise stress onset and recovery end were available, but this is not
lways the case and requires extra acquisition protocol requirements.
his identification can be easily dealt with the here propose algorithm.
econd, the final part of the exercise ramp and the onset of the recovery
amp concur with the occurrence of a larger sympathetic activation.
onsequently, the QT lag might possibly not be constant and could even
ecreases with the increasingly larger the sympathetic activation [17].
herefore, we decided to limit the stress ramp to the area where the

ag can be considered to remain approximately constant. The way to
efine these points was parameterized using the parameter 𝛾, which can
e considered a design parameter. In this work, its value was selected
ccording to a criterion based on CAD predictive capacity.

We want to emphasize that Pearson correlation coefficient reflects
odest linear relationships between the demographic variables and

he proposed markers, even if p-values indicate statistical significance.
his is in agreement with our results because the sign of the small
orrelation still indicates that patients with an elevated risk of suffering
AD are older, have a larger BMI, and 𝜏𝑒,𝑢 is higher while both 𝜏𝑟,𝑢
nd 𝛥𝜏𝑢 are lower. In the case of gender variable, the 𝑝-values show
hat the marker means are different for each gender. Moreover, a linear
ixed model was calculated for each proposed marker to study if the

ombination of the demographic variables could explain the separation
f the four CAD risk groups when using the QT lag markers. The low
etween-group variance (3.7%, 8.2% and 9.2%) for 𝜏𝑒,𝑢, 𝜏𝑟,𝑢 and 𝛥𝜏𝑢
iomarkers, respectively, indicates that large delay differences are not
bserved between groups. Moreover, the residual variance is very high,
o the proposed biomarkers cannot be explained by the demographic
ariables. To be sure that the last conclusion is not contaminated by
he similar values between both ECG-LR and COR-LR groups, we fitted
he same linear mixed model arranged in the same cluster both low-risk
roups (ALL-LR). Therefore, only three risk-group can be distinguished:
ll-LR, COR-MR and COR-HR. We find that the new variance of the
andom parameter explains 4.8%, 9.3% and 10.3% for 𝜏𝑒,𝑢, 𝜏𝑟,𝑢 and 𝛥𝜏𝑢
iomarkers, respectively. We observe that the values have increased
little, but they are still low. Therefore, we can conclude that the

ombination of the three demographic parameters does not provide a
inear model that represent the information of any marker. In the case
hat the results for the QT lag variable would be largely influenced by
he confounding variables, we will expect a clearly different between
he intercept of the different groups and a well-linear fitting. That
eans that the variance of the random parameter will be high while
he residual one will be low.
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Fig. 8. Box plots of the lags between unmodified estimated 𝑑𝑖,𝑢
QT(𝑛) (or modified estimated 𝑑𝑖,𝑚

QT(𝑛)) and real 𝑑QT(𝑛) time series in (a) exercise, 𝜏𝑒, and in (b) recovery, 𝜏𝑟. (c) 𝛥𝜏 is
he difference between recovery and exercise lags. The dotted and continuous lines inside the boxplot correspond to the mean and median values, respectively. Blue box: ECG-LR,
reen box: COR-LR, yellow box: COR-MR and red box: COR-HR.
Fig. 9. After creating a new group that includes both LR groups, box plots of the lag between unmodified estimated 𝑑𝑖,𝑢
QT(𝑛) (or modified estimated 𝑑𝑖,𝑚

QT(𝑛)) and real 𝑑QT(𝑛) time
series in (a) exercise, 𝜏𝑒, and in (b) recovery, 𝜏𝑟. (c) 𝛥𝜏 is the difference between recovery and exercise lags. The broken lines correspond to the mean values. Green box: ALL-LR,
yellow box: COR-MR and red box: COR-HR.
Fig. 10. (a) (b) (c): ROC curves for 𝜏𝑒, 𝜏𝑟 and 𝛥𝜏, respectively, using as classification information the QT time lag calculated for both minor-risk groups (ECG-LR and COR-LR),
nd those calculated for both higher-risk groups (COR-MR and COR-HR). The analyses were done for both unmodified (black) and modified (blue) series.
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The correlation values between the degree of stenosis and the three
roposed QT rate adaptation markers confirm that there is a direct rela-
ionship between 𝜏𝑒 and CAD, that is, the degree of stenosis. However,
n inverse relationship is found between 𝜏𝑟 (or 𝛥𝜏 ) and the degree of
tenosis. As described in Section 3, the Spearman correlation coefficient
alues did not present significant differences when computed from the
nmodified or the modified QT series. The QT time lag calculated for
he combination of the two low-risk groups (ECG-LR and COR-LR), and
hose calculated for the combination of the two high-risk groups (COR-
10

R and COR-HR) were clustered to compute the ROC curve for 𝜏𝑒, 𝜏𝑟, r
nd 𝛥𝜏 (Fig. 10a, b, and c, respectively). The ROC curves were very
imilar for the delays using the unmodified series (black) and the delays
sing the modified series (blue) and the results point to the ability
f the three QT rate adaptation markers to discriminate between low
nd high CAD risk. The highest stratification value was attained by the
arker 𝜏𝑟.

According to mean lag values calculated using unmodified QT series
resented in Fig. 8, the higher the risk of suffering CAD, the higher the
T adaptation lag during exercise. This is in agreement with results
eported by Lauer et al. [22] where QT hysteresis increases with the
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Table 4
Comparison of presents results with published studies.

Authors Subjects Type of HR changes QT adaptation time

Lau et al. [18] 7 patients with complete heart
block diagnosis.

Abrupt HR changes from a
temporary pacing electrode.

136 s in HR acceleration, and 189 s in HR
deceleration for L90.

Lauer et al. [22] 260 patients referred for treadmill
exercise.

QT/RR hysteresis from gradual
HR changes at stress test.

QT/RR hysteresis ≥ 313 s for CAD patients. QT/RR
hysteresis ≥ 375 s for any ischemia. Higher QT/RR
hysteresis is predictive of the presence and severity of
myocardial ischemia.

Pueyo et al. [10] 866 patients survivors of acute
myocardial infarction, of which
200 patients with the highest and
lowest changes in HR were
selected.

Abrupt HR changes from 24
h-Holter recordings.

From 36 to 62 s for L50.

Pueyo et al. [20] 33 healthy subjects. Abrupt HR changes from
controlled postural maneuvering.

35 s in HR acceleration, and 48 s in HR deceleration
for L90.

Axelsson et al. [19] 25 subjects with permanent
pacemakers.

Abrupt HR changes controlled by
a pacemaker.

Time constant for the exponential function of the low
QT adaptation phase in ventricular pacing: 50 s in HR
acceleration, and 62 s in HR deceleration.
110 s in HR acceleration, and 133 s in HR
deceleration for L90 in ventricular pacing (this phase
includes both the instantaneous and the low response
of the QT adaptation when the HR change).

Martin-Yebra et al. [13] 171 patients with chronic heart
failure with permanent atria
fibrillation.

1-h windows from ambulatory
ECG recordings.

For non-SCD patients: 𝜏 = 50 s and L90 = 111 s. For
SCD patients: 𝜏 = 67 s and L90 = 136 s.

Proposed 448 patients referred for a
bicycle-ergometer exercise stress
test.

Gradual HR changes at stress test. For low-risk CAD patients: 25 s in HR acceleration
and 57 s in HR deceleration.
For high-risk CAD patients: 36 s in HR acceleration
and 39 s in HR deceleration.

L50 and L90 represent the time required for QT to complete 50% and 90%, respectively, of the change in response to HR changes. 𝜏 is the delay of the first-order system with an
impulse response that describing the relation between QT and RR intervals.
likelihood of any degree of ischemia or severe ischemia. In addition, the
mean lag values, indicated in Fig. 8, are of the same order of magnitude
as those reported in [10], where the time constants estimated from
selected step-like HR changes reached values ranging from 36 to 62 s,
depending on the patients. These values can be found in Table II in
[10], which were measured at 50% of the complete QT adaptation
time for abrupt RR changes and denoted as L50. This percent is an
approximation to 63%, which corresponds to the time constant in the
exponential response of a first-order system when the input is a step. So,
this range is compatible with the hypothesis that time lag, measured as
proposed here, at the exercise and recovery ramps or in a sudden step-
like HR change protocol could provide equivalent information. Note
that patients in [10] were survivors of acute myocardial infarction,
while the common situation in this study is that patients are at a certain
risk of suffering CAD, which correspond to different cardiac substrates.

Focusing on ECG-LR group, 𝜏𝑒,𝑢 = 25.5±17.9 s and 𝜏𝑟,𝑢 = 59.1±27.8 s.
n [20], the mean time lag of QT interval adaptation for step-like HR
hange was studied independently in HR acceleration and deceleration
n control subjects performing postural changes. The reported values in
20] are 𝜏𝑒 = 34.8±13.6 s and 𝜏𝑟 = 48.4±25.7 s. The larger adaptation lag
n response to HR decelerations than to HR accelerations is consistent
ith the results in the present study. The computation of the time lag
sing the modified method described in 2.4.2, 𝜏𝑒,𝑚 = 32.7 ± 22.5 s

and 𝜏𝑟,𝑚 = 52.8 ± 32.7 s, agree better with the values of [20]. These
esults suggest that the modification of the QT values at stress peak
n 𝑊2, leads to better representation of the QT-to-RR dynamics and,
onsequently, more accurate lag estimations.

Moreover, Axelsson et al. [19] studied the adaptation time of QT
nterval following an abrupt HR change, but in patients with pacemak-
rs. They concluded that the adaptation of ventricular repolarization
uration was longer after HR decrease than increase. This observation
as supported by our results, see Fig. 8, although the delays of COR-HR
roup were practically the same in exercise and recovery. A comparison
f the proposed method to measure the QT adaptation time with those
eported literature is summarized in Table 4.
11
According to both the mean and the 𝑝-values presented in Fig. 8, the
three proposed markers provide with the following information. High
values of 𝜏𝑒,𝑢 could be an indicator of a high risk of suffering CAD.
This distinction is also clearly observed in Fig. 6a. 𝜏𝑟,𝑢 and 𝛥𝜏𝑢 could be
indices of suffering CAD (COR-MR and COR-HR groups) or presenting
a minor risk (ECG-LR and COR-LR groups), irrespective of its severity.
Attending to 𝛥𝜏𝑢 and 𝛥𝜏𝑚 , mean values decrease with the likelihood of
suffering CAD, even reaching negative values or near zero.

Comparing the statistical analysis of the unmodified and modified
strategies (see Fig. 8) for instantaneous QT series estimation, a small
decrease in the 𝑝-values is observed for 𝜏𝑒,𝑚 and for 𝜏𝑟,𝑚, but retaining
the statistical significance for all cases. Note that other variables like
HR or QT (Table 1) also significantly discriminate between CAD groups.
However, the value of the time constants estimated on stress test can
provide complementary information to HR and QT and have also value
for arrhythmic risk prediction as shown in [10,15] in response to
abrupt HR changes. Pairwise statistical comparisons were performed.
Bonferroni correction was applied considering that six comparisons
were performed (𝑝-value for statistical significance being 𝑝 < 0.008).
The significance of the results remained unaltered after applying the
correction, except for the case of COR-MR vs COR-LR with 𝜏𝑟,𝑚, which
resulted in borderline significance following the correction (𝑝 = 0.009).

Lastly, it is worth noting that the 𝑑𝑖,𝑢QT(𝑛) and 𝑑QT(𝑛) series became
nearly overlapped, with no significant lag time, when approaching
the stress peak in the exercise phase, Fig. 5b. This phenomenon is in
agreement with recent findings [17] showing that the time lag for ven-
tricular repolarization adaptation to sympathetic provocation becomes
progressively reduced in response to continuously increased levels of
𝛽-adrenergic stimulation, as occurs when approaching the stress peak.
Electrophysiological simulations including concurrent changes in Au-
tonomic Nervous System (ANS) and in HR series as those studied here
can shed light on the basis for this observed behavior [35].

This effect observed in the neighborhood of stress peak also explains
the fact that the selected optimum thresholds for patient classification
∗ ∗
𝛾𝑒 = 𝛾𝑟 = 0.55 lead to estimate lags in areas well apart from stress peak.
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The main contributions of the study can be summarized as: (1)
ECG delineation of a transformed lead can improve the accuracy in
the identification of the T-wave end in highly contaminated ECGs as in
exercise stress tests; (2) the QT time lags measured in response to ramp-
like HR changes are in ranges similar to those measured in response
to abrupt-like HR changes, with the evaluation of the response to HR
ramps being easier to induce or observe; (3) The QT lag measured
from stress test is a marker of CAD severity and can be useful for CAD
diagnosis.

4.1. Study limitations and future extensions

Although G𝜋CA shows better performance in extracting the 𝑛Te(𝑘)
points, it has been shown preferable to compute the 𝑛QRSo(𝑘) points
from multi-lead delineation over the 8 independent standard leads. This
is a consequence of using only information from ST-T complex to learn
the transformation matrix, not so well adapted to the QRS complex. If
needed, a different transformation matrix could be learned for the QRS
complex to improve 𝑛QRSo delineation.

The robustness of the algorithm for computing the inflection point,
q. (15), could be compromised by the stress test protocol. If the ECG
ecording does not include a stage before starting the exercise portion,
r the recovery period is not long enough, it would be difficult to calcu-
ate the 𝑛𝑒,𝑜 and 𝑛𝑟,𝑒 points. In such cases, the objective function should
e redefined to adapt it to the patterns of the recordings under analysis.
lso, to have a proper instantaneous parametric relation estimation of

he QT-to-RR relationship, HR stationary period are required, advising
or prolonging the pre-test and recovery recording periods.

The number of patients in COR-MR group is small compared to the
ther groups. A larger variability is also observed in 𝜏𝑒 values of COR-

MR and COR-HR groups, as compared to the LR groups. The ability of
the proposed markers to separate the analyzed CAD groups suggests
that these markers could be used to improve the accuracy of CAD
diagnosis. A high value of the QT lag during exercise together with
low values of both the QT lag during recovery and of the difference
between the exercise and recovery lags could serve to identify high CAD
risk. Future studies could evaluate these markers, individually or in
combination with other ECG-based variables, and test their significance
for CAD diagnosis in larger patient populations.

Based on the follow-up information, only 7 patients from the ana-
lyzed cohort developed SCD. Due to this limited number, the perfor-
mance of the proposed biomarkers to predict SCD was not considered
in the study.

The use of biophysical modeling and simulation could help to
assess the role of the sympathetic nervous system in QT rate adaption
measured from stress tests. Also, it could eventually help to refine the
methodology here described. Simulated recordings with predetermined
QT lag values and varied signal-to-noise ratios could contribute to
establish the limits of the methodology and to unravel the clinically
significance of the information contained in the lag.

5. Conclusion

This study shows that it is possible to quantify the QT memory as the
response time lag of the QT interval to a HR ramp-like input maneuver
and the estimated instantaneous memoryless expected HR-dependent
QT series. A HR ramp-like-shape is found exercise and recovery areas
of a stress test, where QT responds with a delayed ramp-like series
to the ramp-like HR changes. This can be made as an alternative to
measure the QT response to a step-like HR change, which is difficult
to identify in ambulatory ECG recording or to induce with a simple
test. An increase in the lag at the exercise ramp, as well as a decrease
in the lag at the recovery, is found to be associated with CAD risk.
The difference between lags at exercise and recovery also results in
a marker for CAD risk, being remarkably larger for low-risk patients
either diagnosed from the ECG or from coronary angiography, and
12
much reduced when CAD risk increases. Same conclusions for patient
clustering are obtained if the estimated instantaneous memoryless QT-
to-HR fit is performed by modifying QT values at stress peak, but
with absolute values in greater agreement with reported hysteresis
lags values. Moreover, spatial ECG lead transformation based on 𝜋CA
showed to be the best alternative to delineate the ECG and obtain the
QT series in stress tests, particularly when estimating the T-wave end
point. In summary, the QT memory in response to HR changes can be
quantified from a stress test, obtaining values in ranges comparable
to those quantified from step-like HR changes and showing clinical
significance to stratify CAD risk.
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