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Abstract

In this work we studied the improvement achieved by in-

cluding information from the 12 ECG leads, in a previously

developed classification model. This model includes fea-

tures from the RR interval series and morphology descrip-

tors calculated from the wavelet transform. The experi-

ments were carried out in the INCART database, available

in Physionet, and the generalization was corroborated in a

private database. In both databases the AAMI recommen-

dations for class labeling and results presentation were

followed. Different approaches to integrate the additional

information available in the 12-leads were studied. The

best performing approach obtained for normal beats, sen-

sitivity (S) 98%, positive predictive value (P+) 94%; for

supraventricular beats, S 88%, P+ 91%; and for ventric-

ular beats S 91%, P+ 92%. The generalization capability

was confirmed in a private database with comparable re-

sults. The performance of the reference two-lead classifier

was improved by taking into account additional informa-

tion from the 12-leads.

1. Introduction

Cardiovascular diseases are currently the biggest single

cause of death in developed countries according to their

public health agencies. The analysis of the electrocardio-

graphic signal (ECG) provides a noninvasive and inexpen-

sive technique to analyze the heart function for different

cardiac conditions. One important analysis performed in

the ECG is the classification of heartbeats, which is impor-

tant for the study of arrhythmias.

Many algorithms for ECG heartbeats classification were

developed in the last decades (see references in [1,2]) using

the available two-lead databases. Some methodological

key-points in the development of these classifiers allowed

results comparison [1–3]. Probably the most relevant as-

pects were the fulfillment of AAMI recommendations [4],

the patient-oriented data division [1] and the generalization

capability of the classifier [2]. The room for improvement

in the field of heartbeats classification, together with the

availability of 3 and 12 leads holter devices makes nec-

essary the development of algorithms capable of exploit-

ing the increase of information. Besides, in the last years,

the St. Petersburg Institute of Cardiological Technics 12-

lead Arrhythmia Database (INCART) is freely available on

Physionet [5], making possible the development multilead

heartbeat classifiers.

The objective of this work is to develop and evaluate

a 12-lead classifier, following the premises and results

adopted in [2]: automatic classification, follow AAMI rec-

ommendations, use a simple classifier and robust features

with physiological meaning.

2. Methods

2.1. ECG databases

In this work we used the INCART database. It con-

sists of 75 annotated recordings extracted from 32 Holter

records. Each record is 30 minutes long and contains 12

standard leads, each sampled at 257 Hz. The annotations

were produced by an automatic algorithm and then cor-

rected manually, containing over 175000 beat annotations

in all. The original records were collected from patients

undergoing tests for coronary artery disease (17 men and

15 women, aged 18-80; mean age: 58). None of the pa-

tients had pacemakers; most had ventricular ectopic beats.

The database includes preferentially subjects whose ECG

was consistent with ischemia, coronary artery disease, con-

duction abnormalities, and arrhythmias.

Besides, a second database was used to evaluate the gen-

eralization of the classifier. This is a private database de-

veloped at Biosigna GmbH, which consists of 56 record-

ings containing a broad set of pathologies. Each recording

is one hour length, sampled at 500 Hz with an amplitude

resolution of 410 increments per mV using a 12-bit ADC,

allowing a range of 10mV approximately.

The AAMI Q class (unclassified and paced heart-
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Table 1. Databases used in this work. Heart beats classes

are N: normal, S: supraventricular, V: ventricular, F: fu-

sion, and Q: unknown.

Database N S V F Q #Rec

INCART 153192 1957 19844 219 6 75

Biosigna 287554 1335 2572 0 0 56

Totals 440746 3292 22416 219 6 131

beats) was discarded since it is poorly represented in both

databases. A similar limitation occurs with the fusion (F)

AAMI class, but instead of discarding the heartbeats of

this class, a class-labeling modification to the AAMI rec-

ommendation was adopted, as in [2]. It consists in merg-

ing fusion (of normal and ventricular beats) and ventric-

ular classes, into a modified ventricular class denoted as

V’. We will refer to this modification as AAMI2 labeling.

The class distribution for both databases is summarized in

Table 1.

2.2. Heartbeats classification: classifier

and features

Under the assumption of independent and normally dis-

tributed data, the maximum a posteriori criterion (MAP)

leads to the quadratic classifier defined by the discriminant

functions
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for the i-th class, where x represents the feature vector

describing each heartbeat, and µ
i
, Σi and P (ωi) are the

mean vector, covariance matrix and prior probability of the

i-th class. The values of µi and Σi were computed from

the training data with the sample mean and covariance ma-

trix expressions while the values for the prior probabilities
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(Σi = Σj , ∀i 6= j), the quadratic discriminant classifier
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The class-weighting possibility is of much interest due to

the heavy class-size unbalance inherent to this application,

Table 2. Features used in the model obtained in [2] only

for two-lead recordings.

Feature Description

ln(RR[i]) Current RR interval

ln(RR[i+ 1]) Next RR interval

ln(RR1) Average RR interval in the last minute

ln(RR20) Average RR interval in the last 20 minutes

kxZ Zero-cross position of the WT autocorrelation sequence in lead 1

kyZ Zero-cross position of the WT autocorrelation sequence in lead 2

kxM Maximum position of the WT autocorrelation sequence in lead 1

kyM Maximum position of the WT autocorrelation sequence in lead 2

where the normal class is in general one order of magni-

tude more represented that other classes. We refer as LDC

to the linear classifier where wi = wj , ∀i 6= j, any other

weight scheme will be referred as compensated linear clas-

sifier (LDC-C). In this work, all classification tasks were

performed using and modifying the PRtools toolbox [6]

for Matlab (The Mathworks Inc., Massachusetts).

Following the results obtained in [2], where we devel-

oped a classification model with good generalization capa-

bilities including rhythm and morphological features. As

the rhythm features used in the model do not depend on the

number of available leads, the first four features in Table 2

remain the same. Therefore we will focus the analysis to

those features describing heartbeat morphology, which are

the ones that can be improved by the new leads available.

The features kLZ and kLM described in [2], for each lead L
were calculated in four sets of leads to study the best way

of including the additional information. The first set in-

cludes the 12 standard leads (12L), while the three remain-

ing sets are calculated from it. The second is the vectocar-

diogram (VCG) set, derived with the inverse Dower matrix

from 12L. The following two sets are the result of pro-

jecting 12L and its fourth scale wavelet transform (WT),

into the two most important basis of a principal component

analysis (PCA). The PCA is performed for each beat in a

segment including the QRS complex, defined 80 ms before

and after the fiducial point (FP), for all available leads. The

two most important components obtained are used as pro-

jection basis for all available leads. As a result a pair of

ECG (or wavelet transformed) signals are obtained, which

includes the most important information (in the variance

sense) of a multilead set of leads. The resulting sets are

the 12L-PCA and the WT-PCA respectively.

For the first three sets described (12L, VCG and 12L-

PCA) we calculated the fourth scale of the WT for each

lead in the set. For the fourth set, WT-PCA, the WT was

calculated previous to the projection. Then for a segment

which starts 130 ms before and ends 200 ms after the FP,

the autocorrelation sequence (rL(k)) in the fourth WT is

calculated. The last step consists in detecting the first zero-

crossing (kLZ), and the position of the first minimum (kLM )

as shown in Figure 1, resulting in two features per lead.
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Figure 1. Illustration of the features calculated from

the wavelet correlation signals for normal and ventricular

beats. The autocorrelation signal of the QRS complex at

scale 4 is shown for both leads (rx and ry). The zero-

crossings and peaks of interest are indicated with an aster-

isk.

2.3. Experimental setup

The experiment consists in finding a classification

model which increases the performance obtained by the

reference two-lead model in [2], preserving the general-

ization capability to other databases. We studied the effect

of adding one, two and all leads present for the four sets

defined above. The class and global performances were

calculated for each experiment by a k-fold crossvalidation,

with k = 10 folds. It is important that each crossvalida-

tion step implies training in 9/10 of the database patients,

and testing in the remaining 1/10 of the patients. From the

resulting (aggregated through all folds) confusion matri-

ces, the performance estimates were calculated following

AAMI recommendations [4]. The class imbalance, present

in all public arrhythmia databases, is handled by scaling

each row in the confusion matrix to sum the same. This re-

sults in the balanced performance calculation used in Table

4. Finally the performance for the best model found was

also calculated in Biosigna database, to assess the general-

ization of the model.

3. Results

The results of the experiments described in the previous

section are presented in Tables 3 and 4. The best model

found, resulted from features calculated from both leads of

the WT-PCA set.

4. Discussion and conclusions

In this work we have improved a two-lead heartbeat

classifier by including the additional morphology informa-

tion present in 12-lead recordings. We followed the con-

cept of the morphology features obtained in [2], but calcu-

lating these features in different set of leads as reported in

Table 3. It was shown that the WT-PCA set obtains the best

improvements respect to the baseline classifier obtained in

[2]. The selected model confirmed its generalization ca-

pability in the Biosigna database, where it also obtained

better performance than the reference classifier, as shown

in Table 4.

A patient-oriented 10-fold crossvalidation scheme was

adopted to evaluate the performance, in order not to force

future works to adopt a fixed training/test set to com-

pare their results. This scheme provides also an accept-

able bias/variance trade-off in the performance estimation.

We also present the confusion matrices to ease the perfor-

mance comparison, specially for the publicly available IN-

CART database.

One advantage of the proposed approach is that it can

be used for an arbitrary number of leads, because after the

PCA we only retain the two most important components

for the feature calculation. These components are calcu-

lated specifically for the QRS complex, and in the fourth

scale of the WT, typically where the ECG presents maxi-

mum SNR. However in case of a large-scale artifact (such

as lead disconnection) during the QRS complex, the PCA

calculation would be corrupted, being this the larger lim-

itation found for this approach. As an alternative model,

only the first component of the PCA could be selected, re-

sulting in a promising model that not only performed bet-

ter than the original, but reduced the classification model

in two features.

The performance improvement is however mild, maybe

because the automatic classification approach is close to

the performance limit achievable with the current classifi-

cation model. Other techniques to improve the classifica-

tion performance for supraventricular beats, like the clas-

sification of heartbeat sequences or the detection of the P

wave are being studied by our group. Regarding to the

ventricular class, techniques of morphology adaptation as

described in [7] are also under development.

This results represents an improvement in performance

respect of two-lead approach, concluding that the correct

addition of new information to a classifier model improves

its performance.
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Table 3. Performance (in percentages) comparison between the several set of leads separating AAMI2 classes (N, S, V’).

In bold the best set of leads found.
Normal Suprav. Ventr. Total

Set of leads Comments Leads # Features S P+ S P+ S P+ A S P+

12L

best lead III 6 98 92 86 87 83 88 89 89 89

Ref. model [2] II-V1 8 97 93 87 87 84 89 90 90 90

all leads all 20 97 94 86 87 86 88 90 90 90

VCG
best lead Y 6 98 93 83 83 81 85 87 87 87

X Y Z 10 98 93 82 84 83 85 87 87 87

12L-PCA
1 6 98 93 87 87 86 90 90 90 90

1-2 8 98 93 82 87 86 86 89 89 88

WT-PCA
1 6 99 93 86 90 89 90 91 91 91

Selected model 1-2 8 98 94 88 91 91 92 92 92 92

Table 4. Performance comparison between the model suggested in this work and the reference classifier [2] separat-

ing AAMI2 classes (N, S, V’). First the confusion matrices for both databases are shown, and below the class and total

performances are summarized. The performances are expressed in percentages.

T
ru

th

INCART database

Algorithm

n s v’ Total

N 150253 2403 536 153192

S 81 1724 152 1957

V’ 465 1413 18275 20153

Total 150799 5540 18963 175302

T
ru

th

Biosigna database

Algorithm

n s v’ Total

N 281341 5392 821 287554

S 85 1211 39 1335

V’ 290 346 1936 2572

Total 281716 6949 2796 291461

Normal Suprav. Ventr. Total

Database Classifier S P+ S P+ S P+ A S P+

INCART
This work 98 94 88 91 91 92 92 92 92

[2] 97 93 87 87 84 89 90 90 90

Biosigna
This work 98 85 91 86 75 96 88 88 89

[2] 97 84 89 82 70 93 85 85 86

Nanomedicine is an initiative of ISCIII.
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