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Abstract

QT interval adaptation lag after heart rate (HR) has
been proposed as an arrhythmic risk marker. The delay
between QT and HR in a stress test has been shown to pro-
gressively reduce when approaching the stress peak, but
the underlying mechanisms are yet unclear.

We used a cell model coupling an electrophysiologi-
cal human ventricular cardiomyocyte model with a (-
adrenergic signaling model to gain insight into these
mechanisms. We paced the cell according to HR time
series measured from patients’ stress test recordings and
we searched for the B-adrenergic stimulation pattern mak-
ing the action potential duration (APD) response to HR
changes best replicate the corresponding QT response.

After adjusting the B-adrenergic stimulation pattern, the
simulated APD trends presented similar behavior to the
measured QT trends for the same HR time series. The
optimal pattern involved a sharp increase in B-adrenergic
stimulation close to the stress test peak. During stress test
recovery, the almost constant delay between QT and HR
could be explained by a fast return from high 5-adrenergic
stimulation to baseline levels.

In conclusion, time-varying (-adrenergic stimulation
patterns with high stimulation levels around the stress peak
contribute to explain the characteristics of QT adaptation
to HR during stress tests.

1. Introduction

In the last decades, a myriad of markers derived from the
electrocardiogram (ECG) have been proposed to stratify
patients according to their risk of suffering from ventric-
ular arrhythmias and sudden cardiac death. One of these
markers measures the time for adaptation of the QT in-
terval to changes in heart rate (HR) [1]. Its potential for
arrhythmic risk stratification in post-myocardial infarction
patients has been established [2]. On top of HR, there
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are other factors that influence QT interval measurements
[3,4]. Among such factors, an important one is the auto-
nomic nervous system (ANS), which innervates the ven-
tricular myocardium. The ANS can play a role in the re-
sponse of the QT interval to changes in HR, contributing
to modulate the so-called QT/RR hysteresis.

While most previous studies have analyzed QT interval
adaptation to a sudden step-like change in HR, recent in-
vestigations have proposed evaluation of the response to a
more gradual, ramp-like increase in HR [5]. In first-order
systems, the response to both inputs, i.e. step and ramp,
is characterized by the same time constant. Measuring
the adaptation to ramp-like changes is practically easier,
as stress tests recordings could be used for that purpose.

By measuring the QT lag behind HR changes in stress
test recordings from coronary artery disease (CAD) pa-
tients, a progressive lag reduction was observed when ap-
proaching the stress peak. This led to tiny delays around
the stress peak. The mechanisms underlying such a reduc-
tion are unclear yet. Based on studies showing the adapta-
tion time of ventricular repolarization to be progressively
reduced in response to increasingly higher [-adrenergic
stimulation levels [6], we hypothesized that 5-adrenergic
stimulation could be playing a role.

We investigated different patterns of -adrenergic stim-
ulation and we evaluated which of them led to better re-
production of the QT adaptation pattern to HR changes
measured from CAD patients performing a stress test. To
that aim, we simulated human ventricular cells subject to
constant and to time-varying $-adrenergic stimulation. We
evaluated the response of the action potential (AP) dura-
tion (APD) to HR time series obtained from stress test
recordings. We calculated the APD adaptation lags and
we compared them with those measured from the patients.
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2. Methods

2.1. QT and RR intervals from patients

We analyzed ECG recordings acquired at Tampere Uni-
versity Hospital, Finland, from CAD patients performing
a stress test in a bicycle ergometer [7]. A set of 9 patients
were randomly selected, three from each of the groups
classified according to Coronary Artery Disease (CAD)
degree: low-, mild- and high-CAD.

ECG signals were filtered to remove baseline wan-
der, high-frequency noise and artifacts. A spatially-
transformed lead derived from Periodic Component Anal-
ysis (mCA) was calculated and a wavelet-based algorithm
[8] was applied onto it to obtain the beat-to-beat series of
RR and QT intervals. The values of those time series de-
viating by more than £5% from the running median com-
puted over 80 beats were replaced with the median value
[5]. Finally, the time series were interpolated at 4 Hz to
obtain uniformly sampled RR(n) and QT (n) series.

2.2. In silico coupled electrophysiological
and [-adrenergic signaling model

The O’Hara et al. AP model [9] was used to represent
the electrophysiology of a human ventricular cell by in-
cluding descriptions of the main ionic current and fluxes:

dVv
Cm%"'zs: gs(V_Es)+zb: Ib"’Xi: Ii+Istim =0 (1)

where C,, is the membrane capacity, V' is the transmem-
brane potential, g is the specific conductance of each of
the channel families, E is the equilibrium potential of the
ion s, I}, is the current through pump b, I; is the current
through exchanger i and I, is the stimulus current.

The electrophysiological model was coupled with the
Gong et al. model of S-adrenergic receptor signaling [10].
The model describes the AP response to different doses of
the [-adrenergic agonist isoproterenol by computing each
ionic current or flux as a weighted average of the phospho-
rylated and nonphosphorylated fractions.

2.3. Repolarization adaption

To model the dependence of QT (n) (APD(n), respec-
tively) with HR, or equivalently RR(n), linear and hyper-
bolic regression models were used:

Linear (Lin) @(n) =8+ a RR(n)
Hyperbolic (Hyp) QT(n) =8+ zgqoy

For each patient and each of the two regression models,
the pairs of values [QT'(n), RR(n)] ([APD(n), RR(n)],
respectively) were fitted and the values of the parameters

« and [ were estimated. Specifically, we fitted the values
in three windows considered as “stationary periods”: one
at the beginning of the test (40 s), a duplicated one around
the stress peak (20 s) and another one at the end of the
test (40 s) [5]. The regression model leading to the lowest
regression residuum was selected and the corresponding
QT (n) time series was calculated.

To estimate the QT (APD, respectively) lag behind HR
changes, a measure of the delay between @?(n) and
QT (n) time series, in predefined intervals along the stress
test (see [5]), was computed. For that purpose, the optimal
delay value 7* was searched for by using a Mean Square
Error (MSE) criterion to minimize the difference between
QT (n) and QT (n — 7*) separately in the exercise and re-
covery phases of the stress test. These delays were denoted
as 7. and 7., respectively.

2.4. Simulated J-adrenergic stimulation
patterns

The APD response to HR changes was first analyzed for
a constant level of S-adrenergic stimulation. This corre-
sponded to an isoproterenol concentration of 0.005 uM,
considered as a basal level.
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Figure 1: Time-varying isoproterenol concentration deter-
mined from Q7' (n) and QT (n) time series.

Subsequently, a time-varying pattern of [-adrenergic
stimulation was proposed to simulate an increase in the
stimulation as the stress peak was approached. This pattern
started from the basal isoproterenol concentration of 0.005
pM. At a time point nq during exercise, isoproterenol con-
centration started to linearly increase until reaching a con-
centration of 0.01 ©M at the stress peak (n2). This concen-
tration value was kept constant at the start of the recovery
until time point ng. From that point, isoproterenol started
to linearly drop until time point n4, where it returned to the
basal concentration. This is illustrated in Figure 1.

To determine the four points defining the [-adrenergic
stimulation pattern, we departed from the QT (n) and
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RR(n) time series of each patient and we computed the
@T(n) time series. The four points were obtained as:

ni: closest point to the stress peak, happening before it,
where the slopes of Q7'(n) and @(n) are equal.

ng: point corresponding to the stress peak.

ng: first point during recovery where the difference be-
tween QT (n) and @(n) slopes presents a local maxi-
mum. -

ng4: first point after ny where QT (n) and QT (n) slopes
are equal.

3. Results and Discussion

3.1. QT and APD adaptation to HR

Figure 2 shows fitted regression models to the [QT'(n),
RR(n)] data from a patient of the study (2a) and to the
[APD(n), RR(n)] data calculated for a constant level of
[-adrenergic stimulation (2b) and for a time-varying pat-
tern of B-adrenergic stimulation (2c¢) when the input is the
RR(n) time series of the patient.

Figure 3 illustrates the repolarization adaptation to HR
for the same patient shown in Figure 2. As can be observed
from the left panel, the QT lag is remarkably larger during
the exercise phase of the stress test (7, around 97 s) as com-
pared to the recovery (7, around 32 s), which is associated
with the larger area between the QT'(n) and QT'(n) time
series. Of note, when approaching the stress peak, the QT
lag behind HR became progressively reduced.

When APD was simulated in response to the same
RR(n) time series while keeping $-adrenergic stimulation
constant, the APD lag did not reproduce the corresponding
QT lag but a much shorter delay in the repolarization re-
sponse was found, particularly during exercise (7, around
48 s). This is illustrated in Figure 3, middle panel.

Following application of the time-varying S-adrenergic
stimulation pattern proposed here, we observed an increase
in the APD lag behind HR, as shown in Figure 3, right
panel. The delay 7. increased to nearly 90 s, which is
close to the value measured for the QT interval. During
the recovery phase, small differences in 7,- were measured
between the QT interval from the patient and the simulated
APD for either constant or time-varying S-adrenergic stim-
ulation.

Table 1 presents average values of 7, and 7, after pool-
ing the data from the patients in each study subgroup. As
can be observed from the table, application of the proposed
time-varying [3-adrenergic stimulation increased the mean
value of the APD delays, making them closer to the delay
measured for the QT interval as compared to the values
obtained for constant $-adrenergic stimulation. This effect
can be better appreciated in the delay during the exercise
phase, 7., than during the recovery phase, 7;..

These results points to a relevant role of S-adrenergic
stimulation in contributing to repolarization adaptation, in
agreement with previous studies in the literature [6]. Fu-
ture studies on larger study populations and simulated data
should be conducted to confirm the outcomes of this work.
Simulations could extend the ones presented here to model
electrical propagation in ventricular fibers and tissues so as
to account for additional effects on repolarization.

4. Conclusion

[-adrenergic stimulation modulates ventricular adapta-
tion to HR in stress tests. A time-varying pattern of (-
adrenergic stimulation explains the adaptation lag of repo-
larization duration after HR changes in exercise and recov-
ery with higher accuracy than a constant stimulation level.
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Figure 2: Linear and hyperbolic fitting obtained for QT and RR series of a patient (a) and for simulated APD with constant
(b) and time-varying (c) S-adrenergic stimulation under the same RR series as in (a).
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Figure 3: Left panel: Measured delay between QT (n) and é?(n) in exercise and recovery. Middle panel: Measured
delay between APD(n) and APD(n) in simulated exercise and recovery for constant S-adrenergic stimulation. Right

panel: Measured delay between APD(n) and A/P\D(n) in simulated exercise and recovery for the proposed time varying
[-adrenergic stimulation.
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