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Abstract

Existing studies offer little insight on how atrial fibrilla-
tion (AF) detection performance is influenced by the prop-
erties of AF episode patterns. The aim of this study is
to investigate the influence of AF burden and median AF
episode length on detection performance. For this pur-
pose, three types of AF detectors, using either information
on rhythm, rhythm and morphology, or ECG segments,
were investigated on 1-h simulated ECGs. Comparing AF
burdens of 20% and 80% for a median episode length of
167 beats, the sensitivity of the rhythm- and morphology-
based detector increases only slightly whereas the speci-
ficity drops from 99.5% to 93.3%. The corresponding fig-
ures of specificity are 99.0% and 90.6% for the rhythm-
based detector; 88.1% and 70.7% for the segment-based
detector. The influence of AF burden on specificity be-
comes even more pronounced for AF patterns with brief
episodes (median episode length set to 30 beats). There-
fore, patterns with brief episodes and high AF burden im-
ply higher demands on detection performance. Future re-
search should focus on how well episode patterns are cap-
tured.

1. Introduction

Little is known about the role of temporal atrial fibrilla-
tion (AF) episode patterns in AF progression and develop-
ment of complications. The need for AF episode pattern
analysis, complementing the often used AF burden, is em-
phasized in recent clinical guidelines [1]. However, to take
a further step in AF pattern characterization, it is essential
to understand how well episode patterns can be captured
when using different AF detectors.

A huge number of AF detectors have been published in
recent years. However, the influence of various physio-
logical and technical factors on detection performance is
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rarely investigated, despite that essential information on
detector properties can be uncovered [2]. Strengths and
weaknesses in detector design can be more efficiently ad-
dressed by providing information on what particular AF
pattern properties cause frequent false alarms.

AF patterns can vary considerably with respect to
episode duration and AF burden [3]. The interest in brief
(<30 s) episodes and their association with future risk of
stroke [4,5] motivates the analysis of episode patterns with
varying length to enrich the understanding of detection
performance. Also, it is unclear how detectors perform
in patterns with different AF burden, i.e., whether detec-
tion performance is the same in a pattern with a few brief
episodes and a pattern dominated by long episodes.

The present study aims to investigate how AF burden
and median AF episode length influence detection perfor-
mance. For this purpose, three types of AF detectors, us-
ing either information on rhythm, rhythm and morphology,
or ECG segments, are investigated on a database of simu-
lated ECGs.

2. Methods

Rhythm-based and rhythm- and morphology-based de-
tection require prior QRS detection, here accomplished
by the wavelet-based detector described in [6], whereas
segment-based detection does not.

2.1. Rhythm-based detector

Rhythm-based detection makes use of that AF episodes
are manifested by irregular RR intervals, often associated
with increased heart rate. The detector, able to detect AF
episodes as short as 8 beats, includes blocks for ectopic
beat filtering, bigeminy suppression, characterization of
RR interval irregularity, and signal fusion [7].
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2.2. Rhythm- and morphology-based de-
tector

The rhythm- and morphology-based detector, capable of
detecting AF episodes as short as 8 beats, is based on four
parameters which characterize rhythm irregularity, P-wave
absence, f-wave presence, and noise level [8]. The latter
three parameters are determined from an f-wave signal, ex-
tracted using an echo state network [9]. The parameters
are fed to a fuzzy logic classifier producing a fuzzy out-
put, i.e., a value between 0 and 1, reflecting the likelihood
of AF being present in the sliding detection window. AF
is detected whenever the output exceeds a fixed threshold.
The detector requires two ECG leads, one with negligible
atrial activity used as reference (e.g., V) and another with
atrial activity (e.g., V1) [8].

2.3. Segment-based detector

The deep learning-based detector described in [2] uses
a 1D convolutional neural network (CNN) to process 30-s
non-overlapping ECG segments. The ECG signal is pre-
processed using a band-pass filter (0.5-40 Hz) to remove
baseline wander and high-frequency noise. The CNN is
composed of two convolutional layers and one fully con-
nected layer. Both convolutional layers rely on 128 kernels
with a stride of one, followed by a 1 x 32 average-pooling
layer with a stride of 32. The fully connected layer con-
sists of 256 neurons with a rectified linear unit activation
function and two output neurons with a softmax activation
function. To mitigate the risk of overfitting, all layers are
followed by dropout layers with probabilities of 0.5. The
outputs of the convolutional layers are batch-normalized.

The detector was trained on two-thirds of MIT-BIH
Atrial Fibrillation Database (AFDB) from Physionet [10]
and validated on the remaining one-third. To equalize the
signal amplitude across a recording, the modulus of each
segment was taken and normalized to the interval [0, 1].

3. Database

To investigate the influence of AF pattern properties on
detection performance, simulated ECGs with paroxysmal
AF episodes are used [11]. The model produces 12-lead
ECGs composed of real signal components randomly se-
lected from three datasets, each consisting of ventricular
rhythm, atrial activity (f-waves or P-waves), and QRST
complexes. Accounting for the switching between non-
AF and AF, these components, together with noise, are
summed to produce simulated ECGs.

Two datasets with median AF episode lengths of 30 and
167 beats were produced. The first dataset consists of AF
patterns with brief episodes, while the second dataset con-
sists of patterns similar to those in AFDB. Each dataset
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Figure 1. Histograms of AF episode duration in
dataset with a median AF episode length of (a) 30 and
(b) 167 beats.

contains 100 1-h simulated ECGs with AF burden set to
20%, 50%, and 80%, resulting in a total of 300 ECGs. The
histograms of episode duration are provided in Fig. 1.

4. Performance evaluation

Simulated ECGs were processed with each detector type
to obtain detector-produced AF patterns. The reference
AF patterns were compared to the detector-produced AF
patterns using beat-to-beat comparison. For this purpose,
the segment-to-segment output of the segment-based de-
tector was converted to beat-to-beat output, i.e., all beats
of a segment were assigned to AF or non-AF depending
on whether the segment was detected as AF or non-AF.

Detection performance is evaluated using sensitivity,
Se, specificity, Sp, and accuracy, Acc. All statistical re-
sults are based on 100 simulated ECGs and expressed as
mean =+ confidence interval (95%).

5. Results

For high AF burden (80%), the sensitivity increases
only slightly independently to the detector used, however,
the specificity is considerably influenced by AF burden
(Fig. 2 a-b). That is, the specificity drops from 99.5% to
93.3% for high AF burden (80%) compared to low (20%)
using the rhythm- and morphology-based detector, from
99.0% to 90.6% for the rhythm-based detector, and from
88.1% to 70.7% for the segment-based detector when the
median AF episode length is set to 167 beats. The influ-
ence of AF burden on specificity becomes even more ev-
ident for AF patterns with brief episodes, i.e., the speci-
ficity drops from 98.0% to 70.0% using the rhythm- and
morphology-based detector, from 97.2% to 61.7% for the
rhythm-based detector, and from 82.7% to 31.7% for the
segment-based detector.

The detection accuracy decreases only slightly for high
AF burden compared to low AF burden using the rhythm-
and morphology-based detector, while the accuracy of the
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Figure 2. Detection performance as a function of AF burden for three types of AF detectors: (a) sensitivity, (b) specificity,
and (c) accuracy. Shaded area shows detection performance depending on median AF episode length.
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Figure 3. (a) Reference AF pattern with brief episodes
and detector-produced pattern using (b) rhythm-based,
(c) rhythm- and morphology-based, and (d) segment-based
detector.

rhythm-based detector is more influenced by the change in
AF burden (Fig. 2 c). On the contrary, the accuracy of the
segment-based detector increases from 89.2% to 91.2% for
high AF burden when the median AF episode length is set
to 167 beats.

The performance of all detector types decreases when
AF patterns with brief episodes are processed (Fig. 2). For
low AF burden, detection specificity drops only slightly.
However, sensitivity decreases from 90.9% to 78.7%
for patterns with brief episodes using the rhythm- and
morphology-based detector, from 81.2% to 66.1% for the
rhythm-based detector, and from 93.0% to 83.7% for the
segment-based detector. While for high AF burden, speci-
ficity is substantially influenced by the change in median
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Figure 4. (a) Reference AF pattern and detector-
produced pattern using (b) rthythm-based, (c) rhythm- and
morphology-based, and (d) segment-based detector.

episode length, i.e., the specificity decreases from 93.3%
to 70.0% using the rhythm- and morphology-based detec-
tor, from 90.6% to 61.7% for the rhythm-based detector,
and from 70.7% to 31.7% for the segment-based detector.

Figure 3 shows an AF pattern with brief AF episodes,
best captured by the rhythm- and morphology-based de-
tector. The segment-based detector has the largest sensi-
tivity, however, the detector-produced pattern differs from
the reference pattern since a few consecutive episodes are
merged into a single episode. Therefore, the AF pattern
can not be captured properly, i.e., AF burden for the ref-
erence pattern is 56%, while AF burden resulting from the
segment-based detector is 81%. For comparison, AF bur-
den resulting from the rhythm-based and the rhythm- and
morphology-based detectors is 57% and 53%, respectively.
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On the contrary, Fig. 4 illustrates a pattern with longer
episodes. In this case, both the rhythm-based and the
rhythm- and morphology-based detectors tend to split sin-
gle AF episode into a cluster, while the segment-based de-
tector does not since it processes ECG segments. This
result also influences the AF pattern, i.e., AF burden for
the reference AF pattern is 53%, while AF burden for the
detector-produced patterns using rhythm-based, rhythm-
and morphology-based, and segment-based detectors are
45%, 46%, and 59%, respectively.

6. Discussion

AF pattern properties, such as median AF episode length
and AF burden, influence detection performance. This
may be a challenge aiming at characterization of tempo-
ral AF patterns, e.g., analysis of episode clustering [12]
or temporal distribution of AF episodes [13]. Therefore,
further research should investigate the influence of missed
and falsely detected AF episodes in terms of pattern char-
acterizing parameters.

The sensitivity of the segment-based detector is less in-
fluenced by AF pattern properties than are the other detec-
tor types. However, the specificity of the segment-based
detector decreases considerably when processing AF pat-
terns with brief episodes. The reason behind is that the
segment-based detector uses quite long 30-s segments,
therefore, it is still going to detect AF if, e.g., only half
of that segment contains AF. Another reason is the com-
parison of different AF detection approaches, where one
is based on the analysis on ECG segments, while two oth-
ers process ECG on a beat-to-beat basis. The selection of
detector structure should be based on the purpose.

7. Conclusions

AF patterns with brief episodes and high AF burden im-
ply higher demands on detection performance. Therefore,
future research should focus on how well episode patterns
are captured.
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