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Abstract 

Early detection of cardiovascular risk in the general 
population is challenging. We hypothesize that individuals 
without known cardiovascular disease (CVD) but at high 
risk may share electrocardiographic (ECG) features 
suitable for non-invasive risk stratification. This study 
aimed to identify clusters of individuals without CVD 
based on ECG morphology using unsupervised clustering 
and assess their association with incident CVD risk.  

A median heartbeat was derived from 10-second 12-
lead resting ECGs from 56,251 individuals without 
prevalent CVD in the UK Biobank. An unsupervised model 
classified individuals into k distinct clusters based on their 
ECG features. Survival analysis assessed the association 
of each cluster with incident cardiac risk (4-years follow-
up). 

The model distinguished 2 clusters with varying ECG 
features, which significantly differed in terms of HF and 
CVD rate. Cluster 2 (N = 25,097) included the highest rate 
of heart failure (HF) (0.5%, p<0.001) and CVD (4.2%, 
p<0.001). These individuals exhibited ECG features that 
are associated with higher cardiac risk.   

Our analysis identified a group of individuals at risk of 
HF and CVDs using 10-second ECGs enabling fast and 
noninvasive risk assessment in apparently healthy 
populations.  

 
 
1. Introduction 

Cardiovascular disease (CVD) is the main cause of 
mortality worldwide, accounting for 17.9 million deaths 
each year[1]. Early detection of CVD is crucial to reduce 
the burden of these diseases on individuals and healthcare 
systems. Despite progress in technology, prediction of 
CVD is still a challenge. Current risk stratification 
strategies such as Framingham Risk Score[2] and the 
Pooled Cohort Equations[3] consider only traditional risk 
factors to predict CVD risk in a 10-year span. The 
inclusion of electrocardiographic (ECG) information that 

associate with higher CVD risk could improve risk 
stratification and facilitate timely initiation of primary 
prevention therapies. 

 In supervised statistical modelling, ECG features (e.g., 
T-peak-to-T-end [Tpe], T-wave morphological variations, 
heart rate variability) are associated with CVD risk [4–9]. 
In contrast, unsupervised models are useful to reveal 
hidden patterns in the ECG data, exploring complex 
interactions between ECG features, and possibly 
identifying new risk profiles[10]. Specifically, 
unsupervised clustering models have proven to be effective 
in discerning subgroups of individuals with different ECG 
features identifying associations with higher risk of 
arrhythmia in hypertrophic cardiomyopathy and coronary 
artery disease[11,12].  

We hypothesize that individuals without known CVD 
but at a higher CVD risk might share ECG features that can 
be used to optimize risk stratification. This study aimed to 
identify distinct clusters of individuals without prevalent 
CVD based on their ECG morphology using unsupervised 
machine learning and investigate their association with 
incident CVD risk. 

 
2. Methods 

2.1. The study population  

Our study population consisted of 56,251 individuals 
without known prevalent CVD from the Imaging cohort in 
the UK Biobank study [13]. The available information for 
individuals in this cohort included collections of 10-second 
12-lead ECGs recorded at rest, as well as health electronic 
records. The UK Biobank study received approval from the 
North West Multi-Centre Research Ethics Committee[14], 
and this work was conducted under application number 
8256. 

 
2.2. Definition of cardiovascular diseases 

Diseases were defined by the WHO International 
Classification of Diseases and Related Health Outcomes, 
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Tenth Revision codes. Atrial fibrillation (AF) was 
identified using codes I48.0 to I48.4 and I48.9. Heart 
failure (HF) was defined by codes I50.0, I50.1, I13.0, 
I13.2, and I50.9. Ventricular arrhythmias (VA) were 
defined by codes I47.0, I47.2, I49.0, and I46.0. CVDs were 
identified using codes I21.0 to I21.4, I21.9, I22.0, I22.1, 
I22.8, I22.9, I23.0 to I23.6, I23.8, I24.0, I24.8, I24.9, I25.1 
to I25.6, I25.8, I25.9, I40.0, I40.1, I40.8, I40.9, I41.1, I412, 
I41.8, I42.0 to I42.9, I43.0 to I43.2, I43.8, I44.1, I44.2, 
I47.2, I49.0, I46.0, I46.1, I46.9, I47.0, I48.0 to I48.4, I48.9, 
I49.9, I50.0, I50.1, I50.9, I51.4, I13.0, I13.2, I50.9, I61.0 
to I61.6, I61.8, I61.9, I63.0 to I63.5, I63.8, I63.9, I70.0 to 
I70.8, I71.0 to I71.9, I74.0 to I74.5, I74.8, I74.9. 

 
2.3. ECG Signal Processing  

To remove high frequency noise, the ECG signals were 
low pass filtered at 40Hz, followed by removal of baseline 
wander using cubic splines interpolation. Using only sinus 
beats, a median heartbeat was calculated and a wavelet-
based delineator[15] was used to locate the ECG waves 
onsets, peaks and end timings.  

For each lead, parameters related to amplitude, duration 
and morphology of the QRS and T waveforms were 
calculated. Each waveform morphology was 
mathematically characterized by a combination of Hermite 
functions[16]. For the QRS-complex we considered four 
Hermite functions, and two for the T wave. The 
reconstruction error and the width of the Hermite functions 
were included as parameters in the model. To further 
characterize the QRS-complex we calculated the upward 
and downward slopes as in [17]. Additionally, we 
calculated the T-wave’s morphological differences with 

respect to a normal reference (TMV index) as described in 
[18]. A total of 22 ECG-related parameters were obtained 
from each lead’s median heartbeat. Additionally, the RR-
interval was included as a feature in this model. 

 
2.4. Identification of Clusters using ECG 
Biomarkers 

To refine the set of features, highly correlated features 
(r>0.8) were filtered out to reduce redundancy. Then, 
principal components analysis was performed to reduce 
dimensionality in the standardized features. To determine 
the optimal number of clusters, a grid search from 2 to 10 
clusters was conducted using the gap statistic. The gap 
statistic compares the within-cluster variation in the data to 
the expected variation under a reference null 
distribution[19] identifying the optimal number of clusters 
as the one with the greatest difference between the 
observed and expected variation, this indicates the final 
clustering structure is most distinct from random noise. 
Then it was applied to a k-means clustering algorithm to 
categorize the ECG features into k distinct clusters. 
Clustering analysis were performed using Matlab (version 
R2022b). 

 
2.5. Statistical Analyses 

The Wilcoxon rank sum test was used to compare 
continuous variables, presented as median [interquartile 
range (IQR)], across clusters, while the Fisher's exact test 
was employed to compare categorical variables, presented 
as numbers [percentages]. The variables compared across 
clusters include: the ECG parameters, demographic 

Table 1. Baseline and ECG characteristics for all individuals and clusters in the study  

Characteristic All (N=56,251) Cluster 1 (N=31,154) Cluster 2 (N=25,097) 
Bonferroni 

corrected P Value 
Demographic and clinical        

Male sex, no. [%] 25796 [45.86%] 16068 [51.58%] 9728 [38.76%] < 0.001 
Age, yr 65 [12] 64 [12] 66 [11] < 0.001 

BMI, kg/m2 25.81 [5.41] 25.07 [4.82] 26.89 [5.85] < 0.001 
SBP, mmHg 139 [25.5] 137 [25] 142 [25.5] < 0.001 
DBP, mmHg 79 [14] 77.5 [13.5] 80 [13.5] < 0.001 

Diabetes, no. [%] 2633 [4.68%] 1064 [3.42%] 1569 [6.25%] < 0.001 
Smoker, no. [%] 1926 [3.42%] 1129 [3.62%] 797 [3.18%] 0.07 
Alcohol, no. [%] 9316 [16.56%] 5202 [16.70%] 4114 [16.39%] 6.69 

LVEF, % 56 [7] 56 [7] 56 [8] 0.53 
Association with CV events  

 
 

 
 

 
 

AF events, no. [%] 690 [1.23%] 345 [1.11%] 345 [1.37%] 0.06 
HF events, no. [%] 238 [0.42%] 104 [0.33%] 134 [0.53%] < 0.001 
VA events, no. [%] 72 [0.13%] 39 [0.13%] 33 [0.13%] 11.7 

CVD events, no. [%] 2123 [3.77%] 1078 [3.46%] 1045 [4.16%] < 0.001 
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information (age, sex, smoking status and alcohol 
consumption), and clinical features such as body mass 
index (BMI), left ventricular ejection fraction (LVEF), 
systolic and diastolic blood pressure (SBP and DBP). The 
P-values were adjusted using Bonferroni correction. 

The association of cluster membership and incident risk 
of AF, HF, VA and CVD was assessed using Cox-
proportional hazards models. Multivariable Cox models 
were adjusted for covariates including age, sex, smoking 
status, alcohol consumption, BMI, SBP and DBP, 
excluding those who had high number of missing data 
(>10%). Hazard ratio (HR), 95% confidence interval (CI) 
and P-values were reported for each model.  

 
3. Results 

The median age of all 56,251 individuals included in 
this study was 65 [12] years and 45.86% were male. 
Further information about demographic and clinical 
characteristics are found in Table 1. From the initial 177 
ECG features (across all 12 leads), 135 remained after the 
feature selection process. These standardized features were 
used to derive 82 principal components. The gap statistic 
indicated the optimal number of clusters was 2. The 2-
means clustering algorithm identified 2 distinct clusters of 
ECG morphological features.  

The distribution of males was higher in cluster 1 with 
51.58% and lower in cluster 2 with 38.76%. Individuals in 
cluster 1 were slightly younger with 64[12] years, 
compared to cluster 2 with 66[11] years. Clinical features 
in cluster 2 had a higher BMI (26.89 [5.85] kg/m2), rate of 
diabetes (6.25%) and systolic blood pressure (142 [25.5] 
mmHg), compared to cluster 1.  

The representative median ECG of each cluster for each 
lead is shown in Figure 1. Cluster 2 was characterized by 
shorter RR intervals compared to cluster 1, 988 [198] ms 

vs 1072 [198] ms respectively. Regarding differences in 
depolarization across all leads, cluster 2 exhibited wider 
QRS complexes and flatter upward slopes. Regarding 
differences in repolarization, individuals in cluster 2 had 
longer QTc and Tpec intervals and higher TMV indices 
compared to cluster 1. Additionally, individuals in cluster 
1 were characterized by higher T-wave’s amplitude. 
Finally, the larger second Hermite coefficient in the 
reconstruction of the T-wave in cluster 2 indicates more 
biphasic T-waves in leads I, II, and V4-V6 in this cluster. 

During the 4-year follow-up, there were a total of 690 
diagnoses of AF, 238 of HF, 72 of VA and 2,123 of CVD. 
The identified clusters differed significantly in terms of 
cardiovascular events rate.  Cluster 2 had the highest rate 
of incident HF 0.53% and CVD 4.16%.  

Univariable Cox models showed that cluster 2 was 
significantly associated with risk of incident HF (HR: 1.70, 
[1.32 – 2.21], P < 0.001) and CVD (HR: 1.29, [1.18 – 
1.41], P < 0.001). After adjustment for covariates the 
association remained significant for HF (HR: 1.41, [1.07 – 
1.85], P = 0.01) and CVD (HR: 1.18, [1.07 – 1.29], P < 
0.001). SBP and DBP were not considered in the 
multivariate model due to high number of missing data. 

 
4. Discussion and Conclusions 

The main finding of this study is the identification of 
two distinct clusters of individuals in a large general 
population cohort using 12 lead, 10-seconds ECGs. 
Among these, cluster 2 was identified as having a 
significantly higher risk of incident HF and CVDs. This 
study highlights the utility of unsupervised clustering 
models in effectively distinguishing groups of individuals 
based on ECG features. 

Individuals in cluster 2 were characterized by wider 
QRS complexes, flatter upward slopes, higher TMV 

 
Figure 1. Representative median ECG of each cluster for each independent lead. 
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indices, prolonged QTc and Tpec intervals. All of these 
characteristics have been associated in the literature with 
higher cardiac risk[17,18,20–22]. Although these values 
remained within ‘healthy’ ranges, their elevation may 
indicate increased variability in the heart’s electrical 
activity which may create conditions that favor the 
development of adverse cardiac outcomes. Moreover, this 
cluster showed the highest rate of HF and CVD, and was 
significantly associated with an increased risk in both 
univariate and multivariate Cox models independent of 
traditional risk factors.  

Cardiac ion channel and myocardial structural 
abnormalities are reflected by the ECG waveform, yet the 
majority of CVD risk stratification tools ignore this 
information. This study shows that unsupervised ECG-
based risk stratification in the general population can 
capture ECG abnormalities that may group individuals 
according to CVD risk, with potential application for 
improved management of CVD. Given that the ECG is a 
low cost and non-invasive tool, this approach could be 
implemented for screening in the general population. 

This study focused on ECG features related to the QRS 
complex and T-wave to characterize the ventricular 
depolarization and repolarization. However, future studies 
could incorporate information from the P-wave, to identify 
a cluster with potential association with atrial fibrillation. 
Additionally, integrating spatial features could further 
enhance its performance. 
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