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Abstract

Paroxysmal atrial fibrillation (PAF) is a common in-
termittent supraventricular arrhythmia whos identification
can be challenging. The 12-lead electrocardiogram (ECG)
is a cheap and non-invasive tool, ideal for diagnosing this
condition. In recent years, neural networks (NNs) have
been used in cardiology for the prediction of cardiac risk,
however, their use is still limited due to the scarcity of well-
curated labelled data. The objective of this project is to
check if pretraining enhances the performance of NNs in
a supervised learning task for the diagnosis of PAF, given
limited training data with an unbalanced distribution of
cases. First, ECG datasets publicly available were down-
loaded and preprocessed, resulting in a total of 1,602,185
ECG signals. Then, a multilayer convolutional neural net-
work (CNN) was implemented for the diagnosis of PAF.
Next, we developed and pretrained, in a self-supervised
manner, a NN based on contrastive predictive coding. Both
supervised and semisupervised models showed a good per-
formance. By using a simplified CNN together with a self-
supervised pretrained NN, accuracy improved from 0.565
to 0.680, the area under the curve rose from 0.692 to 0.714,
and specificity at a sensitivity of 0.750 grew from 0.534 to
0.579. Our findings support that the semisupervised learn-
ing method improved the performance and simplified the
supervised model architecture and training.

1. Introduction

One of the main contributors to cardiovascular death is
atrial fibrillation (AF), an arrhythmia that features an ir-
regular and rapid heart rate, which can also occur inter-
mittently, resulting in paroxysmal atrial fibrillation (PAF).
There are invasive procedures that allow for the precise
identification of PAF, but they cannot be used for large-
scale risk stratification, highlighting the need for non-
invasive methods with high detection rates [1, 2].

The electrocardiogram (ECG) signal is one of the most

widely used medical tests for the early detection of PAF.
Recently, neural networks (NNs) have opened up new op-
portunities for ECG signal analysis, automatically identi-
fying the most important morphological aspects that con-
tribute to AF risk [3, 4]. However, the results of these
studies are still limited, potentially because these deep NN
models require large annotated training sample sizes to
achieve good performance results, which is usually diffi-
cult and expensive to obtain. Moreover, these models are
sensitive to data imbalance (for example, the prevalence
of AF in the general population is estimated to be 2-4%),
therefore requiring even larger cohorts to obtain statistical
power [5, 6].

In other applications, pretraining a NN to solve simple
tasks with unlabelled data has been shown to improve the
performance of supervised models when a limited amount
of training data is available. In this work, we rely on Con-
trastive Predictive Coding (CPC) [7], a model that com-
bines prediction of future observations with a probabilis-
tic contrastive loss to learn abstract representations in a
self-supervised manner. The main intuition behind CPC
is to learn the representations that encode the underlying
information shared between the various parts of the sig-
nal, while also discarding low-level and local noise in-
formation. The result of combining these self-supervised
pretrained models with the supervised ones is known as
semisupervised learning [8].

The main objective of this project is, thus, to study
whether a semisupervised model improves the perfor-
mance of a supervised model in the diagnosing of PAF,
a case in which training data are scarce and the proportion
of cases is unbalanced (Figure 1).

2. Materials and Methods

2.1. Materials

The data used in this work come from different
databases available in PhysioNet. Table 1 details the main
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Figure 1. Illustrative diagram for the comparison of su-
pervised and semisupervised models for the detection of
PAF.

characteristics of the selected databases.

Table 1. Databases used in this project.

Database Total number
of patients

Total number
of recordings

ECG
leads

Sampling
Frequency (Hz) Duration

ICENTIA 11K 11,000 542,157 1 250 ∼70 min
ECG

ARRHYTHMIA 45,152 45,152 12 500 10 s

PTB-XL 18,869 21,799 12 500 10 s
GEORGIA 15,742 10,344 12 500 10 s

CHALLENGE
2017 8,528 8,528 1 300 30 to 60 s

CPSC 2018 9,458 6,877 12 500 6 to 60 s
CPSC 2018

EXTRA 9,458 3,453 12 500 6 to 60 s

AFPDB 98 300 2 128 30 or 5 min

2.2. ECG Preprocessing

All ECG signals were first resampled (or decimated) at
500 Hz using a quadrature polyphase filter (filter bank) that
reduces edge effects. To remove the baseline noise, an or-
der 4 Butterworth high-pass IIR filter with a cut-off fre-
quency of 0.3 Hz was used.

2.3. Supervised learning model

The objective of the supervised learning task, used to
test the assumption initially made, is to diagnose PAF from
a segment of ECG in sinus rhythm. Therefore, given an
input ECG signal in sinus rhythm, the NN must decide
whether or not that subject will have episodes of AF.

A convolutional NN (CNN) was used, which was com-
posed of two parts, the feature extraction and the classi-
fication part. As shown in Figure 2, feature extraction is
performed using 6 1D convolutional layers of 128 hid-
den units, with a kernel size of 3, as well as a stride of
2. These layers operate in one dimension of the input sig-
nal (ECG lead), implying a global decimation of the signal
by a factor 64. After the convolutional layers, we used a

bidirectional LSTM layer [9], which enables storing rele-
vant information from the past. Additionally, batch nor-
malization [10] between convolutional layers was used to
improve convergence speed, performance, and NN stabil-
ity. We selected the ReLU as the activation function for the
entire NN in order to learn non-linear relationships present
in the data. Moreover, to perform the classification, a sin-
gle fully connected layer was used. This layer will produce
a single output that represents the probability of belonging
of a given input to the positive class (AF).

The database used in this task is AFPDB (Table 1). The
training set consisted of 300 ECG signals and the test set of
200 ECG signals. The model was trained for 100 epochs
with 300 samples per epoch, and we used a learning rate
with a starting value of 0.003, which was reduced every 20
iterations by 5%. In addition, the data was processed in
batches of size 64 and the NN inputs were 10-second ECG
fragments, equivalent to 5,000 samples at a sample rate of
500 Hz.

To measure the performance of the model during the
test, precision, the ROC (Receiver Operating Character-
istic) curve and the AUC (area enclosed under the ROC
curve) were obtained. A sensitivity threshold of 0.750 was
established to achieve certain quality requirements.

2.4. Self-supervised learning model

The architecture of the developed CPC model, shown in
Figure 2, can be divided into two blocks. First, it consists
of a non-linear encoder that extracts the characteristics of
the input ECG signals. It maps the sequence of raw input
samples to a sequence of latent representations (z) [7]. In
our case, it is composed of 6 1D convolutional layers, all of
them with 1024 hidden units, a kernel size of 3 and a stride
of 2. Consequently, the temporal resolution of the latent
representations, z, will be potentially lower. Again, batch
normalization and the ReLU activation function were used
between convolutional layers.

The output of the encoder (z) is the input of the sec-
ond block. This is an autoregressive (AR) block, which is
composed of a GRU layer [11] that stores relevant infor-
mation for several past time instants by means of a state
variable, in order to generate predictions of how the signal
will evolve in future samples. At the output of the GRU
layer, the context information (c) is obtained, called the
contextual latent representation. This will be used to make
predictions of future k steps, in our case, a different predic-
tion will be obtained for each one of them (k = 8) [7]. The
prediction layer (Pred) consists of two linear layers and
a ReLU between them, therefore, we are applying a non-
linear transformation to the context information. Actually,
this layer can be seen as a Hinton SimCLR [12].

For the self-supervised task, all databases in Table 1
were available except AFPDB, as it was used for the con-
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trol supervised model. In total, we had 1,602,185 signals,
of which 1,600,000 signals were allocated to the training
set, and the remaining signals, 2,185, to the test set. As an
initial approach to train the self-supervised model, we use
a training set that consists of 637,448 ECG signals (lead
I). Moreover, the model was trained for 3,000 epochs with
50,000 samples per epoch, as well as with a learning rate
with a starting value of 0.001, which was reduced every
40 iterations by 5%. The data was processed in batches of
size 256 and the NN inputs were 3-second ECG fragments,
equivalent to 1,500 samples at a sample rate of 500 Hz.

2.5. Semisupervised learning models

The aim of the semisupervised learning model is to
assess the added value of the pretrained self-supervised
learning model in the PAF diagnosis task. For this purpose,
the internal representations of the self-supervised model, z
(latent representation) and c (contextual latent representa-
tion), were used as the input for the training of the super-
vised learning model. Thus, the number of channels of the
supervised model in the first convolutional layer was mod-
ified to match the dimension of the output representation
of the self-supervised model (z or c). Figure 2 presents a
diagram detailing the architecture and dimensions of the
implemented semisupervised learning model for the diag-
nosis of PAF.

Besides, multiple experiments were performed in which
the number of convolutional layers in the feature extraction
part of the supervised model was modified. Starting from
the original supervised model, which had 6 convolutional
layers, new supervised models were implemented in which
the number of convolutional layers ranged from 6 layers
to none. In all cases, after the convolutional layers, the
bidirectional LSTM layer was mantained, except in the last
case, where the linear classification layer was simply left.

3. Results

In the supervised PAF diagnostic task, we obtained an
accuracy (considering a 0.500 threshold) of 0.565, an area
under the curve (AUC) of 0.692 and a specificity of 0.534
for a sensitivity of 0.75 (Table 2, metrics obtained using
the raw samples as inputs for the supervised model with 6
convolutional layers). Therefore, the proposed binary clas-
sification model has a certain capacity for discrimination,
without being highly precise.

On the other hand, the results obtained for the differ-
ent experiments made for the semisupervised task are also
shown in Table 2. Of all these combinations, the one that
achieved the best results has been the union of the orig-
inal supervised model and the self-supervised model, by
passing the variable c (contextual latent representation) as
input to the supervised model, while reducing the number

Figure 2. Architecture of the semisupervised learning
model. On the left, the self-supervised model architecture
(encoder and AR block) and, on the right, the supervised
model architecture with 6 1D convolutional layers at the
feature extraction part.

of convolutional layers in the supervised feature extraction
part from 6 to 2. In this way, the results improve con-
siderably with respect to those obtained in the supervised
control task. We now get an accuracy, for a 0.500 thresh-
old, of 0.680, an AUC of 0.714 and a specificity of 0.579
for a sensitivity of 0.750.

4. Discussion and Conclusions

In this study, we analyzed the performance improvement
produced by using a pretrained predictive coding model in
a supervised PAF diagnostic task. Our main finding is that
the self-supervised model is capable of providing notable
improvements to the original supervised learning task in a
setting where available data is limited and unbalanced.

The implementation of this technique entails a method-
ological improvement. The quality of our results has
increased, achieving greater accuracy and consistency
through the use of a simpler NN architecture with fewer
convolutional layers at the feature extraction part. In the
original supervised task we used 6 convolutional layers,
now, in semisupervised tasks, even with a single convolu-
tional layer in the supervised model we are able to achieve
acceptable results. Moreover, only a small portion of the
available signals (637,448 ECGs) was used to train the
self-supervised model, so results are expected to further
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Table 2. PAF task detection experiment in the AFPDB database measuring accuracy (Acc), area under the curve (AUC)
and specificity (Sp) for different supervised and semisupervised model architectures.

Metric Input
features

Number of convolutional layers in the supervised model
6 5 4 3 2 1 0

Acc
raw samples 0.565 0.565 0.525 0.490 0.575 0.575 0.420

self-sup. z 0.605 0.590 0.555 0.615 0.585 0.570 0.490
self-sup. c 0.485 0.630 0.590 0.580 0.680 0.670 0.520

AUC
raw samples 0.692 0.583 0.634 0.516 0.637 0.567 0.499

self-sup. z 0.634 0.605 0.589 0.633 0.642 0.653 0.547
self-sup. c 0.604 0.687 0.629 0.608 0.714 0.661 0.610

Sp
raw samples 0.534 0.364 0.523 0.318 0.398 0.364 0.307

self-sup. z 0.477 0.455 0.329 0.477 0.420 0.398 0.341
self-sup. c 0.523 0.568 0.421 0.455 0.579 0.546 0.432

improve with the full database (over 1.5M ECGs). Addi-
tionally, the simplification of the supervised architecture
comes with a reduction in the number of operations and
parameters to be calculated, decreasing memory and time
requirements during the training process of the models, as
well as the risk of overfitting, achieving more generaliz-
able models. However, the cost savings are not applicable
to the testing phase, as both the self-supervised and the su-
pervised models must be evaluated at this stage.

Currently, one of the difficulties of the application of
NNs for PAF detection using the ECG is to have suf-
ficiently large volumes of labelled data. The proposed
method, in addition to improving the results compared to
a purely supervised model, opens the door to the use of
NNs in problems where the number of available signals is
reduced, as is the case with low-prevalence cardiovascu-
lar diseases. Our findings show the enormous potential of
NNs to significantly improve the prediction of cardiac risk.
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