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Abstract

Systemic venous congestion (SVC) is a critical factor in
patients with heart and kidney failure, a condition known
as cardiorenal syndrome (CRS). The Venous Excess Ul-
trasound grading System (VExUS) protocol represents a
significant advance in the assessment of SVC using point-
of-care ultrasound. The first step of this protocol consists
of determining the maximum diameter of the inferior vena
cava (IVC) in M-mode ultrasound images, a task currently
performed manually. This work presents a method for the
automatic segmentation and characterization of the IVC.
The method was evaluated on a set of 20 images belong-
ing to 13 patients with CRS. The maximum diameter de-
termined automatically was compared with that measured
during clinical practice. Results showed a mean error
of −0.015 ± 0.318 cm, with a Spearman correlation of
ρs = 0.850 and a Lin coefficient of ρc = 0.864. There-
fore, the proposed method achieves a reasonably accurate
assessment of the maximum diameter of the IVC within the
context of the VExUS protocol.

1. Introduction

Cardiovascular diseases are the leading cause of death
globally, accounting for 32% of global mortality [1].
Among these, heart failure (HF) is the most prevalent, rep-
resenting the main cause of hospitalisation in people over
65 years old and the leading cause of admission to inter-
nal medicine services [2]. HF is a complex disease in
which multiple pathophysiological pathways are activated
as compensatory mechanisms for the cardiac dysfunction
caused by multiple etiologies [3–5]. Systemic venous con-

gestion (SVC) is a key element in the management of HF,
given its demonstrated influence on both pathophysiology
and prognosis, particularly in patients with coexisting HF
and renal failure, a condition known as cardiorenal syn-
drome (CRS) [3, 6].

Patients with CRS present a significant challenge in
cases where physical examination or conventional labora-
tory tests may not be sufficient for an accurate diagnosis
and adapted treatment [7,8]. Recently, Beaubien-Souligny
W. et al. [9, 10] proposed a new point-of-care ultrasound
protocol called Venous Excess Ultrasound Grading System
(VExUS), aiming to improve the quantification of conges-
tion in CRS patients, based on the analysis of the venous
flow patterns observed by pulsed Doppler US imaging in
three abdominal veins (suprahepatic, portal, and lobar re-
nal veins). The initial step of the VExUS protocol esti-
mates the right atrial pressure (RAP) through M-mode US
of the inferior vena cava (IVC), with a cut-off point of 2
cm for the maximum anteroposterior diameter of the IVC
to indicate an elevated RAP. During clinical practice, the
IVC maximum diameter is manually determined with the
annotation tool available on the device, thus being a highly
observer-dependent task. As an alternative to improve re-
producibility, in this work we present an automated seg-
mentation method for the measurement of the maximum
diameter of the IVC from M-mode ultrasound (US) im-
ages.

2. Materials

For the development and validation of the proposed sys-
tem, we collected 20 images from 13 CRS patients admit-
ted to the Internal Medicine Department of the Hospital
Clı́nico Universitario ”Lozano Blesa” in Zaragoza (Spain)
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with a diagnosis of acute HF or uncompensated chronic
HF. Between 1 and 3 images were recorded for each pa-
tient, corresponding to some or all of the hospitalization
stages (admission, control and discharge). Images were
acquired using a Philips Lumify portable US scanner with
abdominal probe and exported in DICOM format.

3. Methods

The images were read using a custom open-source
Python package 1 and were subsequently processed as fol-
lows (Fig. 1).

3.1. Preprocessing

Starting from the initial image (Fig. 2a), histogram
equalization was performed to maximize contrast with-
out losing structural information. A bilateral filter [11]
was then applied in order to reduce noise while preserv-
ing edges. Let I be the equalized gray-scale image, S the
set of possible positions in the image and p,q actual pixel
positions, the bilateral filter was defined as:

BF [I]p =
1

Wp

∑
q∈S

Gσs(∥ p− q ∥)Gσr(Ip − Iq)Iq, (1)

where Gσ denotes a two-dimensional Gaussian filter and
Wp is a normalization factor. The region S (kernel size)
was defined as a square region of size l × l, where:

l =

⌊⌊√
n2 +m2 · 0.02

⌉
√
2

⌉
, (2)

where n and m are the number of pixels on the vertical and
horizontal axis of the image, respectively. The values of σs

and σr were obtained as:

σs =

⌊
l

2

⌋
σr = ⌊0.35 · σI⌉, (3)

where σI represents the variance of I.
The smoothed images were binarized using Otsu’s

method [12]. Next, a morphological opening operation
was applied using a 3× 3 cross-shaped structural element,
followed by a closing operation using a 5× 1 structural el-
ement to ensure continuity of the objects in the horizontal
axis, i.e., the direction of the IVC on M-mode US images.

Finally, the edges of the resulting image (Fig. 2b) were
extracted by subtracting an eroded version from the binary
mask using a 3 × 3 cross-shaped structural element and
multiplying the result by the gradient in the vertical axis.
This allowed us to define intensity changes (edges) from
black to white (anterior wall of the IVC) with a positive
value and changes from white to black (posterior wall of
the IVC) with a negative value.

1https://zenodo.org/records/12749178

Figure 1. Proposed segmentation scheme.

3.2. Delineation

The proposed algorithm aims to identify the candidate
lines for the VCI wall, pixel wise, from the images ob-
tained in the previous step. Let B be a matrix of size
n ×m,∋ n,m ∈ N , where each pixel is identified by the
coordinates x, y ∈ N ∋ x = {0, . . . ,m}, y = {0, . . . , n},
and representing the edges identified with their sign of the
binarized image. Let then bj = [bj,0, bj,1, . . . , bj,n]

T , j ∈
N ∋ 0 ≤ j ≤ m, the column vector representing the j-
th column of the matrix B. Starting at column j = 0 and
with an empty set of identified rows, l1 = ϕ, the steps to
identify candidate lines are as follows:
1. The coordinates of the rows, yi, that verify that the ele-
ment bj,yi

̸= 0, i ∈ N ∋ 0 ≤ i ≤ n were identified. Each
pair of coordinates (0, yi) represents the initial pixel of a
candidate line lci .
2. For each lci , locate the coordinates of the rows, ya,
with a ={yi − r, . . . , yi + r},a, r ∈ N , which verify that
sign(bj+1,ya

) = sign(bj,yi
), a = argmin(|yi − ya|), and
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r = 5. This process was repeated for each value of j until
no ya was found to satisfy the condition, or j = m + 1
(end of image).
3. Candidate lines lci with a length greater than 50% of
the horizontal size of the image were added to the set of
identified lines l1.

This process was also performed with the image flipped
on the horizontal axis, resulting in a set of lines, l2, from
right to left. Therefore, the final candidate line set was
constructed as:

l = l1 ∪ l2 (4)

The set l was reordered in ascending order, with the y-
coordinate of the row at the starting point of each line serv-
ing as the index for the ordering. Redundant lines were
then eliminated.

Finally, let u ∈ N be the number of lines found and
(0, yp), p ∈ N ∋ 0 ≤ p ≤ u, the coordinates of the
initial pixels of the line lp within the ordered set l, the
pair of lines that verified that positive = sign(b0,yp

) ̸=
sign(b0,yp+1

) = negative was located. This pair of lines
(lp, lp+1) represents the segmentation of the VCI (Fig-
ure 2c).

3.3. Measurement extraction

From the segmentation, the distance in pixels between
the VCI walls (top and bottom) was computed for all pos-
sible time instants. These values were multiplied by the
spatial resolution of the image to obtain the width profile
of the segmentation (Fig. 2d).

Additionally, a smoothed version of this profile was ex-
tracted with a moving average filter of length:

w =

⌊
td · 0.05
∆x

⌉
(5)

where td represents the duration of the data, and ∆x is the
temporal resolution of the image.

The maximum distance present in the width profile
(whether smoothed or unsmoothed) is considered the max-
imum diameter of the IVC.

3.4. Evaluation

The maximum IVC diameters obtained with automatic
segmentation (whether from smoothed or unsmoothed pro-
files) were compared with the maximum IVC diameter
measurements obtained during clinical practice. The re-
sulting error was expressed as mean ± standard deviation
(SD). Spearman’s correlation, ρs, and Lin’s coefficient of
concordance, ρc, were used to quantify the degree of cor-
respondence between measurements.

Table 1. Mean error ± SD, Spearman’s correlation, rhos,
and Lin’s concordance coefficient, rhoc, between clinical
measurements and maximum diameters of the IVC profile,
smoothed and unsmoothed.

Error (cm) ρs ρc
Unsmoothed −0.015± 0.318 0.850 0.864

Smoothed 0.082± 0.291 0.879 0.879

4. Results

The available images have a temporal (horizontal) reso-
lution of 0.003± 0.001 s/pixel and a spatial (vertical) res-
olution of 0.040± 0.006 cm/pixel. The resulting error and
correlations values are shown in Table 1.

The average processing time was 0.235±0.034 s/image
on a Windows 11 PC, using an Intel Core i5-10210U 2.11
GHz processor and 16 GB RAM.

5. Discussion

This work presents an automatic segmentation method
to calculate the IVC maximum diameter in M-mode US
images as part of the VExUS protocol. Currently, this mea-
surement is performed manually in clinical practice and its
accuracy depends on the US measurement tools and the
experience of the physician.

The error produced by the automatic method using the
unsmoothed width profile is smaller than the average spa-
tial resolution in the vertical dimension, staying below the
pixel height (see Table 1). While applying the smoothed
version reduces the standard deviation of the error, it intro-
duces a larger bias of approximately two pixels. However,
the smoothed version improves both Spearman’s correla-
tion and Lin’s coefficient. The mean processing time is
compatible with the potential integration of the algorithm
into a real-time clinical tool.

The main limitation of this study is the small number of
available images. Aside from that, obtaining the maximum
diameter of the IVC in clinical practice is not free of error
and therefore should not be considered as gold standard
for determining the accuracy of IVC segmentation algo-
rithms. A more accurate assessment would require manual
annotations by experts. These aspects will be addressed in
future extensions of this work.

6. Conclusions

The proposed method accurately identifies and segments
the IVC, enabling the calculation of the maximum diame-
ter with precision beyond the available spatial resolution.
Results show a strong correlation with clinical measure-
ments, suggesting its potential as a reliable tool for charac-
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Figure 2. Segmentation steps and measurement extraction: a) M-mode US image, b) edge detection, c) IVC segmentation,
d) width profiles, unsmoothed (orange trace) and smoothed (blue trace).

terizing the SVC in patients with CRS within the context
of the VExUS protocol.
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