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Abstract 

The influence of heart size, position and orientation 

within the torso on ECG morphology is well-established. 

Yet, there remains a gap in quantifying and accounting for 

the impact of this relationship on the ECG biomarkers 

extracted, presenting an opportunity for tailoring clinical 

ranges, thus, improving the reliability and robustness of 

diagnosis and prognosis of electrophysiological disorders. 

In this context, the aims of this study are (1) to propose a 

standardised and robust definition of the electrical and 

anatomical axes, and (2) to describe their relationship in 

the undiseased adult population. Multimodal clinical data 

from the UK Biobank, primarily cardiac MRIs and 12-lead 

ECGs, was used to generate patient-specific biventricular 

geometry and vectorcardiograms. Five alternative 

definitions for the 3D orientation axes of the electrical and 

anatomical axes were computed, followed by assessment 

of their mutual alignment. Findings demonstrate that 

maximal alignment occurs between the anatomical axis 

derived from the vector connecting the valvular plane 

centre to the apex, and the electrical axis defined by the 

maximum QRS dipole magnitude in the vectorcardiogram. 

Furthermore, the electrical axis orientation displays a 

wider spread than that of the anatomical axis and has a 

dominant effect on the coupled axis interplay.  

 

1. Introduction 

The morphology of the electrocardiogram (ECG) is 

intrinsically linked to the underlying cardiac anatomy, 

including heart size, position, and orientation within the 

thorax. This relationship arises from the fundamental 

principle that the ECG measures the potential differences 

on the body surface that represent different projections of 

cardiac activity. This introduces the challenge of 

interpreting variations in the ECGs that are due to 

anatomical variability and not pathology, or vice versa. 

While in-silico approaches offer significant insights into 

the impact of cardiac anatomy on measured variables like 

QRS duration and wave amplitudes [1][2], the translation 

of these findings into practical applications like biomarker 

correction remains a challenge. Automated anatomy 

reconstruction from imaging and holistic electrical activity 

representations like the vectorcardiogram (VCG) hold 

significant potential as they facilitate large-scale analysis 

of personalised anatomy and electrophysiology.  

Anatomical and electrical axes serve as representations 

of the underlying cardiac orientation and electrical 

activation pattern. Thus, their characterisation is essential 

for examining the anatomical-electrical interplay. 

Traditionally, the anatomical axis has been defined as the 

long axis of the heart, typically derived manually from 

imaging data [3], a process that is not only arduous but also 

often overlooks the right ventricle. On the other hand, most 

clinical electrical axis derivation relies on Einthoven's 

triangle [4], an approach that utilises only maximum lead 

amplitudes and is inherently limited to the frontal plane. 

A standardised, robust definition of cardiac anatomical 

and electrical axes remains elusive. Herein, definitions of 

axes were generated and evaluated, and their distributions 

were studied in a cohort of undiseased individuals from the 

UK Biobank. The definitions maximising mutual 3D 

alignment between anatomical and electrical axes were 

proposed as a standard.  

2. Methods 

2.1.  Clinical data & study population 

A cohort of 5,000 subjects was studied, each with paired 

C-MRI scans and 12-lead ECGs. Using nnU-net 

architecture, the biventricular anatomy was automatically 

segmented at the end diastolic phase [5]. Surface meshes 

were then constructed via an atlas-based pipeline and key 

anatomical regions labelled, including each of the four 

valves and the left and right ventricles [6].  

ECGs with QRS amplitude larger than ±3 SD of the 

mean for each lead were excluded, as in [7]. Of the 

remaining 4,769 subjects, 3,080 subjects with no 

cardiovascular disease history were identified using ICD-

10 diagnoses. Table 1 shows the cohort’s baseline metrics. 

Table 1. Baseline characteristics of undiseased cohort. 

Metric  N = 3080 

Age, mean ± SD  64.6 ± 7.77 

Gender (Female), n (%)  1636 (53%) 

BMI (kg/m2), mean ± SD  26.3 ± 4.25 

QRS duration (ms), mean ± SD  88.3 ± 13.9  

LV End Diastolic Volume (ml), mean ± SD 139.3 ± 45.8 
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2.2. Anatomical axis computation 

Principal Component Analysis (PCA) was employed in 

conjunction with labelled regions to derive five distinct 

orientation axes for each biventricular anatomy. 

 PCA was applied to the point cloud of surface mesh 

data to compute two axes of inertia: one for the left 

ventricle exclusively (𝑃𝐶1𝐿𝑉) and another encompassing 

both the left and right ventricles (𝑃𝐶1𝐿𝑅𝑉). Then, spatial 

centres corresponding to various valve combinations were 

computed to establish a virtual base. The apex was then 

defined as the furthest point from this base, located on the 

left ventricular endocardium. The orientation axis was 

defined as the vector from the apex to the base with the 

following configurations:  

i. Centre of mitral valve to apex (MVA) 

ii. Centre of mitral and aortic valves to apex (MAVA) 

iii. Centre of valve plane to apex (VPA) 

2.3.  Electrical axis computation 

The 10-second digital 12-lead ECGs, with a sampling 

frequency of 500 Hz and an amplitude resolution of 1 µV, 

were stored in an .xml file alongside automatically 

computed ECG metrics. During data acquisition (GE 

Cardiosoft v6), all ECGs underwent low-pass filtering at 

100 Hz, high-pass filtering at 0.1 Hz, and a 50 Hz power-

line noise filtering. Therefore, no additional preprocessing 

was performed. 

After extracting the median beat of the 12-lead ECG, 

the Kors transformation matrix was used to construct the 

three orthogonal leads comprising the corresponding 

vectorcardiogram (VCG) [8]. This method provides 

alignment with Frank’s orthogonal lead system, 𝑉𝑥, 𝑉𝑦, and 

𝑉𝑧. The VCG comprises dipole magnitude, polarity and 

direction considerations that are not available from a scalar 

method like the ECG, which only shows the component 

magnitude along a certain lead axis. The QRS complex was 

the focus of the study as it has the most diverse 

morphology variation. The QRS VCG loop was isolated 

using QRS onset and offset times, computed during 

acquisition. 5 orientation axes were computed, capturing 

changes of the dipole’s orientation and magnitude during 

ventricular depolarisation, shown in Figure 1.  

The dipole magnitude was calculated at each time point 

from the three leads as: (𝑉𝑥
2 + 𝑉𝑦

2 + 𝑉𝑧
2)1/2. The dipole 

with maximum magnitude was identified (𝑚𝑎𝑥𝑄𝑅𝑆). A 

vector (𝑚𝑎𝑥𝑋𝑌𝑍) was constructed using each lead’s 

maximum amplitude. The mean QRS dipole was also 

calculated (𝑚𝑒𝑎𝑛𝑄𝑅𝑆). To account for variations in dipole 

velocity along the loop (shown by changing distances 

between consecutive dipoles), a velocity-weighted average 

dipole (𝑣 − 𝑎𝑣𝑔𝑄𝑅𝑆) was computed. Lastly, singular 

value decomposition (SVD) was applied on the matrix of 

x, y, z data, after centring about the mean. The primary 

direction (𝑒𝑖𝑔1𝑄𝑅𝑆) was regarded as the eigenvector 

linked to the first eigenvalue of the correlation matrix. 

Each dipole’s unit vector was used as the axis direction.  

2.4.  Axes analysis  

The anatomical-electrical relationship was assessed by 

different metrics to quantify the alignment between the 25 

pairs of anatomical-electrical axes definitions. For true 

mapping, the VCG coordinate system was rotated to align 

with that of the DICOM, resulting in the x-axis extending 

from left to right, the y-axis from anterior to posterior, and 

the z-axis from inferior to superior. All vectors were 

assumed to originate at the biventricular centre of mass.  

The anatomical-electrical linear relationship of vector 

sets was studied using an 80(train)/20(test) split of the 

dataset. For each method pair in the training set, a 

transformation matrix, T, was derived by solving:  

 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 =  𝑇 ∗ 𝐴𝑛𝑎𝑡𝑜𝑚𝑖𝑐𝑎𝑙 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 

A linear least squares approach was employed to 

compute T, minimising the Euclidean norm between 

predicted (transformed anatomical) and computed 

electrical vectors. The mean geodesic distance (MGD) 

between computed and predicted vectors was measured for 

each of the 25 method pairs using the test data. MGD was 

chosen as an error metric due to its suitability for 

comparing directions in 3D, providing a robust measure of 

angular difference as a discrepancy. By evaluating this 

error across method pairs, the best pairs were identified 

based on error minimisation of unseen data.   

Moreover, the cosine of the angle between each 

anatomical-electrical axis pair was computed as a second 

metric across the cohort. Spatial consistency was evaluated 

using the corresponding standard deviation (SD), with a 

lower standard deviation indicating higher spatial 

consistency. Due to the cosine being reflective of only the 

smallest angle between two vectors in 3D, it does not fully 

capture the directional variations. Consequently, the angle 

between each projected vector and the positive horizontal 

axis was calculated in all 3 anatomical planes. Thus, a 

direction-dependant angular difference between each 

anatomical-electrical vector pair was also computed, 

enabling examination of individual and relative 

distributions of axes across all three spatial dimensions.   Figure 1. 3D QRS loop with the 5 electrical axis definitions.  
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3. Results 

3.1.  Linear Transformation Errors 

The strength of the linear correlation between each 

anatomical-electrical pair is associated with a lower mean 

error (geodesic distance between computed and predicted 

electrical axes). Errors ranged from 1.95 (PC1LV & v-

avgQRS) to 0.81 (VPA and eig1QRS), as depicted in 

Figure 2. The second-best pair emerged as maxQRS and 

VPA. Notably, a trend of decreasing error is evident with 

the inclusion of the right ventricle within the anatomical 

axis computation.  

3.2.  Angular distributions of axes 

The axes pair exhibiting the highest spatial consistency 

was defined by the VPA anatomical axis and maxQRS 

electrical axis (see Figure 3), with an SD of 0.19, and the 

least spatially consistent pair reported an SD of 0.60. 

Additionally, the VPA anatomical axis also comprised the 

second lowest SD of 0.21, paired with electrical axis 

eig1QRS. This agrees with the previous evaluation 

method, albeit with a reversal in the electrical axis ranking. 

Figure 4 highlights that the performance advantage of 

certain method pairs diminishes when examining the 2D 

planar angles. It is only in the frontal plane that a visibly 

higher spatial consistency is observed. Given that the 

overall spatial consistency was highest in the frontal and 

transverse planes, a bivariate distribution analysis was 

performed, illustrated in Figure 5. The spread of the 

anatomical axis angles was markedly lower than that of the 

electrical and the angular difference. While the angular 

difference was primarily influenced by the electrical axis 

(marginal distributions), the anatomical impact is 

discernible when observing the density estimates, due to 

their insight into underlying distributions.   

4. Discussion  

The proposed standard for defining the anatomical axis 

is the VPA (valvular plane centre to apex), while for the 

electrical axis, it is suggested to use the maxQRS (max 

QRS dipole magnitude in VCG).  This proposal is derived 

from an assessment of a cohort without cardiovascular 

disease based on maximal alignment criteria.  

In terms of anatomical orientation, the VPA definition 

clearly outperformed the other four (see Figure 2). This 

definition combines two components that empirically 

showed to be a strength: (i) specific anatomical points 

selection, e.g. apex or valve centre, rather than the 

identification of the axis of inertia, i.e. with PCA, and 

(ii) the inclusion of the right ventricle rather than LV only 

based orientations (the valvular plane centroid allows a 

weighted contribution from both ventricles). This finding 

highlights that, although the LV’s contribution to the QRS 

is dominant due to its larger mass, there are spatial changes 

that are best captured by also accounting for the RV. 

Figure 2. Mean geodesic distance between computed and 

predicted electrical vectors for anatomical-electrical pairs. 

Figure 3. Biventricular geometry with both axes. 

Figure 4. 3D and 2D angular distributions. Levene’s test 

confirmed heterogeneity of the distributions at p = 0.05.  
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Regarding electrical orientation, maxQRS and eig1QRS 

definitions were the most aligned to the anatomical based 

on the two metrics investigated (maxQRS for the angular 

metric, Figure 4, and eig1QRS for the least squares (LS) 

metric, Figure 2). While maxQRS reflects the maximum 

dipole magnitude, eig1QRS, captures the shape and spread 

of the QRS loop, offering a more extensive/holistic 

representation of depolarisation. The discordance between 

the two metrics stems from their underlying principles: the 

angular metric emphasises spatial orientations, whereas the 

LS metric considers the linear correlation between axes. 

Ultimately, maxQRS is suggested as the optimal definition 

due to the angular metric’s capacity to represent non-linear 

relationships, as opposed to the linear constraint of the LS 

approach, and its ability to capture rotational patterns. 

Moreover, maxQRS offers more robust implementation in 

future studies, as eig1QRS relies on the detection of QRS 

onset and offset.  

Once the definitions of the axes were set, the inspection 

of the population characteristics revealed a wider electrical 

angle spread, suggesting a wider variability of both 

mechanistic factors and uncontrolled variables influencing 

cardiac depolarization. The seemingly under-constrained 

electrical angle distributions could be due to ECG 

morphology being influenced by conduction-related 

factors, such as fibre orientation within the myocardium, 

technical variables like electrode placement, and 

anatomical structure [9]. In contrast, the narrower spread 

of the anatomical axis can be attributed to the cardiac-torso 

anatomy being robustly captured by an MRI scan.  

While the present study provides valuable insights into 

axes coupling, the influence of age, BMI, and sex on the 

observed spatial relationships should be explored. This is 

in addition to exploring the impact of pathologies that 

would impact either axis, such as cardiomyopathy or 

bundle branch blocks. The repolarisation axis could 

provide further insights into the relationship between 

cardiac electrical dynamics and anatomy. 
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Figure 5. (1) Axes spherical distribution. (2) Bivariate (Frontal & Transverse) probability density distributions of electrical 

and anatomical angles, and their differences (normal-fitted marginal distributions and kernel density estimation contours).  

(1) (2) 

Page 4

mailto:mohammad.kayyali@kcl.ac.uk

