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Abstract

Multi-scale cardiac electrophysiological modeling in-
volves high computational load due to the inherent com-
plexity as well as to limitations of the employed numer-
ical methods (e.g., Finite Element Method - FEM). This
study investigates the use of the Meshless Local Petrov-
Galerkin Mixed Collocation (MLPG-MC) method to sim-
ulate cardiac electrophysiology. MLPG-MC is a truly
meshless method where both the unknown function and
its gradient are interpolated using nodal collocation. A 3
cm× 3 cm human ventricular tissue was simulated based
on the monodomain reaction-diffusion model using the op-
erator splitting technique. MLPG-MC or FEM were used
to solve the diffusion term and the O’Hara-Virág-Varró-
Rudy AP model to represent cellular electrophysiology at
baseline and under 30% IKr inhibition (IKr30). Mean dif-
ferences between MLPG-MC and FEM in AP duration at
90% (APD90), 50% (APD50) and 20% (APD20) repolar-
ization levels were 4.47%, 4.16% and 3.29% for baseline
conditions and 3.66%, 2.10% and 1.62% for IKr30 condi-
tions. The computational time associated with each of the
two methods was comparable. In conclusion, considering
that MLPG-MC does not involve any mesh requirements
and is well suited for massive parallelization, this study
shows that it represents a promising alternative to FEM
for cardiac electrophysiology simulations.

1. Introduction

In silico modeling and simulation represents a powerful
tool in cardiac electrophysiology research [1]. Mathemat-
ical models built upon available human and animal data
can be an adjunct tool to experimental and clinical investi-
gations at cell, tissue and whole-heart levels, contributing
to shed light on the mechanisms underlying physiological
and pathological processes in heart function and to guide
the development of novel treatments for cardiac diseases
[2–4].

To simulate the propagation of the electrical impulse in

the heart, the well-known bidomain [5] and monodomain
models [6] are commonly used. The monodomain model,
which is a simplification of the bidomain model, is fre-
quently considered for its simplicity. Electrical prop-
agation is simulated by solving the following reaction-
diffusion equation:

∂V/∂t = −Iion/C +∇ · (D∇V ) (1)

where V is the transmembrane potential, C is cell ca-
pacitance per unit surface area, D is the diffusion tensor
and Iion is the total ionic current, whose computation in-
volves solving a system of ordinary differential equations
of voltage-dependent variables representing channel states
and ionic concentrations.

The Finite Element Method (FEM) is usually employed
to numerically solve equation (1). Despite the robustness
and maturity of FEM, its accuracy strongly depends on the
quality of the mesh discretization for the geometry of the
problem at hand. Due to the rapidly varying reaction term,
a very fine spatio-temporal discretization is required to en-
sure accuracy and avoid spurious oscillations in the wave-
front calculated by using FEM. A family of macro finite
elements has been proposed to allow solving the reaction-
diffusion equations in coarse meshes with high accuracy
[6]. Nevertheless, in cases where complex geometric fea-
tures need to be considered, as when modeling fibrosis or
infarction scars, the generation of a high-quality mesh can
become a cumbersome process. The use of lower quality
meshes can lead to deterioration in the accuracy of FEM.

Meshless Methods (MMs) have been proposed as an al-
ternative to FEM where the mesh generation requirement
is alleviated, since the solution is computed by considering
a cloud of points in the problem domain and the boundaries
of such domain [7]. Several MMs, such as the Smooth Par-
ticle Hydrodynamics (SPH) [8] and the Local Radial Ba-
sis Function Collocation (LRBFC) [9] methods have been
successfully applied to simulate cardiac electrophysiology.
Another meshless method of great interest due to its high
efficiency is the Meshless Local Petrov-Galerkin Mixed
Collocation (MLPG-MC) method [10,11]. In MLPG-MC,
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the solution to the weak form of equation (1) is obtained
by using collocation on a cloud of field nodes to achieve
similar accuracy and efficiency as FEM but without any
requirement on connectivity information.

The aim of this work is to evaluate the applicability of
the MLPG-MC method for simulation of electrical propa-
gation in cardiac tissue as an alternative to FEM.

2. Materials and methods

2.1. Meshless Local Petrov-Galerkin Mixed
Collocation method

In meshless methods the approximation of an unknown
field function is performed by a trial function, defined on
a set of arbitrarily distributed nodes, which is required to
be continuous to the whole domain of interest. However,
in the local Petrov-Galerkin framework, the weak-form of
equation (1) can be constructed by selecting trial and test
functions from different spaces with the continuity require-
ment applying locally [12]. In this way, the spatial inte-
gration is performed in small locally defined integration
areas. Choosing the Moving Least Squares (MLS) approx-
imation [13] as the trial function and the Dirac function as
the test function, the local integration is replaced by col-
location and the MLPG-MC method is derived. In this
method, the MLS approximation is used to interpolate both
the unknown membrane potential V and its gradient. In
contrast to standard collocation techniques, second order
derivatives are not required to approximate the solution.

By using the operator splitting technique [14], the re-
active and diffusive terms in equation (1) can be solved
separately, where the diffusive term in the MLPG-MC for-
mulation is given by the following equation:

CV I
,0

m∑
J=1

ΦJ(xI)−
m∑

J=1

ΦJ
,i(x

I)DΦJ
,i(x

I)V J = 0 (2)

where I is the index of the collocation node, J is the in-
dex of a neighbor node and m is the number of neighbor
nodes in the support domain and V,0 represents ∂V/∂t, i.e.
the derivative of transmembrane potential and Φ(x) is the
MLS basis function evaluated at point x in the tissue. The
notation ,i indicates the derivative over the ith coordinate.

2.2. Tissue model

A bidimensional square tissue with side length l = 3 cm
was considered to simulate electrical propagation in hu-
man ventricular myocardium at baseline conditions as well
as under 30%IKr inhibition (IKr30). The tissue was par-
titioned into three layers representing endocardium, mid-
myocardium and epicardium, as shown in Figure 1. Fiber

direction was chosen parallel to the x-axis. The longitudi-
nal conductivity was set to kx = 0.0013 mS/cm2 and the
transversal to longitudinal ratio to τ = 0.25.

Figure 1. Simulated ventricular tissue. Gray-level zones
denote the endocardial (left), mid-myocardial (center) and
epicardial (right) layers of the tissue.

2.3. Simulations

Stimuli of twice diastolic threshold amplitude, 2-ms du-
ration were applied at a cycle length of CL = 1000 ms
at the edge x = 0 starting at time t = 50 ms. Steady-
state action potentials (APs) were evaluated at steady-state
at points A (0.9 cm, 1.5 cm), B (1.5 cm, 1.5 cm) and C (2.5
cm, 1.5 cm). The location of point A was selected to avoid
recording artifacts occurring near the stimulation area.

Simulations were performed by considering an in-house
C++ implementation of the monodomain model where the
operator splitting technique was used. The reactive term
considered the O’Hara-Virág-Varró-Rudy ventricular cell
model to represent human ventricular cell electrophsyi-
ology. The MLPG-MC method was employed for cal-
culation of the diffusive term. The simulation was per-
formed on a cloud of equidistant nodes with a spacing of
d = 0.015cm. Time integration was performed explic-
itly using adaptive time-stepping for the reactive term as in
[14] with a time step for the diffusive term of dtD = 0.08
ms and a time step for the reactive term of dtR = dtD/k.
The coefficient k is given by

k = k0 + int(|dV/dt|),

where dV/dt is the membrane potential derivative, int()
denotes the integer part function and k0 = 5 if dV/dt > 0
and k0 = 1, otherwise. The results obtained with the
MLPG-MC method were compared with those from a
FEM simulation performed on a quadrilateral mesh com-
posed of the equidistant nodes of the MLPG-MC point
cloud by using isoparametric elements.
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3. Results

Simulated AP signals obtained using MLPG-MC and
FEM methods were very similar, as illustrated in Figure
2, which presents AP recordings measured at point B (cen-
tral node of the tissue) at baseline (top panel) and under
IKr30 conditions (bottom panel). The maximum relative
difference in transmembrane potential was found for the
AP signal measured at point A. Such maximum difference
was of 8.70% at baseline and 5.42% under IKr30 condi-
tions.

Conduction velocity (CV) at baseline was the same for
both methods: CVFEM = CVMLPG−MC = 66.7cm/s.
No difference was found in the resting membrane potential
either.

Figure 2. Action potential for central node (point B) under
(a) baseline and (b) 30% IKr inhibition conditions.

The markers APD90, APD50, APD20, which describe
the AP duration at 90%, 50%, 20% repolarization levels,
respectively, as well as peak membrane potential Vmax and
maximum upstroke velocity dV/dtmax were evaluated for
simulations using MLPG-MC and FEM methods. Rela-
tive differences between the two methods regarding each
of those five markers are presented in Figure 3 for baseline
(top panel) and IKr30 conditions (bottom panel). Differ-
ent colors in the figure correspond to each of the points
A, B and C in the endo-, mid- and epicardial layers of the
simulated tissue.

The computational time was very similar for both meth-
ods: tMLPG−MC = 24 min and tFEM = 23 min for each
simulated cardiac cycle at CL = 1000 ms.

Figure 3. Relative percentage difference between
FEM and MLPG-MC for endocardium (point A), mid-
myocardium (point B), and epicardium (point C) under (a)
baseline and (b) 30% IKr inhibition conditions.

4. Discussion

This work has demonstrated the feasibility of a mesh-
less method, the MLPG-MC method, for simulation of car-
diac electrical propagation in a human ventricular tissue.
The MLPG-MC method provided numerical solutions that
were in close agreement with those obtained with the FEM
method, which is the method most commonly used for in
silico simulation of cardiac electrophysiology.

Relative differences between MLPG-MC and FEM
methods evaluated at baseline for AP duration, peak mem-
brane potential and maximum upstroke velocity were al-
ways below 8.70 %, which is in accordance with find-
ings from previous studies where meshless methods were
tested. Specifically, Lluch et al. [8] found a maximum dif-
ference of 10.90% in depolarization time between mesh-
less SPH and FEM methods. It is possible that the recorded
difference between meshless and FEM methods is due to
the non-interpolating nature of the majority of meshless
methods. The non-interpolating attribute could pose dif-
ficulties capturing the very rapidly varying reaction term
describing the cardiac cell dynamics. This hypothesis was
supported by the findings of the present study. The relative
percentage difference was found lower under IKr30 con-
ditions (up to 5.42%), where the reaction term variation is
slower (APD prolongation due to IKr inhibition).

An investigation on the performance of meshless meth-
ods using different meshless basis functions could provide
further insight and allow establishing the meshless meth-
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ods in cardiac electrophysiological simulations. Meshless
methods are very flexible and allow to eliminate the mesh
requirement. This attribute is of great interest especially in
medical applications where good quality meshes may be
cumbersome to generate automatically. Moreover, mesh-
less methods are suitable for massive parallelization which
allows the relatively easy implementation of large-scale
models. Establishing the meshless methods in the cardiac
modeling may contribute to a more extensive application
of in silico cardiac electrophysiology in the clinical prac-
tice.

5. Conclusions

The feasibility of a meshless method, the MLPG-MC
method, for in silico simulations of cardiac electrophys-
iology has been demonstrated. A comparison with the fi-
nite element method at baseline and under reduced repolar-
ization reserve conditions has revealed that both methods
render very similar results at a comparable computational
cost. The MLPG-MC method presents the additional ad-
vantages of not requiring a mesh discretization and being
more suited for massive parallelization.
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tandrássy N, Nánási PP, Burrage K, Rodrı́guez B. A multi-
scale investigation of repolarization variability and its role
in cardiac arrhythmogenesis. Biophysical Journal 2011;
101(12):2892–2902.

[3] Carro J, Pueyo E, Matas JFR. A response surface op-
timization approach to adjust ionic current conductances
of cardiac electrophysiological models. Application to

the study of potassium level changes. PloS one 2018;
13(10):e0204411.

[4] Grandi E, Morotti S, Pueyo E, Rodriguez B. Getting to
the heart of safety pharmacology. Frontiers in Physiology
2018;9:678.

[5] Henriquez CS. Simulating the electrical behavior of car-
diac tissue using the bidomain model. Critical Reviews in
Biomedical Engineering 1993;21(1):1–77.

[6] Heidenreich EA, Ferrero JM, Doblaré M, Rodrı́guez JF.
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