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Abstract

Autonomic nervous system (ANS) has been suggested

to play a major role in the pathogenesis of asthma. This

hypothesis has motivated large research, revealing a re-

duced modulation of the heart rate in subjects with un-

controlled asthma, when compared to asthmatics with con-

trolled symptomatology. In this work, we assessed ANS ac-

tivity through heart rate variability analysis in a group of

asthmatics classified attending to the control of their symp-

toms. This information was later used for training a logis-

tic regression classifier aiming at differentiating between

the levels of control in asthmatic patients. The accuracy of

the classifier improved when including ANS information

(71.77%, versus 64.73% when only clinical parameters

were considered), suggesting that ANS assessment could

contribute to better non-invasive asthma monitoring.

1. Introduction

Asthma is a heterogeneous chronic respiratory disor-

der whose prevalence has been increasing since the sec-

ond half of last century [1]. It is characterized by a

variable expiratory airflow limitation and bronchial hyper-

responsiveness. Despite asthma is usually accompanied by

chronic airway inflammation, there is controversy regard-

ing the role of pro-inflammatory substances and inflam-

matory cells in the bronchial hyper-responsiveness. Since

upper airway constriction is governed by vagal activity, the

role of the autonomic nervous system (ANS) in the patho-

genesis of asthma has attracted research interest in recent

years, with several studies suggesting that sympathovagal

activity might be altered in asthmatics [2, 3].

Whereas the physiological underlying origin of asthma

is not completely understood, its diagnosis and monitoring

in adults is performed through a well-established clinical

routine, consisting in the measurement of airway function

using spirometric tests and in the assessment of inflam-

matory markers such as the levels of exhaled nitric ox-

ide (FeNO) or immunoglobulin E (IgE). Also self-applied

questionnaires are employed for evaluating whether the

symptomatology remains controlled or not, although these

surveys remain rather subjective. Therefore, non-invasive

ANS assessment techniques, such as heart rate variabil-

ity (HRV) analysis have been considered, suggesting a

decreased cardiac autonomic modulation in uncontrolled

when compared with controlled asthma [4]. Hence, it is

possible that ANS assessment through HRV analysis may

add some clinical value for the automatic stratification of

asthmatic subjects. Departing from this hypothesis, we

evaluated the HRV of a group of asthmatic adults clas-

sified attending to their asthma control level, and further

used this information for improving the stratification of the

analyzed subjects in controlled and uncontrolled asthma.

2. Materials and Methods

2.1. Database

The dataset in the study consists of recordings from

30 asthmatic volunteers classified attending to their level

of control of the asthmatic symptoms (19 with controlled

asthma, CA, and 11 with uncontrolled asthma, UA). Clas-

sification was performed according to the asthma control

test (ACT) score (UA if ACT ≤ 19, CA otherwise) [5]. All

of them were patients of the Santa Creu i Sant Pau Hospi-

tal in Barcelona (Spain), and provided a written informed

consent in agreement with the Declaration of Helsinki be-

fore being included in this study. The volunteers under-

went a biosignals acquisition protocol: they remained sat

and without talking for 10 minutes, during which multi-

lead ECG and respiratory effort (using a respiratory belt)

signals were acquired, at sampling rates of 1000 and 256

Hz respectively. Afterwards, they performed a spirometric
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Table 1. Demographics and clinical features of the two

groups. Non-categorical parameters are displayed as me-

dian (interquartile range). Statistical significant differ-

ences among groups (p < 0.05) are indicated with *. (N:

number of subjects, BMI: body mass index.)

Controlled Asthma Uncontrolled Asthma

Demographics:

• N (#) 19 11

• Age (years) 50.00 (19.00) 49.00 (20.50)

• Gender (Male/Female) 11 / 8 2 / 9*

• BMI (kg/m2) 26.40 (3.90) 30.00 (8.25)*

Clinical features:

• Atopy (Yes/No) 16 / 3 8 / 3

• FEV1/FVC (%) 73.00 (10.50) 56.00 (23.25)

• FeNO (ppb) 27.00 (13.75) 41.00 (65.63)

• Periph Eos (Yes/No) 7 / 12 6 / 5

• IgE (UI/ml) 131.00 (149.50) 204.00 (449.93)

• Inflam (Yes/No) 4 / 15 3 / 8

test in which their forced expiratory volume in one sec-

ond relative to their forced vital capacity (FEV1/FVC) was

obtained. Also their level of FeNO, blood IgE, peripheral

eosinophils count and induced sputum inflammatory cells

count were assessed. The two latter measurements were

used by the clinicians to establish whether the subjects

presented peripheral eosinophilia (periph eos) or airway

inflammation (inflam). The demographics and measured

clinical parameters of the subjects are summarized in Ta-

ble 1. None of them presented cardiac, neurological or

endocrine disease, nor other obstructive disease different

from asthma at the time of the study.

2.2. Signal Preprocessing

Baseline wander was removed from the ECGs, and res-

piratory signals were filtered with a 3rd-order Butterworth

band-pass filter (0.05-1 Hz cut-off frequencies). Then, R

peak detection was performed using a wavelet-based ap-

proach [6], and ectopic beats (0.13% of the total number

of beats) were detected and discarded from the analysis

using the method presented in [7]. The respiratory signals

were downsampled at 4 Hz, and used for estimating the

instantaneous respiratory rate, as proposed in [8].

2.3. Heart Rate Variability Analysis

The modulating signal, m(t), which carries information

from the autonomic modulation of the heart rate (HR) was

estimated using the time-varying integral pulse frequency

modulation model [9], which accounts for the presence of

ectopic beats. This model allows to obtain the instanta-

neous HR signal, dHR(t), from the beat time occurrences.

Then, dHR(t) was low-pass filtered to calculate a time-

varying mean HR, dHRM(t), and m(t) was obtained as:

m(t) =
(dHR(t)− dHRM(t))

dHRM(t)
. (1)

Finally, m(t) was sampled at 4 Hz and, for simplicity, it

is referred to as m (vector notation) hereon.

A preliminary analysis revealed the existence of respi-

ratory rates lower than or very close to 0.15 Hz, frequency

considered the limit between low-frequency (LF) and high-

frequency (HF) bands ([0.04, 0.15] Hz and [0.15, 0.4] Hz

respectively) in HRV studies, in the 13% of the subjects.

Since the power content of the HF band has been tradi-

tionally related with respiratory modulation of the HR, the

interpretation of the frequency components laying within it

when respiratory influence is shifted towards the LF band

remains an open debate, and traditional frequency-domain

HRV analysis is compromised [10]. For this reason, in

this work we addressed the HRV analysis using an orthog-

onal subspace projection (OSP) decomposition approach

[11]. Essentially, respiratory information is removed from

m using a projection matrix, P, which is defined as:

P = X(XT
X)−1

X
T, (2)

where X is constructed using delayed versions of the res-

piratory effort signal up to 2 seconds [11]. Afterwards, the

respiratory-related component of m can be obtained as:

mrespir = Pm, (3)

and the residual component, i.e., the non-respiratory re-

lated component, was calculated as:

mresid = (I−P)m = m−mrespir, (4)

where I is the identity matrix. Afterwards, the spectra of

both components were obtained using the Welch’s peri-

odogram (50 s windows, 50% overlap) approach (an exam-

ple of the resulting spectra is displayed in Fig. 1). Whereas

non-respiratory related power, PLF

resid
, was computed as the

power content of mresid within the LF Hz band, the power

of the respiration-related component, Prespir, was obtained as

the power of mrespir in the [0.04, HR/2] Hz band (being HR
the mean HR in Hz). Also the ratio ROSP = PLF

resid
/Prespir was

computed as an alternative sympathovagal balance mea-

surement [11]. Finally, the total power (TP) was calcu-

lated as the sum of the classical LF and HF powers. The

described indexes were calculated from five-minute win-

dows of m, with four-minute overlap.

2.4. Statistical Analysis

Subjects were characterized by the median of their HRV

parameters. Normality of the data was rejected using a

Kolmogorov-Smirnov test, so differences among groups

were assessed using a Wilcoxon rank-sum test, setting the

significance threshold to 0.05.
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Figure 1. Normalized power spectral density of the mod-

ulating signal (blue) and the respiratory effort (pink) in a

five-minute segment are displayed in a). Since the respi-

ratory activity lays below 0.15 Hz (black dashed line), in

b) orthogonal subspace projection was applied to separate

the respiratory-related (green) and -unrelated (red) compo-

nents of the modulating signal.

2.5. Logistic Regression Classifier

A logistic regression (LR) classifier was used for strat-

ifying the subjects in CA and UA. Sequential feature se-

lection was applied to all the clinical parameters by max-

imizing the accuracy. Then, the two best performing fea-

tures were combined with the introduced HRV measure-

ments. The classifier was trained using the leave-one-out

technique combined with bootstrapping in order to avoid

overfitting [12], following the scheme in [13] (100 boot-

strapped training sets were used for each subject). Then,

the accuracy, sensitivity, specificity and F1 score were cal-

culated as the mean values of all the constructed classifiers.

3. Results

Differences in the HRV parameters among groups and

the performance of the classifier for several sets of features

are summarized in Tables 2 and 3 respectively. Attending

to HRV analysis, decreased TP, PLF

resid
and Prespir were found in

the UA group, although no difference in ROSP was assessed.

On the other hand, FEV1/FVC and IgE levels were se-

lected as the clinical features that achieved the best accu-

racy (64.73%), closely followed by the FeNO (although

adding the latter to the classifier did not improve the ac-

curacy, so it is not considered hereon). The use of PLF

resid

and ROSP resulted in a similar performance than the clinical

features, whereas combining any of them with FEV1/FVC

and IgE improved the classification accuracy. Moreover,

adding both HRV features simultaneously resulted in the

best performance, with an accuracy of 71.77% and an in-

crease in sensitivity and specificity of more than a 5% and

Table 2. Median (interquartile range) of the heart rate vari-

ability parameters for each group. Statistical significant

differences among groups (p < 0.05) are indicated with *.

Controlled Asthma Uncontrolled Asthma

HR (beats per min) 73.98 (22.48) 77.79 (7.86)

TP (a.u. × 103) 13.65 (10.16) 4.85 (3.13)*

PLF

resid
(a.u. × 103) 5.67 (6.18) 2.02 (1.67)*

Prespir (a.u. × 103) 2.66 (3.89) 0.85 (1.43)*

ROSP (n.u.) 2.38 (2.20) 2.19 (4.78)

Table 3. Mean accuracy (Acc), sensibility (Sens), speci-

ficity (Spec) and F1 score of the classifier using different

sets of features (displayed between brackets).

Acc (%) Sens (%) Spec (%) F1

{FEV1/FVC, IgE} 64.73 79.00 40.09 0.74

{PLF

resid
, ROSP} 64.60 82.84 33.09 0.75

{FEV1/FVC, IgE, PLF

resid
} 68.33 79.58 48.91 0.76

{FEV1/FVC, IgE, ROSP} 67.03 83.00 39.45 0.76

{FEV1/FVC, PLF

resid
, ROSP} 70.37 85.37 44.45 0.79

{FEV1/FVC, IgE, PLF

resid
, ROSP} 71.77 84.37 50.00 0.79

almost a 10% respectively, when compared with the classi-

fication using only clinical features. Finally, replacing the

IgE by PLF

resid
and ROSP also resulted in an improved perfor-

mance with respect to the classification using FEV1/FVC

and IgE. Slightly reduced performance was achieved when

considering TP instead of PLF

resid
.

4. Discussion

In this work, the inclusion of ANS activity informa-

tion for the improvement of automatic asthmatic subjects

classification has been proposed. ANS assessment was

accomplished using HRV analysis, which remains highly

non-invasive. Since a preliminary study revealed a gen-

erally low respiratory rate that might compromise the in-

terpretation of a traditional frequency-domain HRV analy-

sis, we proposed the use of an OSP decomposition of the

HR modulating signal, which allows to uncouple the res-

piratory linear-related and -unrelated components of HRV

[11]. As displayed in Table 2, the frequency-domain analy-

sis of these components revealed a decreased power in both

of them in the UA group, thus suggesting a reduced auto-

nomic modulation of HR in subjects with a worse asthma

control. Whereas previous studies revealed an increased

vagal response to autonomic tests in asthmatics than in

controls [2] that appears to be related with asthma severity

[3], Lutfi et al. reported a global decreased HRV in awake

adults with uncontrolled asthma when compared with con-

trolled asthmatics [4], in concordance with this study.

Increased body mass index and a larger relative num-

ber of females were assessed in the UA group. Whereas

obesity has been related with decreased HRV in previ-
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ous studies [14], females usually present decreased sympa-

thetic tone and increased vagal tone than males [15], which

could compromise the interpretation of the aforementioned

results. However, the body mass index was uncorrelated

with all the HRV measurements and the respiratory-related

component of HRV was lower instead of higher in UA,

suggesting that the differences in ANS activity between

groups may be due to other causes than obesity or gender.

Since the monitoring of an individual asthmatic status

can not be performed in a continuous-time manner and

might require to visit the hospital and some invasive mea-

surement such as blood tests, we postulated that the inclu-

sion of ANS information could result in a better stratifica-

tion of the subjects attending to the control of the disease.

In this way, we employed a LR classifier which was trained

with different sets of features in order to compare their

classification performance. Unfortunately, the small sam-

ple size did not allow to have separated test and train sets.

Applying a sequential feature selection to all the available

clinical features raised FEV1/FVC and IgE as those that

maximized the accuracy of the classifier. As displayed in

Table 3, including either Presid or ROSP slightly increased the

classification performance. Moreover, including both fea-

tures simultaneously resulted in the best performance, with

a 7% increase in the classification accuracy with respect to

the case when only clinical features were employed, al-

though it could be related with the use of a higher number

of features. On the other hand, if the HRV features were

used to substitute IgE, the accuracy also raised almost a

5%. Therefore, the inclusion of ANS information might

be a suitable complement for the clinical practice, which

could improve the self-monitoring in asthmatic subjects.

5. Conclusion

HRV analysis revealed a decreased autonomic modula-

tion of the HR in uncontrolled asthmatics when compared

with controlled asthmatics, in concordance with previous

works. The inclusion of ANS information resulted in a

better stratification of the subjects than using only clinical

features, which encourages further research in the field of

non-invasive asthma monitoring.
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