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Abstract

A wearable electrocardiogram (ECG) monitor is eva-

luated as heart rate variability (HRV) monitor. The de-

vice consists of an armband designed to be worn on the

left upper arm which provides 3 ECG channels based on 3

pairs of dry (no hydrogel) electrodes. Armband-ECG and

conventional-Holter-ECG signals were simultaneously re-

corded from 14 subjects during 5 minutes in supine posi-

tion. Spacial principal component analysis was used to

obtain a unique armband ECG signal in which the elec-

tromyogram contribution is attenuated. QRS complexes

were automatically detected. Five traditional HRV para-

meters were derived: SDNN, RMSSD, pNN50, and powers

within low frequency (LF, [0.04, 0.15] Hz) and high fre-

quency (HF, [0.15, 0.4] Hz) bands. The Pearson’s corre-

lation coefficient between the measurements from the arm-

band device and the measures from the Holter device was

computed. Results show very high correlations (1.0000,

0.9999, 0.9984, 1.0000, and 0.9999 for SDNN, RMSSD,

pNN50, and powers at LF and HF, respectively), sugges-

ting that the quality of armband-ECG signals is enough

to estimate HRV parameters during stationary movement

restricted conditions.

1. Introduction

Continuous monitoring of heart beat occurrences has a

wide range of applications, such as atrial fibrillation de-

tection [1]. The heart beat occurrences can be used to

derive the heart rate and its variability (HRV), extending

the range of applications including, e.g., epileptic sei-

zures detection [2], and stress level monitoring [3]. In

fact, HRV remains a powerful framework for non-invasive

assessment of the autonomic nervous system (ANS) [4]

which has been studied in a large number of applications

in the last decades. Continuous electrocardiogram (ECG)

monitoring is usually performed by using Holter monitors,

which are not convenient for a long-term daily monitoring

because they use uncomfortable obstructive leads, and wet

electrodes over the chest that cause skin irritation after few

days.

Aiming to overcome the above mentioned limitations of

the conventional Holter devices, a wearable armband de-

vice for ECG monitoring is being developed in our lab at

the University of Connecticut. This armband records three

ECG channels using three pairs of hydrophobic dry elec-

trodes [5], differentially, while it is being worn on the left

upper arm. This armband device is more convenient for

daily long-term recordings than conventional Holter mo-

nitors, since it causes no skin irritation and uses no leads.

However, using dry electrodes over the left upper arm re-

presents a more challenging setup than the conventional

Holter setup, which is based on wet electrodes over the

chest. The armband setup relies on electrodes that are pla-

ced very close to each other over main limb muscles which

usually generate powerful electromyogram signals, spe-

cifically from biceps and triceps. Furthermore, although

these electrodes have a good impedance matching with the

skin considering that they are dry electrodes, the impe-

dance matching of hydrogel wet electrodes is better.

Nevertheless, a pilot study suggested that the armband

device provides ECG signals with enough quality to obtain

a QRS-morphology-based respiratory rate estimation du-

ring laboratory-controlled movement restricted conditions

[6]. Complementing a continuous respiratory rate monito-

ring with a heart rate and HRV monitoring would extend

the range of applications including sleep studies [7], and it

would allow to improve a stress level estimation [8]. Ho-

wever, the armband device has been not been evaluated as

a HRV monitor. In this paper, a first approach to evaluate

the armband device as a HRV monitor during laboratory-

controlled no-movement conditions is presented, using a

Holter device available in the market as Gold Standard.
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Figure 1: Example of first principal component of the 3 armband ECG channels (xA(n)), Holter ECG channel (xH(n)), and

their associated inverse interval functions (dIIF(n)).

2. Methods

2.1. Data and signal preprocessing

The three armband-ECG signals were recorded from 14

subjects (10 male) during 5 minutes in supine position.

The armband was worn on the left upper arm and uses a

sampling rate of 1000 Hz. In order to have a reference, an

additional ECG signal was simultaneously recorded by a

Rozinn RZ 153+ (Glendale, NY, USA) Holter device avai-

lable in the market. Three ECG channels were recorded by

this Holter device using a sampling rate of 180 Hz.

All ECG signals were resampled to Fs = 250 Hz. The

sampling rate is a trade-off situation. The higher sampling

rate the higher computational cost and battery consump-

tion, while the lower sampling rate the lower time resolu-

tion. The value of 250 Hz was chosen because it is the

minimum recommended for calculating the classical HRV

indices [4]. Then, baseline was attenuated by a high-pass

filter with a cut-off frequency of 0.3 Hz, and power line

was attenuated by a non-linear technique described in [9].

A spatial principal component analysis (PCA) was per-

formed, and the first principal component was chosen as

the unique armband-ECG signal for further analysis. The

reason of this choice is that this first principal component

is expected to have an attenuated contribution of the elec-

tromyogram from the local muscles (mainly left biceps and

triceps) [10]. This signal is denoted xA(n) in this paper. In

parallel, a unique ECG channel was visually chosen from

the Holter device for each subject, based on the observed

signal-to-noise ratio. This signal is denoted xH(n) in this

paper. An example of these signals can be observed in Fig.

1.

2.2. Heart rate variability analysis

QRS complexes were automatically detected by an al-

gorithm based on the variable frequency complex demo-

dulation described in [11], and normal beats (nNi
) were

determined by the algorithm presented in [12]. Then, the

inverse interval function was computed as:

du
IIF
(n) =

∑

i

1

nNi
− nNi−1

Fsδ(n− nNi
), (1)

where the superscript “u” denotes that the signal is une-

venly sampled, as the normal beats occur non uniformly in

time. An evenly-sampled version of du
IIF
(n) was obtained

by cubic splines interpolation using a sampling rate of 4

Hz, and it is denoted dIIF(n) in this paper.

Two inverse interval functions were obtained: one from

xA(n), and another one from xH(n). As xA(n) and xH(n)
are obtained from two independent devices, they are not

synchronized in time. In order to synchronize them, their

relative delay was estimated from the cross correlation be-

tween their associated inverse interval functions computed

from the segment of 2 minutes occurring at the center of

the 5 analyzed minutes. The delay was estimated as that

lag at which the cross correlation is maximum, and then, it

was corrected accordingly.

Once the delay was corrected, the normal-beat-to-

normal-beat (NN) intervals were computed, and the fol-

lowing time-based HRV parameters were estimated as re-

commended in [4]:

• SDNN: Standard deviation of NN intervals during the 5

minutes.

• RMSSD: Root mean square of the successive differences

of NN intervals during the 5 minutes.
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Figure 2: Scatterplots of HRV parameters estimated from the armband (aA) versus those estimated from the Holter device

(aH) (first row), and the corresponding Bland-Altman plots (second row).

• pNN50: The proportion of pairs of successive NN inter-

vals that differ by more than 50 ms during the 5 minutes.

Subsequently, the power spectral density of dIIF(n) was

estimated by using the Welch Periodogram with a 1-

minute-length Hamming window and 50% of overlap.

Then, the powers within low frequency (LF, [0.04, 0.15]

Hz) and within high frequency (HF, [0.15, 0.4] Hz) bands

were computed by integrating this power spectral density

within the corresponding bands.

Additionally, the same HRV parameters (SDNN,

RMSSD, pNN50, and powers at LF and HF bands) were

computed also from xH(n) for using them as reference.

For each one of the studied HRV parameters, two es-

timations per subject were available: one from the arm-

band and one from the Holter. The Pearson’s correlation

coefficient ρ between the two devices was computed. In

addition, the corresponding Bland-Altman plots were also

computed.

3. Results

Scatterplots of HRV parameters estimated from the arm-

band versus those estimated from the Holter device are

shown in Fig. 2. Additionally, the corresponding Bland-

Altman plots are also shown. Table 1 shows the obtai-

ned Person’s correlation coefficients, and the limits of

agreement (LOA) obtained from the Bland-Altman plots.

4. Discussion

A wearable armband device which records ECG signals

has been evaluated as a HRV monitor during laboratory-

Table 1: Obtained inter-subject Pearson’s correlation (ρ)

coefficients between HRV parameters estimated from the

armband and those estimated from the Holter. In addition,

the limits of agreement (LOA) obtained from the corre-

sponding Bland-Altman plots are also shown.

ρ LOA (mean ± 1.96×SD)

SDNN 1.0000 3.76E-5 ± 4.75E-4 s

RMSSD 0.9999 1.41E-4 ± 9.82E-4 s

pNN50 0.9984 2.53E-1 ± 1.07 %

LF 1.0000 1.75E-3 ± 2.45E-2 s−2

HF 0.9999 6.72E-3 ± 5.03E-2 s−2

controlled no-movement conditions. The armband is worn

on the left upper arm and it incorporates three pairs of

dry (no hydrogel) electrodes which are used differenti-

ally to record three ECG channels. The armband is much

more convenient than a Holter device for long-term moni-

toring because it causes no skin irritation and it uses no ob-

structive leads. PCA was used to derive a unique armband

ECG channel in which the electromyogram component is

attenuated. A conventional Holter device available in the

market was used as reference.

QRS complexes were automatically detected and 5 clas-

sical HRV parameters were computed from them: SDNN,

RMSSD, pNN50, and powers at LF and HF bands. In or-

der to evaluate the agreement of the HRV parameters me-

asured from the armband with those measured from the

Holter device, the inter-subject Pearson’s correlation coef-

ficient was computed, and the corresponding scatterplots
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and Bland-Altman plots were performed.

Scatterplots show a clear linear relation between the

HRV parameters measured from the armband and those

measured from the Holter (see Fig. 2). This linear re-

lation is quantified by the obtained Pearson’s correlation

coefficients which were very close to 1 for the 5 studied

HRV parameters (see Table 1), demonstrating a very high

positive correlation. Furthermore, the limits of agreement

obtained from the Bland-Altman plots were at least one

order of magnitude lower than their mean value for the 5

studied HRV parameters.

These results suggest that there is an excellent

agreement between the HRV parameters measured from

the armband and those measured from the the Holter. Thus

these results indicate that the armband device is potentially

useful for certain applications such as stress level asses-

sment [8] and sleep studies [13]. However, the analysis

performed in this study is limited to healthy volunteers in

laboratory-controlled movement restricted conditions. Fu-

ture studies are needed in order to evaluate the armband as

a HRV monitor in specific applications, e.g., during daily

life for long-term monitoring applications such as stress le-

vel assessment, or during polysomnography for sleep stu-

dies.

5. Conclusions

Results suggest that the armband device can substitute

a Holter device for HRV monitoring during movement re-

stricted conditions. Future studies have to be elaborated to

assess the performance of the armband in specific applica-

tions.
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