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Abstract

Nonlinear Heart Rate Variability (HRV) analysis has
been successfully applied to assess autonomic nervous
system (ANS) regulation of the cardiovascular system in
health and disease. Here, the spectral complexity frame-
work is introduced for characterization of time-varying
HRV spectral components.

Correlation dimension, D2, and maximum approximate
entropy ApEnmax, were calculated on time-varying HRV
spectral series derived from a linear point-process model,
which was fitted to RR series from 14 healthy subjects un-
dergoing selective ANS blockade during postural changes.

Complexity quantification of the instantaneous LF com-
ponent using D2 revealed significantly higher values in
standing vs. supine under atropine (vagal blockade), but
not under propranolol (sympathetic blockade), in contrast
to the results found under control conditions. Similar
trends were found for ApEnmax. Conversely, no statis-
tically significant differences were found in the complexity
indices evaluated for the instantaneous HF component, ei-
ther for standing vs. supine or blockades vs. control.

The proposed framework enriches the current knowl-
edge on complex ANS regulation of the heart, supporting
the fact that previously reported reduction in cardiovascu-
lar complexity during postural changes is mainly vagally
driven.

1. Introduction

Cardiovascular and respiratory dynamics are regulated
by autonomic nervous system (ANS) activity to maintain a
stable homeostatic status. Nonlinear interaction between
the sympathetic and parasympathetic branches of ANS,
which is responsible for heart rate regulation, have been
well established [1]. Heart rate variability (HRV) series,
resulting from this interaction, exhibits complex behavior
[2–4].

HRV analysis has been proven as a promising non-
invasive technique to assess ANS activity [2]. Besides 
quantification of heartbeat linear dynamics through HRV 
spectra, nonlinear techniques and related complexity esti-
mates have allowed effective discrimination between phys-
iological and pathological conditions, such as hyperten-
sion, diabetes, myocardial infarction, depression, and con-
gestive heart failure [2, 3].

To retrieve instantaneous HRV estimates defined in the
time and frequency domains, an inhomogeneous point-
process modeling approach, where ANS modulation of
heartbeat is represented by Inverse-Gaussian (IG) probabi-
lity density functions predicting the occurrence of R-waves
in the electrocardiogram, can be applied [5,6]. The instan-
taneous heart rate may then be parametrized in a linear au-
toregressive function characterizing the first-order moment
of such a continuous IG distribution.

Extensions of this framework to the nonlinear domain
including instantaneous high-order spectra, instantaneous
entropy and second-order complexity characterization, i.e.
complexity variability, have been recently investigated (see
[4] and references therein). However, the intrinsic complex
dynamics inherent to instantaneous HRV spectra have not
been considered yet.

To this end, in this study we introduce a complexity
analysis applied onto series derived from instantaneous
spectra of linear point-process models. Particularly, corre-
lation dimension and maximum approximate entropy are
computed on point-process-derived instantaneous mean
and standard deviation of heartbeat as well as on instan-
taneous spectral series obtained by integrating the instan-
taneous spectra within the low frequency (LF) and high-
frequency (HF) bands (0.04-015 and 0.15-0.4Hz, respec-
tively). Note that series of instantaneous LF may be re-
ferred as a marker of sympatho-vagal dynamics, whereas
series of instantaneous HF may be referred as a marker of
vagal dynamics [7]. We test the proposed methodology in
heartbeat series from 14 healthy subjects who were admi-
nistered pharmacological ANS blockers and performed a
protocol of body postural changes.
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2. Materials and Methods

2.1. Experimental Data

Pharmacological ANS blockades database (HMS-MIT-
FFMS): The database consists of 78 ECG signals, 7-
minute duration each, recorded at 360 Hz on 13 male
healthy subjects with no history of cardiopulmonary di-
sease (age range 19-38 y.o.). Subjects were informed and
gave their written consent in accordance with the Mas-
sachusetts Institute of Technology Committee on the Use
of Humans as Experimental Subjects before each proce-
dure.

First, ECGs were recorded while subjects were in supine
position control condition (SUC), i.e. no drug was admi-
nistered. Then, subjects were changed to standing position
(STC) and ECGs were recorded when hemodynamic equi-
librium was reached. In a second stage, subjects were di-
vided into two groups. One group consisted of 7 subjects
(20.29 ± 1.25 y.o.) who were administered atropine (0.03
mg/kg) and the other one of 6 subjects (23± 6.5 y.o.) who
were administered propranolol (0.2 mg/kg). ECGs were
recorded in supine and standing positions when hemody-
namic equilibrium was reached (SUA, STA, SUP, and STP
respectively). Although a third stage was included where
drug administration was exchanged between the groups,
this stage was discarded and only control and single block-
ades were considered for this study. Further details of this
database can be found elsewhere [8].

2.2. Methodology of Signal Processing

Pre-processing: R-waves were identified from the ECG
by a wavelet-based QRS detector. The obtained RR inter-
val series were checked and eventually corrected to be free
of ectopic beats and algorithmic artifacts using a point-
process based algorithm [9].

Point-process modeling: Point-process models provide
a probabilistic framework to characterize the stochastic
properties of beat-to-beat variations through an inverse
Gaussian probability distribution [5]:

f(t|Ht(k),θ) =

[
θp+1

2π(t− t(k))3

] 1
2

·

exp

(
−
θp+1(t− t(k)− µ(Ht(k), θ))

2

2µ(Ht(k), θ)2(t− t(k))

)
where t(k) represents the time occurrence of the kth heart-
beat, Ht(k) = {t(k), w(k), w(k − 1) , ..., w(k − p + 1)}
the elements involved in the history-dependence of p order
of previous beats (p = 12) and w(k) = t(k)− t(k− 1) the
RR values.

The instantaneous mean RR was computed as:

µRR(t) = µ(Ht(k),θ) = θ0 +

p∑
j=1

θjw(k − j + 1) (1)

The estimation of the θ parameters was performed by
considering a local maximum-likelihood estimation within

a time window l (l = 60 s) [5]. Kolmogorov-Smirnov
test was used to measure the goodness-of-fit of heartbeat
events t(k) and those of the point-process distributions af-
ter time-rescaling application [5]. The parameters θ were
updated by shifting the estimation interval ∆ ms, i.e. the
time resolution (in our case 50 ms).

The instantaneous standard devision was estimated as
follows: σRR(t) =

[
µ(Ht(k),θ)

3θ−1
p+1

] 1
2 (2)

Point-process time-varying spectral time series: The
parametric description provided in Eq.1 allows for the ex-
traction of time-varying spectral components. The instan-
taneous power spectra was computed as follows:

SRR(f,t) =
σ2
RR(t)

|1−
p∑
i=1

θi(t)z−i|
z=ej2πf

(3)

Low frequency power (PLF : 0.04-0.15 Hz) and high
frequency power (PHF : 0.15-0.45 Hz) content were in-
stantaneously estimated. Moreover, normalized PLF (t),
computed as PLFn(t) = PLF (t)/(PLF (t)+PHF (t)), was
considered for further analysis.

Time domain indices: Heart rate mean (HRM) and
the root mean square of standard deviation (RMSSD) of
µRR(t) were computed.

Nonlinear indices: Correlation dimension, D2, and
maximum approximate entropy, ApEn(2, rmax(2)), here-
inafter denoted by ApEnmax for the sake of simpli-
fication, were considered as related to the complexity
and irregularity of the time series [10]. These nonlin-
ear indices were computed from point-process derived
time series: instantaneous mean µRR(t); instantaneous
standard deviation σRR(t); and time-varying power spec-
tral components. The employed notation was as fo-
llows: XY , where X ∈ {D2, ApEnmax}, and Y ∈{
µRR(t), σRR(t), PLF (t), PHF (t), PLFn(t)

}
. Of note,

the embedding dimension m values were adjusted to the
time series resolution. Consequently, reported values of
m when time resolution was 500 ms were multiplied by a
factor of 10 at 50 ms.

Statistical analysis: The HMS-MIT-FFMS database was
analyzed by considering the last 5 minutes of each ECG
recording at each of the body postural phases and conside-
red conditions (control and pharmacological ANS block-
ades). Paired t-test or Mann-Whitney U test were applied
according to the K-S test results. A p-value < 0.05 was
considered for statistical significance.

3. Results

The results from the complexity analysis of the µRR(t)

series (see Fig. 1a)) showed statistically significant diffe-
rences between supine and standing for the two complexity
indices only when analyzing control conditions. A statisti-
cally significant decrease was also found in complexity va-
lues under atropine versus control in supine position. Simi-
larly, a significant reduction was found under atropine with
respect to control in standing position forApEnmax index
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Figure 1. D2 and ApEnmax computed over: a) instantaneous RR (µRR(t)); b) instantaneous RR variations (σRR(t));
c) and d) time-varying spectral time series PLF (t) and PLFn(t) evaluating the effect of ANS blockades. ∗ represents
statistical significant differences between SUX and STX, where X ∈ {C(control);A(atropine);P (propranolol)}. †
SUA, SUP vs. SUC, and ‡ STA, STP vs. STC. p-value < 0.05 is considered as significant by Mann-Whitney U test.

SUC STC SUA STA SUP STP
D2

µRR(t) 4.9(4.5|5.4) 4.2(3.8|4.5)∗ 4.4(4|4.6)† 4.2(3.9|4.6) 5.2(4.5|5.5) 4.7(3.9|5.3)∗
ApEnmax

µRR(t) 1.6(1.5|1.8) 1.9(1.7|1.9)∗ 1.4(0.99|1.6)† 1.1(0.94|1.3)‡ 1.4(1.4|1.5)† 1.5(1.4|1.6)∗‡
D2

σRR(t) 3.4(3.3|3.6) 3(2.8|3.2)∗ 3.6(3|3.9) 3.3(3.2|4.2)‡ 3.3(3.2|3.6) 3.4(3.2|3.5)∗‡
ApEnmax

σRR(t) 1.2(1.1|1.3) 1.1(1|1.2) 1.1(1.1|1.2) 0.9(0.83|1.2) 1.1(1.1|1.1) 1.2(1.1|1.2)
D2

PLF (t) 2.1(1.8|2.2) 1.8(1.8|1.9)∗ 0.73(0.56|1.3)† 1.5(1.1|1.7)∗‡ 1.9(1.8|1.9) 2(1.7|2)
ApEnmax

PLF (t) 0.49(0.44|0.52) 0.44(0.41|0.47)∗ 0.3(0.19|0.35)† 0.41(0.31|0.44) 0.48(0.44|0.49) 0.45(0.4|0.48)
D2

PLFn(t) 2.1(2|2.2) 1.9(1.8|2.1)∗ 1.3(1.1|1.9)† 1.8(1.5|1.9) 2(1.9|2) 1.9(1.7|2)
ApEnmax

PLFn(t) 0.51(0.5|0.54) 0.48(0.43|0.52) 0.37(0.35|0.42)† 0.41(0.37|0.43)‡ 0.51(0.5|0.54) 0.5(0.49|0.52)

Table 1. D2 and ApEnmax computed over: instantaneous RR (µRR(t)); instantaneous RR variations (σRR(t)); and time-
varying spectral time series PLF (t); and PLFn(t) evaluating the effect of ANS blockades. ∗ represents statistical significant
differences between SUX and STX, where X ∈ {C(control);A(atropine);P (propranolol)}. † SUA, SUP vs. SUC,
and ‡ STA, STP vs. STC. p-value < 0.05 is considered as significant by Mann-Whitney U test.

but D2, since this value was already low in the standing
control stage. Nonlinear indices revealed no changes re-
garding body positions after administration of propranolol.

The analysis of σRR(t) series (see Fig. 1b)) resulted in
a decrease in complexity indices, although only significant
for D2 in standing with respect to supine position in con-
trol. No significant differences were found between supine
and standing under atropine or propranolol. However, D2

was found significantly higher under any of the two block-
ades with respect to control.

Complexity analysis on PHF (t) series did not reveal any
statistical difference either at control or under ANS block-
ades.

On the other hand, complexity analysis of instantaneous
LF power revealed significant changes between body po-
sitions during control conditions. Although both indices
showed changes in the comparison of supine and stand-
ing under atropine, these were only statistically different
for DPLF (t)

2 (Fig. 1 d)). In addition, PLFn(t) analysis

(see Fig. 1e)) showed a decrease in the complexity values
when comparing standing and supine at control and under
propranolol, whereas the effect of atropine administration
was associated with an increase in their mean distribution
value. Complexity values were statistically lower under
atropine as compared to control.

4. Discussion and Conclusion

We proposed a methodology to investigate ANS non-
linear dynamics through complexity analysis of instanta-
neous spectral indices derived from inhomogeneous point-
process models. To this extent, we computed complexity
and irregularity indices such as D2 and ApEnmax on ins-
tantaneous LF and HF series during selective ANS block-
ades in healthy subjects undergoing postural changes. Par-
ticularly, the protocol comprised simple gravitational stim-
uli obtained by transitioning from supine to standing posi-
tion.
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Our results suggest that atropine, used to inhibit
parasympathetic activity on cardiovascular control, mostly
affected the irregularity and complexity of point-process
derived series. Subjects under parasympathetic blockade
showed a significant reduction inD2 andApEnmax values
with respect to control conditions. Conversely, the effect
of propranolol, used to inhibit sympathetic activity, was
not reflected in complexity changes. The results obtained
by analyzing instantaneous RR time series were found to
be in accordance with previous studies [11]

Regarding the instantaneous RR variance, σRR(t), our
results suggest that lower complexity of sympatho-vagal
dynamics is associated with upright position with respect
to supine position at control, as revealed through D2.

The statistical differences found in supine versus stand-
ing under control conditions disappeared following admin-
istration of any of the two ANS blockers, which highlights
the contribution of both the sympathetic and parasympa-
thetic branches to the observed postural-induced changes
in the analyzed indices.

However, significantly greater values of D2 and
ApEnmax were found when drugs were administered dur-
ing standing position with respect to control stage. Block-
ades produced a variation in the ANS modulation tone
which is also manifested in the complexity values.

The novelty of this study lies in the complexity and ir-
regularity analysis of HRV spectral components extracted
from instantaneous heartbeat estimates defined within a
point process framework. In fact, although these spectral
components are usually assumed to be stationary, as well
as their nonlinear/complex behavior, our analysis shows
a decrease of PLFn(t) complexity induced by atropine
when compared to control conditions. The regulation of
the parasympathetic nervous system is highly reduced by
atropine, thus ANS modulation is mainly due to the sym-
pathetic modulation. The elicitation of ANS by postural
change was captured by indices evaluating the complexity
and irregularity of PLF (t). Once parasympathetic activ-
ity was reduced by the blockade, the increase of sympa-
thetic activity was expressed as an increment of comple-
xity of PLF (t). When sympathetic activity was inhibited
by propranolol, ANS changes due to body positions were
not captured by complexity analysis and the analysis re-
sults were similar to the ones found in control conditions.

In conclusion, the proposed methodological framework
enriches current knowledge on complex ANS regulation of
the heart, supporting previously reported, vagally-driven
reductions in cardiovascular complexity.
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