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Abstract

Heart rate variability (HRV) at rest is widely accepted

as a non-invasive measure of autonomic nervous system

regulation of the heart. A novel technology has been devel-

oped by VoluMetrix®that captures venous waveforms via

sensors on the volar aspect of the wrist, called NIVAband.

In this study, we aim to assess its validity to determine

pulse rate variability as a surrogate of HRV. Seven vol-

unteers were recorded while breathing both spontaneously

and at a fixed slow pace. Subjects wore a NIVAband and

the ECG was recorded simultaneously. Pulses in the NIVA

signal were detected using an adaptive threshold on the

output of a matched filter. From both beat (ECG) and

pulse (NIVA) detections, we derived the power associated

to main spectral components of their variability in the low

frequency (LF) and high frequency (HF) bands. Good reli-

ability (>0.75) was achieved in average. Mean heart rate

and LF power derived from NIVAband and ECG showed

no significant differences. HF power, however, was signif-

icantly higher in the NIVA measures.

1. Introduction

The main functions of the venous system are to return

blood to the heart from the periphery and to serve as a ca-

pacitance to maintain filling of the heart. Veins contain

approximately 70% of total blood volume, and are much

more compliant than arteries. Therefore, they can easily

change their volume to adjust the venous pressure in order

to send their blood volume back to the heart.

Most of hospitalized patients have a peripheral venous

line that allows fluids and medications to be given directly

into the circulatory system. Some studies have already

used the peripheral venous waveform to derive hemody-

namic information. Continuous beat-to-beat monitoring of

intravascular volume status was used to detect early Stage

1 hemorrhage during perioperative autologous blood dona-

tion in patients undergoing cardiac surgery, while they did

not find any differences in other physiological parameters

such as heart rate, SpO2 or mean arterial pressure [1]. It

was also used to detect changes in fluid volume status in

spontaneously breathing patients during hemodialysis, as

well as the respiratory rate and pulse rate [2].

VoluMetrix®is developing a new technology to capture

venous waveforms non-invasively via sensors on the volar

aspect of the wrist, called NIVAband. They propose Non-

Invasive Venous waveform Analysis (NIVA) to obtain in-

formation on heart rate, respiratory rate, and volume status.

This study aims to evaluate the capabilities of NIVAband

to provide a measure of the balance between sympathetic

and parasympathetic tone, as a marker of autonomic func-

tion, using respiratory and pulse rate information. The va-

lidity of pulse rate variability (PRV) derived from the NIV-

Aband for the assessment of autonomic function will be in-

vestigated comparing it with simultaneous heart rate vari-

ability (HRV) derived from the ECG. Moreover, we will

study the ability of the NIVA signal to provide information

of respiratory rate, important to guide HRV analysis.

2. Methods and materials

2.1. Database and protocol

Seven healthy subjects agreed to participate in the study

(written informed consent was obtained from each sub-

ject). The study was performed in accordance with the

Vanderbilt University Medical Center and the Univer-

sity of Alabama-Birmingham Institutional Review Boards.

The test consisted of slow breathing (SB, 6 bpm = 0.1 Hz)

and spontaneous breathing (NB) while sitting. ECG, repi-

ratory signal and NIVA signal were recorded simultane-

ously via a PowerLab system (ADInstruments, Colorado

Springs, CO, USA), sampled at 1000 Hz. Each recording,
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SB and NB for every subject, lasted between 4 and 5 min-

utes. Respiratory signal was recorded using a chest band,

and it showed that subjects maintained the reference respi-

ratory rate (for SB) with an error of 0.025±1.08 mHz. The

NIVA signal was acquired using a piezoelectric sensor lo-

cated in the volar aspect of the wrist. A velcro wrist band

was then used to give more pressure to the sensor. Figure 1

shows an example of ECG, respiratory and NIVA signals

from one subject.
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Figure 1. Example of ECG, respiratory and NIVA signals

for one subject.

2.2. Beat and pulse detections

HRV and PRV parameters will be derived from beat and

pulse detections samples, nE

k
and nN

k
respectively, where

superindex E and N refers to the ECG and NIVA signals.

Beat detections nE

k
are obtained from the time occurrences

given by a wavelet-based detector [3], and they will be

used as the reference series.

To obtain nN

k
, first the NIVA signal is low-pass filtered

with a cut-off frequency of 5 Hz to remove high frequency

noise. Next, a matched filter is applied to enhance the pulse

waveform. The template used in the matched filter, being

the same for all subjects, was obtained as the mean wave-

form from the first 5 pulses of all subjects. Figure 2 shows

an example of the raw NIVA signal, the filtered version,

and the output of the matched filter (NIVAM). Then, pulses

are detected in NIVAM using: a) a low-pass-differentiator

(LPD) filter to accentuate the upslopes of the pulses, and

b) an adaptative threshold to detect the peaks in the LPD

filtered signal, as described in [4]. The peaks in the LPD

filtered signal represent the points with maximum slope in

NIVAM, nN

k
, as seen in Figure 2.

From nE

k
, the beat interval series are obtained as dE(k) =

nE

k
−nE

k−1
. From nN

k
, the pulse series dN(k) are obtained in
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Figure 2. Example of the raw NIVA signal, filtered, the

output of the matched filter (note that amplitude for the

latter signal was adjusted to be comparable to the other

two), and the pulse detections nN

k
.

a similar way. Both series are synchronized using the de-

lay that maximized their cross correlation, and most likely

outliers, misdetections or false detections are corrected [5].

2.3. Validity of pulse interval series

To study the validity of the pulse detections, all inter-

vals are matched from dE(k) and dN(k) signals. A Bland-

Altman plot is used to represent both interval series. The

bias, the limits of agreement (LOA, ±2*std values) and

the percentage of paired interval measurements out of the

LOA are also obtained. Also, two reliability indexes are

used to measure the interchangeability between both se-

ries: Lin’s concordance correlation coefficient (CCC) and

intraclass correlation coefficient (ICC) [6, 7].

2.4. Respiratory frequency estimation

Respiratory information is important for HRV analy-

sis, since parasympathetic modulation is synchronous with

respiratory rate. NIVA signal is used to derive the respira-

tory frequency f̂R directly from the spectrum of the filtered

NIVA signal, since the first main spectral component rep-

resents the respiratory rate [1]. Moreover, f̂R will be com-

pared with the reference fR, obtained as the main spectral

component from the respiratory signal.

2.5. HRV and PRV parameters

The instantaneous heart rate signal, dE

HR
(n), is derived

from dE(k), following a method based on the time-varying

integral pulse frequency modulation (TVIPFM) model,

and resampled at 4 Hz. This signal is high-pass fil-
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tered to remove the mean heart rate tendency dE

HRM
(n)

(very low frequency components) and corrected to ob-

tain the heart rate modulating signal m(n): mE(n) =
(dE

HR
(n)−dE

HRM
(n))/dE

HRM
(n) [8]. Similarly, dN

HR
(n), dN

HRM
(n)

and mN(n) are obtained from dN(k).

For each recording, the power spectrum of mE(n) is

computed using the Welch periodogram, using windows

of 60 s with 20 s of overlapping. The powers in the LF and

HF bands are computed integrating the power spectrum in

the corresponding bands: PE
LF

from 0.04 to 0.15 Hz, and

PE
HF

centered at fR with a bandwidth of 0.15 Hz. Note that

in the case of SB (fR = 0.1 Hz), spectral bands for PE
LF

and PE
HF

are almost the same. Parameters PN
LF

and PN
HF

are

obtained in a similar way from mN(n) and f̂R.

2.6. Statistical analysis

A Kolmogorov test showed that HRV and PRV param-

eters did not follow a normal distribution. Therefore, a

paired Wilcoxon test was applied for every parameter to

study the differences between both measurements. More-

over, the mean heart rate (HRM) was also included as a

parameter, obtained as the inverse of the mean of dE(k)
and dN(k). The difference is considered to be significantly

different from zero when p < 0.05.

3. Results

3.1. Pulse interval series

Figure 3 shows the Bland-Altman plot which evaluates

the discrepancies between dE(k) and dN(k) and the stability

across the different values of heart rate. A total of 3014

paired intervals were used. The bias is 2.4ms. 6.89% of

the intervals are out of the LOA (upper and lower lines).

No differences were found in the discrepances when SB

and NB recordings were studied separately. Mean ± std

for ICC and CCC indices are 0.76 ± 0.13 and 0.73 ± 0.16,

respectively.

3.2. PRV parameters

Figure 4 shows the HRM and the HRV and PRV pa-

rameters from both ECG and NIVA signals. No signifi-

cant differences are found in HRM for both NB and SB

recordings. PN
HF

was obtained centered at f̂R, which was

correctly estimated for each recording with a mean error

lower than 0.01 Hz. For NB, no differences are found in

PLF, but PHF is significantly higher in the NIVA measures.

For SB, the spectral band related with respiration coincides

with the LF band, and thus PLF and PHF are reflecting the

same spectral power. Only PHF is shown in Figure 4, which

is again significantly higher in the NIVA measures.
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Figure 3. Bland-Altman plot: dE(k) vs dN(k). Mean of

the difference of the series ± 1.96*std values (limits of

agreement, LOA).
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Figure 4. HRV and PRV parameters: HRM, PLF and PHF.

* denotes significant differences (p<0.05).

4. Discussion

In PRV analisis with NIVA, getting robust pulse de-

tections is essential and signal quality is a critical factor,

since pulses have low amplitude, change their morphology

over time and are sometimes masked by other modulations,

like respiration. We tried different fiducial points for the

pulses: maximum, minimum, the half point between the

maximun and minimum, and the maximum in the deriva-

tive. The latter was found to be the most reliable (higher

ICC and CCC) and was used in this work.

When comparing beat and pulse detections, we obtained

a reliability > 0.75. Most recordings achieved indices

above 0.8, but 4 recordings presented lower reliability (<
0.6), due to the poor signal quality. For these cases, the
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matched filter was not enough for accurate fiducial point

derivation. Comparing SB with NB, no significant differ-

ences were found in the reliability indices. Whether the

matched filter impulse response can be generalized is other

point remaing to be explored. The average here presented

may be generalized to a fix waveform, avoiding the initial-

ization at each experiment.

Regarding the spectral analysis in NB, no differences

were found in PLF. However, PHF was significantly higher

in the NIVA signal as already show in [9] for PPG analy-

sis. One reason for this higher power may be due to the

uncertainty in detecting the NIVA pulses due to low sig-

nal quality. Other reason may be that, with NIVA signal

being more influenced by respiration, the pulse rate is also

modulated with more power than heart rate. In SB record-

ings, the respiratory rate falls in the LF band, and thus both

LF and HF components overlap, with NIVA measures pre-

senting a significantly higher power, presumably due to the

respiration effect in the NIVA signal.

The importance of respiratory information in HRV anal-

ysis to enhance autonomic activity measurement has al-

ready been demonstrated [10]. An advantage of the NIVA

signal is that it presents a strong respiratory component and

we could successfully estimate the respiratory rate. There-

fore, we are able to choose more accurate spectral bands

for parasympathetic activity measurements. In any case,

the increased HF power suggests that NIVAband may en-

hance measurement of parasympathetic activity.

The main limitation of this study is the low signal to

noise ratio of the NIVA signal when compared with other

devices which allow PRV analysis, such as plethysmogra-

phy based devices. However, it has proven to be effective

in correctly estimating the respiratory frequency even with

low rates. Besides, the power consumption by a piezo-

electric based sensor is lower than other plethysmography

devices, which may allow to smaller wearables.

5. Conclusion

This work proposes to analyze the peripheral venous

signal in a non-invasive way to obtain PRV as a surrogate

of HRV. Beat (ECG) and pulse (NIVA) detections achieved

good reliability (>0.75) in both NB and SB recordings.

Main LF and HF spectral components were extracted from

PRV and HRV. HF power, guided by respiratory rate, was

significantly higher in the NIVA measures in both NB and

SB, suggesting that peripheral venous signal may enhance

measurement of parasympathetic activity.
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