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Abstract

Electrocardiogram-derived respiration (EDR) is a well

known method for obtaining respiratory signal estima-

tions only from electrocardiogram (ECG). It has been ex-

tensively employed for deriving respiratory rate, whereas

much less results concerning tidal volume (TV) estimation

have been reported in the literature. In this work, a method

for estimating TV from ECG during a maximal effort tread-

mill test is presented. It is based on the R-S amplitude se-

ries and a calibration process of a linear model. The test

was divided in stages, and lowest estimation error was ob-

tained for lead V4, with a median relative error as low as

7% in the best-performing stage and lower than 14% in

most of them, suggesting that TV can be estimated from

the ECG.

1. Introduction

Electrocardiogram (ECG) has a wide range of clinical

applications as it contains large information about heart

condition. Furthermore, some respiration-related modula-

tions are present in the ECG, so respiratory information

can be extracted from it [1–4]. One of those modula-

tions is the so called respiratory sinus arrhythmia (RSA),

which reflects as a tachycardia during inspiration followed

by a bradycardia during expiration. Moreover, ECG mor-

phology is modulated by electrodes movement with re-

spect to the heart, as well as impedance changes in the

thorax due to the amount of air in the lungs. This effect

leads to an increased electrical impedance of the thorax

during inspiration, which is reflected in the ECG as am-

plitude and shape variations. Several techniques to esti-

mate respiratory rate from ECG signals have been pro-

posed in the literature. Some of them exploit different

morphological features such as variations in the R or R-

to-S waves amplitude [1], the QRS-complex area [2], the

QRS-complex slopes [3] or vectocardiogram rotations [4].

However, only little research concerning the estimation of

tidal volume (TV) has been published. To the best of our

knowledge, previous studies focused on noninvasive TV

estimation have mostly considered ECG-unrelated tech-

niques, such as inductive [5] or opto-electronic plethys-

mography [6], traqueal sounds [7] or even image acquisi-

tion using a smarthpone camera [8]. However, proportion-

ality between ECG-derived respiration (EDR) and TV was

reported in [2], whereas in [9] they conducted a concep-

tual study for estimating TV from ECG or intra-cardiac

signals [9] in mechanically ventilated swines, hence in a

controlled environment. In this work, a method for TV

estimation from ECG is proposed. The method is based

on R-S amplitude series and it is evaluated with signals

recorded during a maximal effort treadmill test, which re-

mains a noisy and highly non-stationary environment.

2. Materials and Methods

2.1. Database

25 apparently healthy male volunteers (33.4 ± 5.2

years) were recruited. All of them were active and par-

ticipated in aerobic training at least 3 days per week. They

performed a maximal treadmill (Quasar MED LT h/p Cos-

mos) effort test, which was divided in 3 stages: a 5-minute

resting stage (while seated), an exercise stage and a recov-

ery stage. During the exercise stage, the subjects started

to run at 8 km/h and the speed was gradually increased
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at 1 km/h per minute, until the subjects stopped due to

volitional exhaustion. Afterwards, recovery stage started,

and subjects were requested to keep running at 8 km/h

for 3-5 additional minutes. Multilead ECG was acquired

at 1000 Hz using a high resolution holter (Mortara 48-

hour H12+, Mortara Instrument, Milwaukee,Wisconsin).

Leads I, II, III, aVL, aVR, aVF, V4, V5 and V6 were

obtained. Minute ventilation (VE) and respiratory rate

(fresp) were recorded breath-by-breath with an Oxycon Pro

device (Jaeger/Viasys, Germany). Recordings were per-

formed at University of Zaragoza, and written informed

consent was received from all the participants.

2.2. Preprocessing

Beat detection and delineation was performed in each

ECG lead by using the wavelet-based method described

in [10]. For simplicity, temporal series will be displayed

in bold type. From beat time occurrence, instantaneous

heart rate (HR), xHR, was obtained. Breath-to-breath TV

(V T) was calculated as VE/f resp
. Afterwards, xHR and V T

were synchronized (a breath-to-breath HR measurement

provided by the Oxycon Pro device was used for this pur-

pose) and smoothed with a 10-sample median filter.

Each R-to-S amplitude series, xR-S, was used as EDR

signal. xR-S was first low-pass filtered at 1 Hz to discard

high frequencies unrelated with respiration, and the result

of this filtering was referred to as x̃R-S. Time occurrence

of the peaks in x̃R-S should be related with expiration, as

higher EDR amplitude is expected when electrodes are

closer to the heart. We detected those peaks and the peak

amplitude series was filtered with a 10-sample median fil-

ter. The outcome of this filtering process, x̃pk, was re-

sampled at the time instants when volume information was

available and the resulting signal was referred to as x. An

example of this preprocessing stage is displayed in Fig. 1.

2.3. Tidal Volume Modeling

The effort test was divided into 5 different stages: rest

(Irest), 0-60% (I0-60), 60-80% (I60-80) and 80-100% (I80-100) of

maximum HR, and recovery (Irecov) stage. Irest was set as the

time from signal acquisition start until 30 seconds before

exercise onset (to avoid the transition between rest and the

start of the exercise stage) and Irecov as the time from 30

seconds after maximum HR was achieved (exercise offset)

until the end of the recording. The segmentation of the

other 3 stages was performed automatically from the xHR

signal (Fig. 2 a)) considering the mean HR at Irest as 0%,

and the maximum reached HR as 100%.

In each of the previous stages, x was fitted to V T with a

simple first-order linear model:

V̂
I

T
= θI

0
+ xIθI

1
, (1)
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Figure 1. In a), R and S waves (green and red circles re-

spectively) were detected in the ECG. R-S amplitude series

generated from this detections, xR-S, is displayed in b). In

c), xR-S was low-pass filtered at 1 Hz, and the peaks cor-

responding to maximum R-S amplitude are marked with

green circles. The peak amplitude series was filtered with

a 10-sample median filter to generate x̃pk, as shown in d).

Finally, x̃pk was re-sampled at the time instants when vol-

ume information was available (labeled with black circles

in e)) in order to obtain x.

where superindex I denotes the considered stage, θI

0
and θI

1

are the offset and slope of the liner model respectively, and

xI is the vector formed by the samples of x contained in

stage I . For the calibration, only 20% of the samples of the

previous interval and 30% of the samples of the interval to

predict were considered. Afterwards, the remaining 70%
were estimated from the model. This calibration process

was repeated for each subject, stage and lead. An example

of this estimation is displayed in Fig. 2 b). In a second ap-

proach, we proposed a multi-lead methodology including

information of all the leads. For this purpose, a principal

component analysis (PCA) was applied to merge the xR-S

of all the leads in a single series. The first PCA component,

xPCA, was used as the EDR signal in this approach. Then,

the same processing described in Section 2.2 was applied.

Finally, it was fitted to V T as in Eq. (1).
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Table 1. Absolute (ǫa) and relative (ǫr) estimation error for each of the five stages. The data is presented as median of

medians (median of IQRs). Values corresponding to leads V4 and aVF, and to the multi-lead approach are shown.

V4 aVF PCA

ǫa (liters) ǫr(%) ǫa (liters) ǫr(%) ǫa (liters) ǫr(%)

Irest 0.10 (0.11) 11.40 (14.46) 0.10 (0.11) 11.73 (14.90) 0.11 (0.11) 11.89 (14.43)

I0-60 0.21 (0.22) 13.08 (9.55) 0.84 (0.31) 46.10 (13.41) 0.30 (0.22) 20.03 (8.28)

I60-80 0.21 (0.17) 8.67 (6.83) 0.25 (0.20) 11.58 (7.83) 0.16 (0.15) 5.62 (5.91)

I80-100 0.23 (0.17) 7.00 (5.93) 0.20 (0.18) 8.09 (5.41) 0.21 (0.19) 7.66 (6.74)

Irecov 0.44 (0.25) 17.67 (15.49) 0.38 (0.25) 16.67 (11.54) 0.46 (0.30) 18.78 (12.09)
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Figure 2. Automatic segmentation of the maximal effort test based on HR is shown in a). Irest is set from the beginning

of the recording until 30-seconds prior to exercise onset (black circle), and Irecov goes from the time when maximum HR is

reached to the end of the recording. I0-60, I60-80 and I80-100 are automatically defined according to HR, considering the mean

HR at Irest as 0% and the maximum reached HR as 100%. In b), volume estimation corresponding to the same subject than

in a) is shown. V T is represented with blue circles, whereas V̂ T is represented with red circles. Despite all the points in

each stage are depicted, only the last 70% of them were considered for the fitting error results displayed in Table 1.

2.4. Performance Measurement

In order to quantify the accuracy of the estimation, ab-

solute (ǫa) and relative (ǫr) error were calculated for each

stage, lead and subject. Inter-subject median of medians

and median of interquartile ranges (IQRs) of ǫa and ǫr
were computed for each stage and lead.

3. Results

Median estimation error obtained for each stage is dis-

played in Table 1. 7 subjects had to be discarded due to

bad signal quality or missing ECG or TV signals. Al-

though similar, different results were achieved depending

on the considered lead, so results for leads V4 and aVF

were considered here. Lowest estimation relative error was

achieved for I80-100 in V4 and aVF, and in I60-80 in PCA, be-

ing the latter as low as 5.62%. Relative errors lower than

9 and 12% were achieved in I60-80 and Irest in all the cases

(except for aVF, with a relative error of 11.58% in I60-80).

In I0-60, error was again kept below 14% when considering

V4, whereas it increased for the other options (especially

for aVF, reaching a median relative error of 46.10%). Fi-

nally, highest errors for V4 and PCA were found in Irecov

(although still lower than 19%). In aVF, a median relative

error of 16.67% was achieved for the latter stage.

4. Discussion

In this work, a simple approach for estimating TV from

ECG signals under rest and non-stationary conditions has

been proposed. The wide variations in TV (less than 1

liter/breath during relaxed breathing and higher than 2.5 or

3 liters/breath at maximal HR) made it necessary to subdi-

vide the test in different intervals, and automatic segmen-

tation based on exercise onset and HR was performed. The

use of the percentage of HR as an indicator for segmenting

the test was due to the different behavior of TV variations

according to HR (as displayed in Fig. 2).

As displayed in Table 1, different estimation errors were

obtained for the different stages depending on the con-

sidered lead. E.g., V4 was the best performing lead in
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Irest, I0-60, and I80-100, whereas aVF outperformed V4 in Irecov.

These inter-lead differences could be produced by changes

in the ECG modulation across the stages. In this way, re-

duced errors in V4 during the exercise stages might reflect

that this lead is better capturing the effect that respiration

exerts on the ECG, whilst in aVF the effect of respiration

could be obscured by an increased effect of movement (due

to electrode position). However, aVF led to the best results

in Irecov, thus turning in a more adequate option in those

cases (this improvement could be in fact caused by a reduc-

tion in the effect of movement). Nevertheless, the possibil-

ity that thorax expansion have a different effect depending

on the relative position of the heart and the measurement

leads remains an interesting possibility. If that was the

case, different estimation error achieved among subjects

could be related, apart from individual performance, phys-

ical condition or over-training, with differences in the leads

position. Also the possibility of over-fitting in some cases

must be considered.

Given the distinct behavior of the estimation in func-

tion of the considered lead, we proposed a combination of

all the available leads through a PCA analysis. However,

merging the information provided for all the leads did not

resulted in any improvement with respect to the single-lead

approach except in the case of I60-80, as displayed in Table 1.

A previous step to this work was proposed in [9], al-

though this study presented some limitations. First, me-

chanical controlled ventilation is a very invasive proce-

dure. Second, TV was subjected to controlled variations

and kept constant during 90 seconds, thus creating a highly

stationary scenario. Here, we have extended this concept

to a very non-stationary situation, such as a maximum ef-

fort treadmill test, where TV is constantly varying. Lowest

relative errors obtained in [9] were comprised between 7
and 10%. With the proposed method, we achieved relative

errors around 7% in the best-performing lead and stage.

Although low median error was achieved, we evaluated

only one possible scenario per subject, so further work will

be necessary in order to develop a subject-oriented model

that allows us to estimate TV directly from ECG. This

model would be really useful not only for non-invasive

TV monitoring but also in the screening and monitoring of

some respiration-related disorders, such as periodic breath-

ing or sleep apnea.

5. Conclusion

A simple method to estimate TV from ECG has been

proposed. This method obtained promising results both

under rest and non-stationary conditions. The wide range

of applications for monitoring and screening of noninva-

sive TV estimation encourages future work in this field.
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