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Abstract

The mechanisms underlying atrial fibrillation (AF) are
still under debate, making treatments for this arrhythmia
remain suboptimal, with most treatments applied in a stan-
dard fashion with no patient personalization. Recent tech-
nological advances in electroanatomical mapping (EAM)
using multi-electrode catheter allow the physicians to be-
tter characterize the substrate, thanks to a better spatial
resolution and higher density of acquisition points. Taking
advantage of this technology, we describe a workflow to
build personalized electrophysiological atrial models for
AF patients. We seek to better predict the outcome of a
treatment and study the AF problem in a more specific
scenario. We generated physiological 3D models from
the EAM data using hexahedral meshing of element size
300µm, and added fiber orientation based on a generic
model. We used the local activation time (LAT) maps per-
formed in sinus rhythm (SR) to estimate the conduction ve-
locity (CV) of the regions in the atrium with a new method
that combines the LATs of neighboring tissue as the ave-
rage CV of triplets of points. We also characterized the
cellular model by Maleckar et al. in terms of longitudi-
nal conductivity and CV to personalize the atrial models.
We were able to simulate SR and AF scenarios on the per-
sonalized models, and we generated a database of atrial
models for future analysis.

1. Introduction

Atrial fibrillation (AF) is the most common cardiac
arrhythmia in the clinical practice. However the mecha-
nisms initiating and maintaining AF are still under debate,
preventing electrophysiologists from finding an optimal
treatment to terminate this arrhythmia. Most treatments are
based on routine protocols applied without taking into ac-
count differences in the substrate (scars, fibrotic areas), or
signal related characteristics (voltage, dominant frequency,
reentrant mechanisms, rotors) of the patients.

Under these circumstances in silico patient specific
models have proven to be useful, combining both elec-
trical and anatomical features with mathematical models.
The simulation approach accounts for tissue heterogeneity,
as well as different cellular models and anatomies, which
allow in silico simulations to replicate arrhythmia scena-
rios. This offers physicians the opportunity to study the
effects of drugs or ablation lesions, predicting the therapy
outcome in a controlled environment.

For this reason the data directly acquired from the pa-
tients plays an important role in the personalization of
these models. Many data sources are available, i.e., surface
electrocardiograms, intracardiac electrograms, MRI scans,
and also electroanatomical maps. The later offers both
geometrical reconstruction of the heart chambers and subs-
trate characterization by using multi-electrode catheters to
guide physicians during ablation procedures. However, all
this information usually remains unused after the clinical
procedure is done. Our objective is to reuse the EAM
information to spatially characterize the simulated tissue.
With an accurate 3D reconstruction of the heart cham-
ber and its electrical behavior, we can adjust cellular level
models and include fiber orientation, providing heteroge-
neous anatomical models that mimic the electrophysio-
logical characteristics of the patient.

2. Methods

2.1. Electroanatomical Data

We collected the data for the study from 28 persis-
tent AF patients who underwent first ablation protocol
at the Hospital General Universitario Gregorio Marañón.
All patients gave informed consent and the study was a-
pproved by the Institutional Review Board (IRB) of the
center. The maps were generated using a multi-electrode
catheter PentaRay and CARTO EAM system (Biosense
Webster). We exported and post-processed the maps to ob-
tain 3D geometries of 600µm thickness and regular hexa-
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Figure 1. Model personalization workflow. From left to right: electroanatomical map, hexahedral geometry, region
segmentation, fiber orientation, and simulation with personalized CV.

hedral elements of 300µm. The anatomy was manually
segmented by electrophysiologists, pulmonary veins and
mitral ring removed, and atrial appendage was preserved
(see workflow in Figure 1). The electroanatomical voltage
maps of the different left atria were generated in both AF
and SR, with additional LAT map performed on the latter.

2.2. CV Estimation

From the LAT propagation maps, we can select two
points A and B with known LATs, namely LATA and
LATB , and compute the CV as

CV =
dist(A,B)

|LATB − LATA|
, (1)

where dist(A,B) is the Euclidian distance between two
points. However, this approach does not take into account
the direction of the wavefront and the results could be
misleading, obtaining CV values outside the physiological
range. As a requirement, at least three non-collinear points
are needed to calculate the CV, i.e., a triplet of points (see
Figure 2). Methods based on this triangulation approach
have been already proposed in the literature [1–4], how-
ever most of them place the triplet with prior knowledge of
the direction of activation, or the layout of the electrodes
in the catheter.

Our method estimates both the CV and the propagation
direction without prior direction knowledge. We calculate
the CV at a point P given the LATs of the triplets compri-
sing the neighboring points that belong to the circumfe-
rence of radius r and center P (see Figures 3 and 4). We
use a circumference to avoid CV calculation of close points
that may produce abnormal CV values beyond the physio-
logical range. On the other hand, having too distant points
may not accurately represent the local tissue CV at point
P , so we set r = 1 cm given the size of the atrium. We
select beforehand the number of points from the circumfe-
rence that we use, namelyN . The circumference is tangent
to the atrial wall at point P , with its N points equally dis-
tributed. Since atrial tissue is highly irregular, this prevents
an optimal matching with the proposed circumference, the
circumference points ni, where i ∈ [1, N ], need to be co-
rrected so that they belong to the atrial geometry.

Figure 2. Calculation of the CV vector ~V using the scalar
projection of the velocity vectors ~VAB and ~VAC . Points A,
B, and C constitute a triplet, with known spatial coordi-
nates and LATs.

With the circumference points we build a total of T =
N triplets, forcing the central point P to be in every
triplet. Figures 3 and 4 provide an illustrative example.
Triplet points should satisfy a minimum distance constraint
dist(ni, ni+1) ≥ dmin, where dmin = 1mm is given by
the spatial resolution of the EAM system. Additionally
we set the maximum allowed angle for the triplet vertices,
namely θmax.

Once the triplets have been defined, we estimate a CV
vector Vi for each triplet, where i ∈ [1, T ] refers to the
i-th triplet index. For a given triplet of points A, B, and
C defining the triangle ˆABC (Figure 2), we estimate the
velocity vector ~Vi = [Vx, Vy, Vz] as the scalar projection
of the velocity vectors ~VAB = [VABx, VABy, VABz], and
~VAC = [VACx, VACy, VACz] [5]. Solving the equation

||~V || = proj~V
~VAB = proj~V

~VAC , (2)

and using trigonometrical identities, we can derive the
following system of equations to calculate the value of ~V ,

VABx · Vx + VABy · Vy + VABz · Vz = gAB ,

VACx · Vx + VACy · Vy + VACz · Vz = gAC ,

α · Vx + β · Vy + γ · Vz = 0,

(3)
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Figure 3. Triplet configuration to calculate the CV at re-
ference point P , where r the circumference radius, ni and
ni+1 consecutive points in the circumference, a the arc-
length between points ni and ni+1, d the length of the
chord connecting ni and ni+1, and θ the angle defined by
the triangle [ni, P, ni+1].

where

gAB = ||~V || · ||~VAB || · cos(θAB), (4)

gAC = ||~V || · ||~VAC || · cos(θAC), (5)
α = [VAByVACz − VABzVACy], (6)
β = [VABzVACx − VABxVACz], (7)
γ = [VABxVACy − VAByVACx]. (8)

Then, we average the contribution of all the CV vectors ~Vi,
obtaining an estimation of the CV as

~V =
1

T

T∑
i=1

~Vi. (9)

The direction of the wavefront is also estimated since the
3 components of the CV vector ~V are obtained. As a re-
mark, pointA is assigned to the point of the triplet with the
earliest LAT. In the event of two simultaneous LATs, A is
assigned to the latest LAT and the resulting CV vector is
multiplied by −1.

2.3. Personalized Model Parameters

The CV depends on fiber orientation, model geometry,
tissue conductivity, and wavefront curvature among other
factors. For the simulations, we use the cellular model
by Maleckar et al. [6]. To characterize the model and
the chosen geometry, we generated a regular hexahedral
grid of size L × W × H = 6 × 3 × 0.06 cm with ele-
ment size 300 µm. We applied a periodic 500 ms stimu-
lation train and measured the CV between 2 points at both
edges of the grid in the propagation direction. We charac-
terized the CV-conductivity function by varying the value
of σL = [10−4, 5·10−4, 10−3, 2·10−3, 3·10−3, 4·10−3, 5·

Figure 4. Triplet combinations for N = 8 circumference
points, and maximum angle at the P vertex θmax = 90o.

Figure 5. CV characterization for hexahedral elements
of size 300µm using Maleckar et al. cellular model [6].
Given longitudinal conductivity values, σL, and CV com-
puted from simulations we fit a second order polynomial.

10−3, 10−2, 2 · 10−2] S
cm·pF (higher values resulted in no

propagation). We fitted the data to a second order poly-
nomial as illustrated in Figure 5.

For the whole left atrium, we spatially calculate the
CV for different atrial regions at 1 cm equally distributed
points, using interpolation to fill the rest of the anatomy.
We include pre-existing fiber orientation using a ruled-
based method to complete the atrial model personalization
[7].

2.4. Simulations

In silico simulations were run using ELVIRA, a finite
element method-based software [8]. The integration time
step was set to 0.01 ms and the acquired action potential
signals in the grid nodes and complete atrial models were
sampled at 1 KHz.
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Figure 6. Absolute error results for different θmax and
T values. Ground truth was calculated in the rectangular
grid simulations and averaged for the different values of
σL used to fit the CV-conductivity function in Figure 5.

3. Results

We analyzed the new CV estimation method to charac-
terize its properties in terms of the number of triplets N
and the maximum allowed angle θmax in the simulated
grid under controlled conditions and in experimental data
directly measured from the EA maps. Performance of the
method is shown in Figure 6. From the results we can
conclude that with this method the obtained CV values are
very similar to the ones in the grid and experimental data.
We see how by increasing the number of triplets the esti-
mation of CV improves, and that the best performance is
achieved for θmax = 30o.

Additionally, we managed to integrate the CV estima-
tion into the geometrical model. We achieved to run simu-
lations replicating SR activation and also AF after over-
stimulation at different points of the atrium, e.g. near the
pulmonary veins and atrial appendage.

4. Discussion and Conclusions

The CV estimation method presents promising results to
estimate both the magnitude of the CV and the direction of
the wavefront in the cardiac tissue. We built a database of
personalized atrial models in a straightforward way. This
database could be used to test clinical treatments, new sig-
nal processing techniques, and validation methods as in
[9, 10]. Further validation is to be done, including additio-
nal tissue properties, e.g. voltage information, or fibrosis
from MRI scans. The generated atrial model database is
expected to be increased with forthcoming data.
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