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Abstract

Automatic QRS detection remains a challenging task in
certain types of recordings, limiting the capacity of au-
tomating subsequent tasks that heavily depends on proper
heartbeat location. Performance estimation of these algo-
rithms is calculated almost exclusively in a few databases,
ignoring the generalization to other more complex situa-
tions. In this work, we evaluated six QRS detection al-
gorithms in 13 ECG databases. Four out of the six algo-
rithms, and 11 out of 13 databases are publicly available.
The databases were categorized into 5 groups: normal si-
nus rhythm, arrhythmia, ST and T morphology changes,
stress-test and long-term. The best evaluated algorithm
was gqrs, achieving S of 95 (85-98) (median and percentile
range 5-95) and P+of 93 (90-96) across all databases.
When analyzing the performance by groups of databases,
this algorithm obtained the first rank in 4 out of 5 groups.
The algorithm developed in our group achieved a perfor-
mance close to gqrs, and obtained the best performance in
the stress group. This evaluation setup includes a broad
variety of recordings, being useful to estimate the actual
performance of QRS detection algorithms, not only in a
global sense but also specific to specific type of recordings.

1. Introduction

The analysis of electrocardiographic (ECG) signals pro-
vides a noninvasive and inexpensive technique to analyze
the heart function for different cardiac conditions. One of
the most frequent analysis performed in first place is the
detection of heartbeats or QRS complexes, and the sub-
sequent construction of the RR interval sequence. In the
last decades big efforts were made to perform this analysis
automatically, and as a result, many algorithms for QRS
complex detection were published [?, ?, ?, 1, 2] and some
of them are open-source or freely available [?, 2].

The performance achieved by these algorithms reported
average sensitivities (S) and positive predictive values
(P+) well above the 90%, when evaluated in several pub-
lic databases [?]. As was also discussed in [?], most

of the algorithms presented were trained and evaluated
in the same database, typically the MIT-BIH Arrhythmia
database (mitdb) [2], this fact is well-known to optimisti-
cally bias the performance estimation. Despite the good
performance reported in the works referenced in [?], low
SNR recordings, e.g. stress-tests, long-term or arrhythmia,
remain challenging scenarios for automatic algorithms. As
a result, QRS locations calculated should be manually or
automatically reviewed before subsequent processing, re-
sulting in a trade-off between automaticity and perfor-
mance.

The objective of this work is to develop an evaluation
setup for automatic QRS detector algorithms, comprising
several types of databases, in order to perform a broad and
more realistic performance estimation.

2. Material and methods

In this work we used 13 ECG databases grouped in 5
categories: normal sinus rhythm (NSR), arrhythmia (AR),
ST and T morphology changes (STT) stress (STR) and
long-term (LT). Of all the databases used, 11 are publicly
available online at [2] or [3] websites. With respect to the
non-free databases, ahadb is distributed by ECRI institute
[4], and biosigna is distributed by Biosigna GmbH [5]. All
the databases has expert-reviewed QRS complexes loca-
tions, serving as gold-standard for the performance eval-
uation. Some details of the databases are summarized in
Table 1.

In this work we evaluated a set of publicly-available al-
gorithms representative of the state of the art, and the al-
gorithms that were developed, or used in the past by our
group. The algorithms evaluated in this work are summa-
rized in Table 2.

The evaluation of each algorithm is performed lead-by-
lead, and in multilead mode if the algorithm allows it. The
configuration of each algorithm was with its default values,
in order to recreate the actual performance that any user
could achieve out-of-the-box. The performance is evalu-
ated for each lead l, by means of the sensitivity

Sl =
TP

TP + FN
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Table 1. Databases characteristics
group name fs (Hz) length # rec leads ref
NSR nsrdb 128 1 day 18 2 [2]

AR

ahadb 250 30 m 155 2 [4]
biosigna 500 1 h 50 12 [5]

mitdb 360 30 m 48 2 [2]
svdb 128 30 m 78 2 [2]

incartdb 257 30 m 75 12 [2]

STT edb 250 2 h 90 2 [2]
ltstdb 250 21-24 h 86 2-3 [2]

STR thew15 1000 15 m 909 12 [3]
stdb 360 10-40 m 28 2 [2]

LT

ltdb 128 14-22 h 7 2 [2]
nsrdb 128 1 day 18 2 [2]
ltstdb 250 21-24 h 86 2-3 [2]
ltafdb 128 1 day 84 2 [2]

Table 2. Algorithms description
name evaluated in multilead ref

wavedet mitdb, edb, CSE, qtdb yes [1]
gqrs N/A no [2]
sqrs N/A no [2]
wqrs N/A no [2]

pantom mitdb no [?, ?]
aristotle mitdb yes [?]

and positive predictive value

P+
l =

TP

TP + FP
.

Then for each database in Table 1, the median perfor-
mances were calculated pooling together all leads perfor-
mances. Finally the median performances for the 5 groups
of databases were calculated. This same procedure is re-
peated, but considering only the best performing lead for
each recording. The best performing lead was selected
based on the metric ql = 2Sl + P+

l , given that we pre-
ferred more sensitive detectors. The criterion to rank the
algorithms consisted in estimating the lower performance
achieved. This was done by calculating the ql criterion, but
using the 5th percentile across all the database, or groups
of databases.

3. Results

The results obtained for all the evaluations are summa-
rized in the following tables. Table 3 shows the three
best performing algorithms for each database, while Ta-
ble 4 presents the performance achieved for each group of
databases. The gqrs algorithm was the best performing in
NSR, AR and STT groups, while wavedet was in STR and
LT groups.

4. Discussion and conclusions

In this work we presented an evaluation setup for QRS
detection algorithms. This setup includes 13 databases,
11 of them publicly available online [2, 3], including
ECG recordings from several types, such as normal sinus
rhythm, arrhythmia, ST-T wave changes, stress test and
long-term. This setup was used for the evaluation of 6 QRS
detection algorithms, 4 of them publicly available [?, 2].

The results suggest that the best overall algorithm was
achieved by gqrs [2], which obtained a S of 95 (85-98)
(median and percentile range 5-95) and P+of 93 (90-96)
across all databases. When analyzing the performance by
groups of databases, this algorithm obtained the first rank
in NSR, AR and STT groups, as can be seen in Table 4.
The wavedet algorithm achieved a slightly lower perfor-
mance in those groups, but outperformed gqrs in STR and
LT groups. These results suggest that although gqrs is
the best overall detector, wavedet is more convenient for
long term or stress-test recordings. The fact that gqrs and
wavedet were among the best three algorithms for all the
evaluated databases, suggest that these algorithms are the
best performing in this evaluation set. The gqrs algorithm
has the additional advantage of being faster than wavedet,
however wavedet also provides the wave delineation of the
ECG. The third performing detector was aristotle, which
performed worst in biosigna, incartdb and edb, but was top
3 in the rest of databases, as is shown in Table 3. Other
interesting result is the improvement achieved by selecting
the best performing lead, as is shown in the right columns
of Tables 3 and 4. If this could be achieved automatically,
the performance could be improved to a S of 95 (85-98)
and P+of 93 (90-96) across all databases. The fact that
there is not a clear winner for all groups of databases, and
the improvement obtained by selecting the proper lead,
motivated the development of quality detection metrics for
selecting the proper algorithm and lead for any type of
recording. An algorithm dealing with this problem was
presented in this same conference by the same authors.

The evaluation setup presented in this work includes
a broad variety of signals that QRS detection algorithms
must deal with in real-world applications. This fact make it
useful to better estimate the actual performance, and there-
fore track performance improvements, not only in a global
sense, e.g. across all databases, but also specific to certain
classes of recordings.
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Table 3. Best performing algorithms per database. Results expresed as median and percentile range 5-95

group name detector All leads grouped together Best lead only
S P+ S P+

NSR nsrdb
gqrs 86 72- 97 88 82-100 96 80- 97 92 82-100

aristotle 88 77- 98 86 77- 96 96 82- 98 87 78- 99
wavedet 86 73- 98 85 78- 93 97 83- 98 87 78- 98

AR

ahadb
pantom 100 92-100 64 36- 92 100 98-100 68 40- 92
wavedet 100 63-100 64 12- 84 100 99-100 68 44- 93

gqrs 100 71-100 64 20- 80 100 98-100 64 40- 86

biosigna
sqrs 96 0- 97 95 36-100 97 92- 99 99 75-100

wavedet 94 21- 98 81 33-100 97 74- 99 98 60-100
wqrs 71 2- 97 82 32-100 97 85- 97 99 44-100

mitdb
sqrs 97 94-100 100 78-100 97 96-100 100 84-100

wavedet 95 26- 99 100 32-100 97 93-100 100 88-100
pantom 96 30- 99 100 35-100 97 87-100 100 87-100

svdb
gqrs 100 99-100 100 98-100 100 99-100 100 98-100
wqrs 100 98-100 100 89-100 100 98-100 100 89-100

wavedet 100 99-100 99 70-100 100 100-100 100 88-100

incartdb
gqrs 92 57- 94 100 85-100 94 92- 94 100 99-100
wqrs 92 57- 94 100 86-100 94 93- 96 100 98-100

aristotle 93 59- 94 99 80-100 94 92- 95 100 98-100

STT

edb
sqrs 99 93-100 100 91-100 99 98-100 100 97-100

pantom 99 79-100 100 90-100 99 98-100 100 96-100
aristotle 99 77-100 100 83-100 99 97-100 100 85-100

ltstdb
gqrs 96 81- 97 100 92-100 96 89- 97 100 93-100

aristotle 96 80- 98 99 87-100 96 85- 98 99 88-100
pantom 96 78- 97 100 90-100 96 85- 97 100 89-100

STR

thew15
wavedet 100 90-100 97 80-100 100 99-100 99 91-100

gqrs 99 97-100 48 40- 59 100 99-100 49 41- 61
wqrs 94 54-100 48 38- 61 99 95-100 46 38- 54

stdb
gqrs 97 87-100 99 80-100 97 87-100 99 80-100

wavedet 97 29-100 100 37-100 97 88-100 100 89-100
sqrs 96 42-100 99 45-100 96 42-100 99 45-100

LT

ltdb
pantom 87 39- 95 94 40- 99 87 39- 95 94 40- 99

gqrs 86 38- 97 95 40- 99 86 38- 97 95 40- 99
wavedet 85 33- 95 95 40- 99 87 34- 95 95 40- 99

nsrdb
gqrs 86 72- 97 88 82-100 96 80- 97 92 82-100

aristotle 88 77- 98 86 77- 96 96 82- 98 87 78- 99
wavedet 86 73- 98 85 78- 93 97 83- 98 87 78- 98

ltstdb
gqrs 96 81- 97 100 92-100 96 89- 97 100 93-100

aristotle 96 80- 98 99 87-100 96 85- 98 99 88-100
pantom 96 78- 97 100 90-100 96 85- 97 100 89-100

ltafdb
gqrs 75 33- 96 89 72-100 75 33- 96 89 72-100

pantom 74 44- 94 89 62- 99 74 44- 94 89 62- 99
wavedet 68 43- 96 85 59- 96 73 48- 96 88 71- 96

ISCIII.
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Table 4. Ranking of algorithms per group of databases. Results expresed as median and percentile range 5-95

group detector All leads grouped together Best lead only
S P+ S P+

NSR

gqrs 97 58- 99 99 82-100 99 51- 99 99 83-100
wavedet 99 78-100 94 63-100 99 85-100 99 82-100
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wavedet 94 32-100 96 60-100 100 93-100 96 60-100
pantom 93 29-100 99 60-100 98 64-100 98 56-100
aristotle 93 32-100 98 60-100 97 90-100 96 56-100
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wqrs 94 54-100 48 38- 61 99 94-100 46 38- 57

LT

gqrs 93 58- 97 97 79-100 94 54- 97 96 77-100
wavedet 90 51- 97 93 71-100 93 56- 98 93 74-100
pantom 89 56- 97 96 75-100 88 52- 97 95 73-100
aristotle 91 52- 97 95 75-100 90 48- 98 94 73-100

sqrs 87 51- 97 94 71-100 84 48- 97 91 69-100
wqrs 85 54- 97 95 75-100 85 46- 97 93 71-100
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