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Abstract

The indirect extraction of respiratory frequency during
exercise testing is very interesting and challenging. In
this work we propose a method to estimate respiratory fre-
quency during exercise testing from heart rate variability
(HRV) analysis. Empirical mode decomposition is first ap-
plied to HRV signal to obtain the intrinsic mode functions
(IMF). The combination of different IMF is studied and
a criterion is proposed to select the one which best rep-
resents respiratory information. Finally, time-frequency
analysis is applied to the combination of IMFs and respi-
ratory frequency is selected as the largest peak of the spec-
trum within a restricted frequency band and given that the
spectrum is sufficiently peaked.

The proposed methodology is applied to a database con-
sisting of the instantaneous RR interval series of 23 healthy
and sportive volunteers recorded during treadmill exercise
testing. Estimated respiratory frequency shows a relative
error close to 3% with respect to the respiratory frequency
simultaneously recorded by a gas analyzer system.

1. Introduction

Indirect extraction of respiratory information from other
physiological signals is particularly interesting in situa-
tions where respiration recording is unavailable or cumber-
some, by instance, during exercise testing. Different meth-
ods have been presented to derive respiratory information
from biosignals including heart rate (HR) extracted from
from the electrocardiogram (ECG), blood pressure, and
pulse photoplethysmography [1, 2]. HRV Spectral anal-
ysis at rest reveals, at least, two main components: one
in the Low Frequency (LF) band (f∈ [0.04, 0.15] Hz) that
is associated with sympathetic and parasympathetic activ-
ity, and another regarding High Frequency (HF) band (f∈

[0.15, 0.40] Hz) of parasympathetic origin that is mainly
due to respiratory sinus arrhythmia and is synchronous
with respiration [3].

However, estimation of the respiratory frequency
grounded on HRV analysis faces several restrictions during
exercise testing. Parasympathetic activity on the heart is
dramatically reduced during exercise. However, a mechan-
ical effect has been observed when the exercise intensity is
high, which modulates HRV at respiratory frequency [4].

The fact that respiratory frequency is not restricted to
the classical HF band during exercise testing makes nec-
essary to redefine the HF band [5]. Besides, it has been
reported the appearance of a component in HRV during
exercise testing centered at pedaling frequency or running
stride frequency, when exercise is cycling or running, re-
spectively [6] which can mislead estimation of respiratory
frequency from HRV. Moreover, the respiratory frequency
during exercise is in itself a highly dynamic quantity and
changes with effort and work load [6].

To overcome this issue, several approaches to non-
stationary analysis of HRV have been proposed in the
literature including time-frequency analysis, time-varying
autoregressive models, and empirical mode decomposi-
tion [7].

This paper proposes a methodology for continuously as-
sessing respiratory frequency from HRV during exercise
testing. Empirical mode decomposition (EMD) is carried
out as preprocessing stage of HRV to enhance its represen-
tation. Since the respiratory frequency moves through time
over a wide range of frequencies, selection of combina-
tions of pairwise of intrinsic mode functions (IMF) is also
proposed. The methodology is applied to a database con-
sisting of the RR interval series of 23 healthy and sportive
volunteers performing a treadmill exercise test.
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2. Methods

2.1. HRV enhancement using EMD

EMD is an adaptive method decomposing a time series
into a set of IMF under the following conditions: i) the
amount of zero crossing and local extremes is the same or
differs at most by one; and ii) at any point the mean value
between the superior envelope defined by the local maxima
and the inferior envelope defined by the local minima is
zero. A time series can be represented by EMD as follows:

xHRV(t) =
K∑
k=1

ck(t) + rK(t), (1)

where {ck(t)} is the set of IMF, rK(t) is the remainder,
and K is the number of the IMF extracted from original
data. The first IMF is related to the highest frequency and
the last one to the lowest, i.e. EMD presents a filter bank
structure, as described in [8]. More detailed sifting process
description of the IMF extraction can be found in [9].

After the EMD decomposition, a set of main IMF is de-
fined as C = {cj(t) : j = 1, . . . ,K

′}, where each cj has
most of its frequency information above a fixed threshold
∆ε and K

′ ≤ K. Due to the respiratory frequency moves
through time over a wide bandwidth, its information is not
contained just by one cj(t). Therefore, another neighbor-
ing IMF, cj+1(t), should be included, i.e., cj,j+1(t) =
cj(t)+cj+1(t). So, the following set of pairwise combina-
tions is considered: C

′
= {cj,j+1(t) : j = 1, . . . ,K

′−1}.
Yet, only one of these combined components is to be se-
lected as the one holding the respiratory frequency infor-
mation. To this end, cross power spectral density (CPSD)
is used, noted Pxy(ω), as the similarity measure between
the original signal xHRV(t) and each cj,j+1(t), but within
the frequency band of interest [ω1, ω2].

The selection criterion is as follows:
i) The CPSD PxHRV,cj,j+1(ω) is computed between xHRV(t)

and cj,j+1(t), for each cj,j+1(t) ∈ C
′
.

ii) For all the PxHRV,cj,j+1(ω), the power over the band of
interest is estimated as:

κxHRV,cj,j+1 =
∫ ω2

ω1

PxHRV,cj,j+1(ω)dω (2)

iii) Assuming that |κxHRV,cj,j+1 | < ∞, the finite set Cκ =
{κxHRV,cj,j+1 |cj,j+1 ∈ C

′} has a maximum, noted as
κxHRV,cm,m+1 . So, the IMF combination cm,m+1(t) is se-
lected initially as the one holding the respiratory fre-
quency.

iv) However, due to the dyadic filter bank structure, cj(t)
is expected to have a larger bandwidth than cj+1,
therefore, aiming to remove most of non related infor-
mation with the respiratory frequency, if |κxHRV,cm,m+1−

κxHRV,cn,n+1 | < ρ, and n > m, then cn,n+1(t) is se-
lected for the extraction task, where κxHRV,cn,n+1 is the
maximum of Cκ − {κxHRV,cm,m+1}.

Thus, the pair cm,m+1(t) or cn,n+1(t) having the CPSD
with highest power within the band of interest is selected,
for the further extraction task.

2.2. Respiratory frequency estimation

The respiratory frequency f̂(k) estimation is carried out
stepwise [10]: power spectrum estimation of xM (t) where
xM (t) could be the HRV signal or a combination of IMFs,
as it will be later explained, and computation of peak lo-
cation. In the former procedure, at k-th running time in-
terval of Ts second duration, spectrum Sk(ω) results from
averaging the power spectra obtained from sub-intervals
of length Tm with Tm/2 overlapping. Each spectrum is
estimated every ts. Further, within the frequency inter-
val [ω1, ω2], an averaged version Sk(ω) over time is com-
puted by an introduced “peak-conditioned” averaging that
is performed only on those Sk(f) regarded as sufficiently
peaked, where “peaked” means a certain percentage of the
spectral power in an interval centered around the largest
peak. In the latter procedure, the respiratory frequency
f̂(k) is estimated as the largest peak of Sk(ω), but narrow-
ing down the search interval to only include frequencies
within the 2δ interval centered at a reference frequency
fω(k) : [fw(k) − δ, fw(k) + δ] ∩ [ω1, ω2]. Lastly, the
needed reference frequency is obtained as an exponential
average of previous estimates, as follows:

fω(k + 1) = βfω(k) + (1− β)f̂(k), (3)

where β denotes the forgetting factor.
For evaluation purpose of the considered respiratory fre-

quency estimation, the relative error is used and defined as:

ε =
∣∣∣f̂(k)− fR(k)

∣∣∣2/|fR(k)|2, (4)

where fR(k) is the actual respiratory frequency measured
on the exercise test using an open-circuit sampling system
(Oxycon Pro, Jaeger-Viasys Healthcare).

3. Experimental setup

The used treadmill exercise database holds 23 males
physically active [6]. During acquisition, all R–R intervals
were recorded beat-to-beat using the HR monitor (RS800,
Polar Electro Oy), with the 1000 Hz sampling frequency
of the input ECG signal, providing 1 ms accuracy of R–R
interval series. The HR monitor also recorded every sec-
ond HR and running stride frequency. Synchronization be-
tween the open-circuit sampling system and the HR moni-
tor measurements was assessed using the HR recorded by
both devices.
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Extraction of the HRV signal from the R–R sequence
during exercise stress testing, is carried out according to
the integral pulse frequency modulation model with time-
varying threshold explained in [11]. The HRV signal
xHRV(t) is sampled at 4 Hz for the assumed respiratory fre-
quency below 1 Hz. From the whole exercise test record-
ing. Only the exercise phase, lasting 9.40± 3.64 minutes,
is considered in this study. It must be quoted that record-
ings numbered as 11, 18, and 25 were removed.

3.1. Results and discussion

Since the stop criterion of the sifting process is the stan-
dard deviation, initially, each HRV recording is statisti-
cally normalized to be further decomposed by the EMD
that yields the selected IMF set C = {c1(t), c2(t), c3(t)},
given a threshold ∆ε = 0.2 Hz, according to the proposed
approach explained in § 2.1. Afterward, the respiratory
frequency is computed following the procedure explained
in § 2.2, for which the needed parameters, Ts, ts, Tm are
fixed as 40, 5 s and 16 s, respectively, where Tm is selected
as a power of 2 for computational reasons, and the fre-
quency band of interest as [ω1, ω2] = [0.3, 0.95] Hz. In
addition, optimal values of parameters δ and β Eq. (3) are
fixed heuristically for each extraction task, as shown in Ta-
ble 1.

The respiratory frequency is extracted according with
five different scenarios, where the difference is in the sig-
nal to which the respiratory frequency estimation algo-
rithm of §2.2 is applied: i) as baseline xHRV(t), ii) c1,2(t),
iii) c2,3(t), iv) selecting IMF from C

′
= {c1,2(t), c2,3(t)}

heuristically, and finally v) selecting IMF combination
from C

′
= {c1,2(t), c2,3(t)} using the criterion as de-

scribed in § 2.1, where the CPSD parameter is fixed as
ρ = 0.045.

Table 1 shows the relative error of each recording for the
five considered scenarios, where the notation {·}◦ stands
for heuristically IMF selection, {·}3 for the criterion in
§ 2.1. The values achieving same performance for both,
selections of IMF combinations are noted in bold letter.
The introduction of HRV Enhancement using EMD allows
achieving better error performance using scenario iv (2.86)
and v (2.93). However, the mere introduction of EMD
combinations is not enough. So, other EMD based sce-
narios without a selecting criterion get lower error perfor-
mance even that the baseline scenario i.

Generally, the CPSD-based selection criterion matches
all the heuristically selected (c1,2(t) or c2,3(t)) except for
the recording # 14, for which the frequency estimated
over c1,2(t) performs an error close to the estimated from
c2,3(t) (5.17% and 5.22% respectively). In this concrete
case, literal iv) of the selection criterion is carried out.

To make clear the influence of the introduced prepro-
cessing, Fig. 1(b) shows the time-frequency representa-

Table 1. Relative error from the estimated respiratory fre-
quency, the mean, standard deviation of all recordings, and
the optimal parameters

Record
Relative error [%]

xHRV c1,2 c2,3 {c1,2, c2,3}◦ {c1,2, c2,3}3

1 1.76 8.83 1.68 1.32 1.32
2 1.34 1.94 2.55 1.62 1.62
3 5.15 8.20 2.75 1.83 1.83
4 0.17 0.16 1.31 0.16 0.16
5 4.73 4.19 8.36 4.19 4.19
6 9.55 10.10 8.02 5.16 5.16
7 9.95 7.65 6.67 4.89 4.89
8 1.20 1.07 2.09 1.09 1.09
9 6.42 6.16 9.33 6.20 6.20
10 2.05 2.05 2.95 4.13 4.13
12 0.95 2.86 6.86 2.91 2.91
13 0.24 0.59 0.96 0.59 0.59
14 5.42 5.17 5.22 5.21 6.71
15 6.58 3.97 16.76 3.96 3.96
16 4.67 0.03 4.05 0.03 0.03
17 5.39 2.74 4.65 3.71 3.71
19 2.22 0.55 6.54 0.52 0.52
20 4.42 3.13 5.77 3.13 3.13
21 4.61 5.15 10.53 5.16 5.16
22 4.33 5.24 4.82 5.44 5.44
23 1.58 1.16 6.39 1.16 1.16
24 2.18 2.21 0.55 0.55 0.55
mean 3.86 3.78 5.40 2.86 2.93
std 2.76 2.97 3.79 2.02 2.13
δ 0.19 0.11 0.18 0.11 0.11
β 0.50 0.40 0.50 0.30 0.30

tion of the baseline scenario i (left side) and the proposed
methodology scenario v (right side), for the recording la-
beled as 24 and 12, respectively.

In the Fig. 1(a), respiratory frequency estimation is bet-
ter when selecting the IMF c2,3(t) combination as the most
powerful, which removes not only muscular noise bellow
0.2Hz, but also an undesired component above 1Hz. How-
ever, EMD decomposition is very sensitive to the presence
of those components having frequency very close the res-
piratory frequency, as shown in as shown in Fig. 1(b). Dur-
ing the last 50 s a strong time-variant frequency compo-
nent that is non-related respiratory affects negatively per-
formance of the estimation.

4. Conclusions

The proposed methodology lies on the hypothesis that
providing preprocessing to accomplish an appropriate
spectral decomposition, it is possible to detect the respira-
tory frequency with improved accuracy. So, the EMD de-
composition is used, but, the respiratory frequency, moves
through time over a wide range of frequencies, therefore
is not contained only in one IMF, then, a methodology to
extract information over combined IMF is proposed. The
methodology selects the appropriate combinations of IMF
improving the respiratory frequency detection in compari-
son to the baseline. As future work, it would be interest-
ing to deal with other kind of power spectrum estimation,
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(a)Recording #24
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(b)Recording #12

Figure 1. Acquired time recordings and their time fre-
quency representations of the baseline scenario i (left)
and after introduction of HRV Enhancement using EMD
(right). The white line shows the reference measurement
and the black line the estimated respiratory frequency.

in order to suitable decomposes the main dynamics of the
signals, allowing enhance the respiratory frequency esti-
mation.
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