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Abstract

A method for respiratory rate estimation from electro-
cardiogram (ECG), based on variations in QRS complexes
slopes, is evaluated over stress testing recordings. Besides
the 12 standard, and the 3 vectorcardiogram (VCG), 2 ad-
ditional leads derived from the VCG are analyzed. A total
of 34 slope series were studied, 2 for each lead: slopes
between the peaks of the Q and R waves, and between the
peaks of the R and S waves. Respiratory rate is estimated
by using a time-frequency based algorithm which can com-
bine information from several derived respiration signals.

Evaluation was performed over a database contain-
ing ECG and respiratory signals simultaneously recorded
from 30 subjects spontaneously breathing during a stress
test. Respiratory rate estimation is performed with infor-
mation of 4 different combinations of QRS slope series.
The best results in respiratory rate estimation error terms
are −1.07± 8.86% (−11.47± 37.97 mHz). These results
suggest that proposed methods based on QRS slopes are
highly suitable for respiratory rate estimation from ECG
signal, specially at very non-stationary and noise scenar-
ios as stress test.

1. Introduction

Respiration is usually recorded by techniques that re-
quire cumbersome devices which may interfere with nat-
ural breathing, and which are inconvenient in certain ap-
plications such as ambulatory monitoring, stress testing,
and sleep studies [1]. Thus, deriving respiratory informa-
tion from non-invasive devices is appropriate in many sit-
uations.

In [2], some algorithms for deriving respiration from
electrocardiogram (ECG) are collected. These algorithms
are based either on beat occurrence time or on beat mor-
phology, as it is well known that respiration influences
them both. The first one, beat occurrence, is affected

by respiration since it modulates the heart rate, making
it higher during inspiration. The second one, beat mor-
phology, is also affected by respiration because it produces
electrode movements with respect to the heart, and varia-
tions in the thorax impedance distribution due to the filling
and emptying of the lungs. Different methods were stud-
ied in [1] and [3], including some based on heart rate, QRS
complexes amplitude and area, and electrical axis rotation
angles, being this last one the method which offered the
best results in respiratory rate estimation (from ECG).

A method based on QRS slopes was recently presented
in [4]. It was evaluated over tilt test recordings, offering re-
sults that outperform those obtained for electrical axis ro-
tation angles. However, the QRS-slopes-based method has
not been studied over noisy environments such as stress
testing, while the high suitability over this environment
was demonstrated in [1] for electrical axis rotation angles.
In this work the performance of the QRS-slopes method to
estimate respiratory frequency [4] is evaluated over ECG
signals recoded during stress testing, which are character-
ized for being extremely non-stationary and noisy.

2. Methods

2.1. Data and signal preprocessing

The database used for evaluation contains registers of
12-lead ECG and airflow-based respiratory signal simul-
taneously recorded from 14 volunteers (10 males) aged
28±4 years and 15 patients (16 males) aged 58±14 years,
referred to the Department of Clinical Physiology at the
University Hospital of Lund, Sweden, for stress testing.

The standard 12-lead ECG was digitalized using a
samplig rate of 1000 Hz, and the respiratory signal sr(n)
was recorded by an airflow-thermistor-based technique us-
ing a sampling rate of 50 Hz. Vectorcardiogram (VCG)
was synthesized using the inverse Dower matrix obtaining
its three orthogonal leads lX(n), lY(n) and lZ(n).
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QRS complexes were detected, and normal sinus beat
locations nNl,i

were determined by applying the technique
presented in [5]. Baseline wander was attenuated by cubic-
spline interpolation, and subsequently, a wavelet-based
technique [6] was applied for wave delineation, obtaining
among other points, nQl,i

, nRl,i
, nSl,i

, and nONl,i
, which de-

note Q, R and S wave peaks (or QRS offset when no S
wave is present), and QRS onset, of the ith QRS complex
in lead l, respectively. An example of these points is shown
in Fig. 1.

2.2. Non-standard leads

The QRS slopes were studied in the 12 standard leads,
the 3 VCG leads, and 2 non-standard leads: the loop de-
rived lead (LDL) and the N loops derived lead (NLDL).

The LDL, denoted lLDL(n) in this paper, was presented
in [7] and it is the projection of VCG onto dominant di-
rection of the ith QRS loop. This dominant direction is
updated beat-to-beat following variations, and these beat-
to-beat variations of the dominant direction are in part due
to respiration [1], so cancelling them may be inconvenient
in this application. For this reason, the NLDL was pro-
posed in [4]. The NLDL, denoted lNLDL(n) in this paper,
is a modification of the LDL which consists of estimating
the dominant direction (in which VCG is projected onto)
only once. This direction is estimated as an average of
the first N dominant directions obtained from the first N
beats. Further details are given in [4].

2.3. QRS slopes measurement algorithm

In order to measure the QRS slopes, the technique pre-
sented in [8] was applied. For each studied lead, two slopes
are measured: maximum slopes between nQl,i

and nRl,i

(IUSl,i
), and between nRl,i

and nSl,i
(IDSl,i

). First, the al-
gorithm searches for the maximum variation points nUl,i

and nDl,i
, by using the first derivative.

Subsequently, a straight line is fitted in the least squares
sense to the ECG signal in two 8 ms-length intervals cen-
tred at nUl,i

and nDl,i
. The slopes of these lines are denoted

IUSl,i
and IDSl,i

, respectively.

2.4. Electrocardiogram derived respiration
signals

For each one of the QRS slopes series, an EDR sig-
nal was generated by assigning to each normal sinus beat
instant nNl,i

an amplitude value proportional to its QRS
slope:

du{US, DS}l
(n) =

∑
i

I{US, DS}l,i
δ
(
n− nNl,i

)
(1)

where the superindex “u” denotes the signal is unevenly
sampled, as the beats occur uneven in time. A median-
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Figure 1. Relevant points in the slope measurement algo-
rithm, over a QRS from lNLDL(n).

absolute-deviation-based outlier rejection rule was applied
as in [1] and then, a 4 Hz evenly sampled version of
each EDR signal was generated by cubic splines interpola-
tion. Finally, a band-pass filter (0.075-1) Hz was applied.
Nomenclature of these signals is the same than their un-
evenly sampled versions, but with no superindex “u”, e.
g., dUSNLDL(n) is the outlier-rejected, 4 Hz evenly sampled,
band-pass filtered version of duUSNLDL

(n).

2.4.1. Respiratory rate estimation algorithm

Respiratory rate was estimated by using a method based
in [3]. It allows estimating the frequency rate from up to
M EDR signals, combining them in order to increase ro-
bustness.

First, the power spectrum Sj,k(f) of the jth EDR signal
is estimated by Welch periodogram in each kth running
interval of 42 second-duration, averaging spectra obtained
from 12 second-subintervals overlapped 6 s. A Sj,k(f)
spectrum is generated every 5 s.

A reference interval ΩR(k) is established around a refer-
ence frequency fR(k − 1):

ΩR(k) = [fR(k − 1)− δ, fR(k − 1) + δ]. (2)
For each Sj,k(f), the location of largest peak f I

p(j, k)
is detected. All peaks at least larger than 85% of f I

p(j, k)
inside ΩR(k) are detected, and f II

p(j, k) is chosen as the
nearest to fR(k − 1).

Then, Ls spectra Sj,k(f) are “peak-conditioned” aver-
aged; only those Sj,k(f) which are sufficiently peaked take
part in the averaging, understanding “peaked” as a certain
percentage (ξ) of the spectral power must be contained
in an interval centered around f II

p(j, k). In mathematical
terms “peak-conditioned” average is defined as:

S̄k(f) =
Ls−1∑
l=0

∑
j

χA
j,k−lχ

B
j,k−lSj,k−l(f) (3)

where χA
j,k−l and χB

j,k−l represent two criteria referred to
decide whether Sj,k−l(f) is peaked enough or not:
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χA
j,k =

{
1, Pj,k ≥ ξ
0, otherwise

(4)

χB
j,k =

{
1, Pj,k ≥ λmaxi6=j {Pi,k}
0, otherwise

(5)

where Pj,k denotes the “peakness”:

Pj,k =

∫ f II
p(j,k)+0.4δ

f II
p(j,k)−0.4δ

Sj,k(f)df∫ fR(k−1)+δ

fR(k−1)−δ
Sj,k(f)df

(6)

In the averaged spectrum S̄k(f) the algorithm also
searches the largest peak (denoted f Ia

p (k)) and f IIa
p (k) as

the nearest to fR(k − 1) inside the interval ΩR(k) which is
at least larger than 75% of f Ia

p (k). At this time the refer-
ence frequency fR(k) can be updated as:

fR(k) = βfR(k − 1) + (1− β) fp(k) (7)

where β denotes the forgetting factor and fp(k) is defined
by:

fp(k) =
{
f IIa
p (k), ∃f IIa

p (k)
f Ia
p (k), otherwise

(8)

Finally, estimated respiration rate f̂(k) is defined as:

f̂(k) = αf̂(k − 1) + (1− α) fp(k) (9)

α =
{
α2, ∃f IIa

p (j, k)
α1, otherwise

(10)

where α2 ≤ α1, providing more memory when f IIa
p (k)

could not be set.
Note that it is possible that no spectrum is peaked

enough at a concrete k. In that case, there is no respira-
tory rate estimation at that time instant.

For comparison purposes, respiratory rate was also esti-
mated with the algorithm used in [4] which was presented
in [3], denoting this estimation f̂∗(k). This algorithm have
two main differences with respect to the one described
above:
1. The reference interval was asymmetric: Ω∗R (k) =
[fR(k − 1)− δ, fR(k − 1) + 2δ].
2. Offering a respiratory rate estimation even when no
spectrum is peaked enough. This estimation consists of
giving the same value than the previous estimate.

Respiratory rate was estimated by the two methods from
each one of the 34 QRS slopes-based EDR signals, from
each one of the 3 electrical axis rotation angle series, and
from 5 different combinations: QRS slopes of the 12 stan-
dard leads (24 EDR signals) (12ECG), QRS slopes of the
3 leads from the VCG (6 EDR signals), QRS slopes of the
LDL (2 EDR signals), QRS slopes of the NLDL (2 EDR
signals), and electrical axis rotation angle series (3 EDR
signals) (Φ).

2.5. Performance measurements

The used performance measurements are based on ab-
solute (eA(k)) and relative (eR(k)) error signals:

eA(k) = f̂d − f̂RES(k) (11)

eR(k) =
eA(k)

f̂RES(k)
× 100 (12)

where f̂d(k) and f̂RES(k) are the respiratory rates estimated
from the evaluated EDR signals or combination of them,
and sr(n), respectively. Note that the same absolute differ-
ences can correspond to very different relative error due to
the f̂RES(k) normalization.

3. Results

In order to evaluate the EDR signals, the mean and stan-
dard deviation (STD) of both eA(k) and eR(k) signals were
computed for each subject and, subsequently, the intersub-
ject mean of both means and STDs.

Results obtained from each one of the combinations de-
scribed in Section 2.4.1 are shown in Table 1. In addition,
the best and worst results obtained estimating respiratory
rate individually from each one of the EDR signals which
take part in each combination, are also shown in Table 1.
The criterion used for choosing best and worst results was
the minimum (best) and maximum (worst) of the sum of
the intersubject mean of means plus intersubject mean of
STDs of eR(k).

4. Discussion and conclusions

This paper analyzes the performance, over an environ-
ment as noisy and non-stationary as stress testing, of a re-
cently developed method [4] for deriving respiration from
ECG signals based on QRS slopes. The respiratory rate es-
timation algorithm used in [4] has been adapted for stress
test signals in this paper. Stress test represents a highly
noisy environment under which taking care of quality of
the signals is particularly relevant. For this reason, the
algorithm has been modified for not giving an estimate
when no spectrum is peaked enough. Furthermore, in [4]
the reference interval ΩR(k) is asymmetric with respect
to fR(k − 1). The reason of this asymmetry is that the
most important contamination observed in power spectra
of EDR signals studied in [3] (where method used in [4]
was presented), was in LF band due to the sympathetic
nervous system activity. In contrast, EDR signals based
on QRS slopes or rotation angle series shows no particular
contamination in LF band, so algorithm has been modified
for using a symmetric ΩR(k).

In relative error terms, results obtained with the method
presented in this work outperform those obtained with the
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Table 1. Inter–subject mean of means and STDs of eA(k) and eR(k) obtained from the two methods.
Proposed method Method used in [4]

eR(k) [%] eA(k) [mHz] Time measuring [%] eR(k) [%] eA(k) [mHz]
Mean STD Mean STD Mean Mean STD Mean STD

12
E

C
G Combination 1.25 12.80 −4.64 40.95 99.78 3.39 13.55 2.37 43.95

Best (dUSaVF (n)) −1.50 10.07 −18.96 36.13 53.22 0.11 15.69 −11.85 59.95
Worst (dUSV6 (n)) 10.22 12.52 21.08 34.24 58.00 18.53 22.57 50.43 67.18

V
C

G Combination −1.07 8.86 −11.47 37.97 90.78 0.11 11.06 −8.73 44.99
Best (dDSZ (n)) 0.90 6, 02 1.36 19.66 63.65 2.32 14.31 −0.50 50.24

Worst (dUSZ (n)) 1.19 6.87 4.05 24.12 67.76 8.84 20.74 22.77 58.65

L
D

L Combination −0.60 10.69 −8.76 37.91 82.43 −0.01 13.58 −10.67 49.06
dUSLDL (n) −0.6 9.72 −22.74 30.27 67.44 −1.74 13.67 −15.91 57.38
dDSLDL (n) −3.06 8.03 −5.27 27.22 68.55 10.43 17.00 23.42 54.58

N
L

D
L Combination −0.94 10.74 −12.28 40.15 82.88 −1.74 10.86 −9.52 42.70

dUSNLDL (n) −1.63 9.67 −15.49 30.36 68.69 −1.88 11.62 −14.72 49.90
dDSNLDL (n) −1.96 9.07 −19.95 27.43 72.23 2.37 14.48 −0.49 48.29

Φ

Combination −0.08 10.59 −6.42 38.40 82.37 4.51 18.53 10.80 52.16
Best (dΦZ (n)) −2.53 9.96 −18.85 35.25 59.48 3.07 19.12 5.12 58.52

Worst (dΦY (n)) 8.58 13.33 17.68 42.99 62.11 6.94 23.72 17.63 71.52

method used in [4], increasing the accuracy at the expense
of not offering an estimate every time. In general, re-
sults obtained for individual EDR signals are not worse
than those obtained for combinations, but combinations
provide respiratory rate estimation during more time. The
percentage of time providing an estimate and the accuracy
of that estimate represent a trade-off situation. VCG com-
bination obtained results that are comparable in accuracy
(−1.07±8.86%) to those obtained by rotation angle series
(−0.08±10.59), but VCG combination provided estimates
during more time (90.78% instead of 82.37%).

Regarding to the method used in [4], results obtained
for the 5 different combinations outperform those obtained
for individual EDR signals, demonstrating the advantage
of combining information. Best results in terms of rela-
tive error were obtained by the VCG combination (0.11±
11.06%). The rest of combinations of QRS-slope-based
EDR signals 12ECG, LDL and NLDL, obtained compa-
rable results to each other. These results also outperform
those obtained for the rotation-angle-series-based methods
(4.51 ± 18.53%), which are the reference for comparison
methods because they obtained the best results among the
ECG-based methods in [3].

Note that the combinations 12ECG and VCG make no
use of the QRS loop, and this represents a computational
advantage over LDL, NLDL, and Φ.

These results suggest that studied methods based on
QRS slopes are highly suitable for respiratory rate esti-
mation from ECG signals even in noisy situations such as
stress testing.
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