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Abstract

Intradialytic hypotension (IDH) is the most common
complication during hemodialysis; early prediction and
prevention of IDH would dramatically improve the living
conditions for patients with end stage renal disease. A re-
cently published study suggests that a decrease in the en-
velope of the photoplethysmograpy (PPG) signal can be
used for predicting acute symptomatic IDH. In the present
study, the PPG based method is extended by introducing a
patient dependent detection threshold, which involves in-
formation on heart rate variability (HRV) and heart rate
turbulence (HRT) from the current dialysis session. This is
motivated since several studies have found significant dif-
ferences in HRV and HRT between hypotension-prone and
hypotension-resistant patients. Recordings from 15 pa-
tients during 38 hemodialysis sessions were used to evalu-
ate the method. Symptomatic IDH was correctly predicted
in 9 out of 14 cases, while 5 out of 24 cases were falsely
predicted. The performance was better for acute symp-
tomatic IDH, 5 out of 5 cases were correctly predicted. The
present method represents a novel approach to combining
information derived from ECG and PPG signals.

1. Introduction

Hemodialysis is since long a well-established treatment
of patients with end stage renal decease (ESDR). The treat-
ment improves dramatically the living conditions for this
group of patients, but it is also associated with episodes
of intradialytic hypotension (IDH) which occur in approx-
imately 25% of all sessions, thereby making IDH the most
common complication during hemodialysis [1].

In many hospitals, the clinical management of IDH re-
mains synonymous to the placement of the patient in Tren-
delenburg position, i.e., supine body position with the feet
held higher than the head [2]. This placement is accom-
panied with substantial slowing of the ultrafiltration rate

so that the reduction in blood volume due to fluid removal
is slowed down. These types of actions are invoked when
the patient already exhibits symptoms, and it is therefore
highly desirable to detect episodes of IDH well in advance
so that appropriate measures can be taken.

A recently presented approach to the prediction of acute
symptomatic IDH is based on the assumption that cap-
illary vasoconstriction precedes acute symptomatic hy-
potension [3]. The magnitude of the normalized PPG en-
velope was used as input data to a test statistic which, when
dropping below a fixed threshold, produced a prediction.

Heart rate variability (HRV) has been extensively stud-
ied for the purpose of discriminating patients prone to hy-
potension from those who are resistant, but has not been
used for real-time prediction [4]. Most studies have con-
cluded that the spectral power can be be used for discrim-
ination, e.g., the ratio between low- and high-frequency
power.

The frequent occurrence of ventricular premature beats
(VPBs) in dialysis patients renders it possible to study
heart rate turbulence (HRT), being a short-term fluctua-
tion in heart rate triggered by a VPB [4]. Blunted or
missing HRT reflects autonomic dysfunction, and auto-
nomic neuropathy has been associated with a marked fall
in blood pressure during hemodialysis [5]. Consequently,
HRT characterization has been suggested as a means to de-
termine a patient’s propensity to IDH [6].

The purpose of the present study is to extend the predic-
tor structure proposed in [3] to include a patient-dependent
threshold which involves information on HRV and HRT.
In doing so, different thresholds can be applied to patients
which are prone and resistant to IDH.

2. Methods

An overview of the predictor is provided by the block di-
agram in Fig. 1. The upper branch transforms the PPG sig-
nal into a test statistic which is performed in a sliding win-
dow; the PPG preprocessing is identical to that described
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Figure 1. Block diagram of the IDH predictor.

in [3]. In the lower branch of the block diagram, HRV and
HRT are computed from the ECG for use in the patient-
dependent threshold.

The predictor, also referred to as the detector, is based on
the hypothesis that a decrease in the normalized PPG enve-
lope x[n] reflects capillary vasoconstriction and decreased
cardiac output which precede IDH (the normalized enve-
lope is produced by the preprocessor) [3]. This hypothesis
is translated to a problem of detecting a change in level of
x[n] in a window that slides in time as new data becomes
available. The level detection problem is first treated be-
low for a fixed window, indexed by m, after which it is
straightforward to modify the detector for a sliding win-
dow.

The detection problem is modeled as one of choosing
between hypothesisH0, in which no change has occurred,
i.e., the level is A = 1, and hypothesis H1, when the level
reduces to A = 1−∆A due to an approaching IDH:

H0 : x[m] = 1 + w[m], m = 0, 1, . . . , N − 1, (1)
H1 : x[m] = 1−∆A+ w[m], m = 0, 1, . . . , N − 1,

(2)

whereN is the number of samples in the fixed window, and
∆A (0 < ∆A ≤ 1) is the unknown reduction in level. The
Laplacian model is employed since it better characterizes
the noise than the Gaussian model [3]; w[m] is assumed to
be independent and identically distributed, zero-mean with
known variance σ2.

A generalized likelihood ratio test (GLRT) was em-
ployed in which ∆A is first estimated using maximum
likelihood (ML) estimation; thus, the GLRT decides H1

if

LG(x) =
p(x; Â,H1)

p(x;H0)
>
p(H0|θ)
p(H1|θ)

γ′ (3)

where x is a vector with the observations x[0], x[1], . . . , x[N−
1], p(x;H0) denotes the probability density function
(PDF) of x under H0, p(x; Â,H1) denotes the probability
density function (PDF) of x underH1 when the parameter
A is replaced by its maximum likelihood estimate, and γ′

is a fixed threshold. The probability p(H1) is chosen such
that it reflects a patient’s proneness to IDH, e.g., based on
the clinical history of the patient or, as done in the present

study, based on information conveyed by cardiac activity.
The other prior probability is p(H0) = 1− p(H1).

When H1 is true, the ML estimate of A, denoted by Â,
is given by the median of the observations for Laplacian
noise. Taking the constraint 0 < ∆A ≤ 1 into account, the
ML estimator is given by

Â = min(1,median{x[0], x[1], ..., x[N − 1]}). (4)

Inserting the Laplacian PDFs in (3) the GLRT gives that
H1 is decided if

G(x) = 1 +
1

N

N−1∑
m=0

(
|x[m]− Â| − |x[m]− 1|

)
(5)

< 1− 1

N

√
σ2

2
ln

(
p(H0|θ)
p(H1|θ)

γ′
)
.

It is obvious from this equation that the optimal GLRT de-
tector computes the difference between the mean absolute
deviation from Â and the mean deviation from 1 and com-
pares it to a threshold which depends on N, σ2, γ′ as well
as on the prior probabilities p(H0|θ) and p(H1|θ). The test
statistic is made time-varying, and then denoted G(x[n]),
by simply computing it in a sliding window containing
x(n), x(n + 1), . . . x(n + N − 1). The window length
is here set to 5 minutes.

Since p(H1|θ) is the probability of IDH, the threshold
in (6) can be viewed as being composed of a fixed part γf
and a patient-dependent part γp,

γ = γf + γp, (6)

where

γf = 1− 1

N

√
σ2

2
ln (γ′) , (7)

γp = − 1

N

√
σ2

2
ln

(
1− p(H1|θ)
p(H1|θ)

)
. (8)

It is noted that γf is identical to the fixed threshold applied
in [3], whereas γp is novel. In the present study, σ2 is fixed
and set to 0.2 which correspond to a noise level generally
found in the normalized PPG envelope, and θ consists of
two random variables θ1 and θ2, reflecting HRV and HRT.
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Spectral analysis of HRV assesses changes in the auto-
nomic nervous system by measuring the power of the low
frequency (LF) and the high frequency (HF) bands, defined
by 0.04–0.15 Hz and 0.15–0.4 Hz, respectively. The ratio
between LF and HF power is considered to be a measure
of sympathovagal balance. Since the LF/HF ratio has been
related to a patient’s propensity to IDH [4], the LF/HR ra-
tio is taken to define θ1. Using the method in [7], the ratio
is computed during the initial 30 min of the dialysis session
when hypotensive events are unlikely to occur.

Heart rate turbulence can be characterized with various
parameters of which turbulence onset (TO) and turbulence
slope (TS) are the most popular [8]. In the present study,
TS is studied since it was significantly different between
patients prone and resistant to IDH [6], while this was not
the case for TO. Thus, TS defines the random variable θ2.
For both θ1 and θ2, smaller values suggest that the patient
is more prone to IDH.

Using Bayes’ rule, the conditional probability of IDH
can be expressed as

p(H1|θ1, θ2) =
p(θ1|H1)p(θ2|H1)p(H1)

p(θ1|H0)p(θ2|H0)p(H0) + p(θ2|H1)p(θ1|H1)p(H1)
.

(9)
For simplicity, all four conditional PDFs that character-

ize θ1 and θ2 in (9) are assumed to be Gaussian, i.e.,

p(θj |Hi) = N (θ̄j|Hi
, σj|Hi

) i = 0, 1, j = 1, 2. (10)

A leave-one-out strategy was employed to determine the
estimates of the mean θ̄j|Hi

and the standard deviation
σj|Hi

: when computing p(H1|θ1, θ2) for one recording,
the remaining ones were used for estimation. The prior
probabilities in (9) are assumed to be equal, i.e., p(H0) =
p(H1) = 0.5 [3].

3. Database

Two datasets are studied for performance evaluation,
both recorded at Rigshospitalet in Copenhagen, Denmark.
The first dataset (“Db1”) consists of 24 recordings from
11 hypotension-prone patients, and the second dataset
(“Db2”) consists of 20 recordings from 7 patients, both
hypotension-prone and resistant. Blood pressure, PPG,
and the ECG were recorded using the Biopac MP150 data
acquisition system (BIOPAC Systems Inc., USA) in paral-
lel with the conventional hemodialysis equipment.

Symptomatic IDH is defined according to the following
criteria [4]:
• if pre-dialysis systolic arterial pressure (SAP) was ≥
100 mmHg: any event with SAP ≤ 90 mmHg, associated
with complaints;
• if SAP was≤ 100 mmHg: any SAP reduction by at least
10% associated with complaints;
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Figure 2. The test statistic G(x[n]) (blue line), γf (dot-
ted blue line), and γ (dashed green line), using γf = 0.6.
Vertical red line indicates time of acute symptomatic IDH.
Note that the thresholds coincide for the patient with acute
symptomatic IDH.

Acute symptomatic IDH is defined by a sudden drop in
systolic blood pressure (30 mmHg per 10 min before hy-
potension).

Two different issues were investigated with respect to
IDH prediction. Firstly, prediction of acute symptomatic
IDH was evaluated on Db1, since Db2 did not contain
any such event. The dataset Db1 was divided into two
groups: patients with acute symptomatic IDH and patients
without symptomatic IDH, containing 5 and 14 recordings,
respectively. Secondly, prediction of symptomatic IDH
(both acute or non-acute) was evaluated by combining Db1
and Db2 and then dividing the resulting dataset into two
groups: patients with and patients without symptomatic
IDH. After exclusion of PPG recordings with poor signal
quality (at least 20% of the 5-min segments did not reflect
heart rate), the two groups contained 14 and 24 recordings.

4. Results

The prediction of IDH is illustrated for one patient with
acute symptomatic IDH and another patient without symp-
tomatic IDH, see Fig. 2. The thresholds γ and γf are prac-
tically identical in the recording with acute symptomatic
IDH, see Fig. 2(a), whereas γ is lower than γf for the pa-
tient without symptomatic IDH, see Fig. 2(b). The reason
for a lower γ in the latter case is that the HRV/HRT values
indicates that this patient is less prone to IDH. In the for-
mer case the HRV/HRT values did not add any information
about the patient’s propensity to IDH.
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Table 1. Sensitivity and specificity in predicting acute
symptomatic IDH and symptomatic IDH, respectively.

Acute Symptomatic IDH Symptomatc IDH
γf Sensitivity Specificity Sensitivity Specificity
0.4 40% 100% 36% 88%
0.6 100% 93 % 64% 79%
0.8 100 % 64% 71% 50%

Table 2. HRV and HRT results from recordings with acute
symptomatic IDH and no symptomatic IDH in Db1.

Acute Symptomatic No Symptomatic
IDH IDH p-value

xHRT 1.11± 1.00 2.87± 3.67 N.S.
xHRV 1.48± 1.42 2.06± 1.89 N.S.

The sensitivity and specificity in predicting acute symp-
tomatic IDH and symptomatic IDH, respectively, is dis-
played in Table 1 for different values of γ. Setting the
fixed threshold γf to 0.6, acute symptomatic IDH was cor-
rectly predicted in 5 out of 5 recordings and falsely in 1 out
of 14 recordings, whereas symptomatic IDH was correctly
predicted in 9 out of 14 recordings and falsely in 5 out of
24 recordings. In all cases, the prediction results obtained
with γ were virtually identical to those obtained for γf .

To shed light on the above results, the parameters θ1
and θ2 were compared for the sessions in Db1 with acute
symptomatic IDH without symptomatic IDH, respectively,
see Table 2. Both θ1 and θ2 were lower in the record-
ings with acute symptomatic IDH, although the differences
were not significant. HRT computation was feasible in 5
out of 5 recordings with acute symptomatic IDH, and 9
out of 14 recordings without symptomatic IDH. For the
present datasets, the results suggest that information on
HRV and HRT does not improve prediction performance
significantly.

5. Conclusions

An extension to the PPG based method for predicting
IDH [3] is presented. The method takes into account the
magnitude of the PPG signal as well as the a priori prob-
ability of a patient developing IDH during each specific
dialysis session; HRV and HRT estimated from the ECG
in each dialysis session is used to determine these a priori
probabilities. The prediction performance is promising, as
5 out of 5 episodes of acute symptomatic IDH could be
accurately predicted.
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