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Abstract

Cardiac electrophysiological computational models are often developed from previously

published models. The new models may incorporate additional features to adapt the model

to a different species or may upgrade a specific ionic formulation based on newly available

experimental data. A relevant challenge in the development of a new model is the estimation

of certain ionic current conductances that cannot be reliably identified from experiments. A

common strategy to estimate those conductances is by means of constrained non-linear

least-squares optimization. In this work, a novel methodology is proposed for estimation of

ionic current conductances of cardiac electrophysiological models by using a response sur-

face approximation-based constrained optimization with trust region management. Polyno-

mial response surfaces of a number of electrophysiological markers were built using

statistical sampling methods. These markers included action potential duration (APD), trian-

gulation, diastolic and systolic intracellular calcium concentration, and time constants of

APD rate adaptation. The proposed methodology was applied to update the Carro et al.

human ventricular action potential model after incorporation of intracellular potassium ([K+]i)

dynamics. While the Carro et al. model was well suited for investigation of arrhythmogen-

esis, it did not allow simulation of [K+]i changes. With the methodology proposed in this

study, the updated Carro et al. human ventricular model could be used to simulate [K+]i

changes in response to varying extracellular potassium ([K+]o) levels. Additionally, it ren-

dered values of evaluated electrophysiological markers within physiologically plausible

ranges. The optimal values of ionic current conductances in the updated model were found

in a notably shorter time than with previously proposed methodologies. As a conclusion, the

response surface optimization-based approach proposed in this study allows estimating

ionic current conductances of cardiac electrophysiological computational models while

guaranteeing replication of key electrophysiological features and with an important reduc-

tion in computational cost with respect to previously published approaches. The updated
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Carro et al. model developed in this study is thus suitable for the investigation of arrhythmic

risk-related conditions, including those involving large changes in potassium concentration.

1 Introduction

The last decades have seen an extraordinary development of cardiac computational

electrophysiological models. The possibilities they offer to investigate the electrical behavior of

the heart together with the large increase in computing capability have boosted such develop-

ment. This has been accompanied in many instances by an increase in model complexity, even

if the main principles and structure of the first published models remain unaltered.

An action potential (AP) model is described by a system of coupled differential equations

that involve the transmembrane current flow as well as dynamic changes in intracellular ionic

concentrations. For each ionic current a mathematical formulation is employed to represent

characteristics like gating or permeability of the corresponding ion channels. Those formula-

tions rely on a number of model parameters which values are commonly estimated based on

experimental data obtained from specific protocols for each ionic current. In this context

parameter estimation presents various shortcomings intrinsic to the voltage-clamp experimen-

tal protocols [1]: i) insufficient separation of ionic current activation and inactivation pro-

cesses; ii) use of non-selective pharmacological ion channel blockers; and iii) measurement of

non-physiological solutions.

Despite these limitations, most parameter values of individual ionic currents have been

identified in the past using independent sets of experiments. However, parameters describing

ionic current conductances have not always been successfully characterized from experimental

datasets, in large part due to the sensitivity of some ion channels to the cell isolation procedure

performed before application of the voltage-clamp protocols [2]. Also, experimental studies

may have purposely selected cells with large ionic currents, which interfere with model devel-

opment based on such data [3]. For those reasons, a common procedure to identify individual

ionic current conductances is based on model parameter fitting aimed at reproducing plausi-

ble values of electrophysiological AP properties like AP duration (APD), triangulation or

upstroke velocity [4, 5]. Other models include also constraints based on experimental data

measured after blocking certain ionic currents [6], imposed to obtain a correct input resistance

[3], or based on additional properties like APD rate adaptation and rate dependence of ionic

concentrations [7].

Cardiac electrophysiological computational models are commonly used to analyze the

effect of drugs or to study the mechanisms underlying pathological conditions. Under those

circumstances, the correct characterization of ionic current conductances is crucial. Overesti-

mation or underestimation of current conductance values could lead to completely erroneous

predictions. For this reason, while for many years the adjustment of current conductances in

cardiac computational models has been frequently performed manually [8], a number of tech-

niques have been developed in recent years to help in the process of parameter identification.

Gradient descent methods [9, 10] and genetic algorithms [11–14] have been used for this pur-

pose in several studies. Gradient descent methods rely on computing local gradients of the

error function to determine a search direction towards a minimum. On the other hand,

genetic algorithms use ideas from evolutionary biology and test different combinations (popu-

lations) of parameters to optimize the error function. In each iteration they create a new popu-

lation based on the best results from previous iterations.
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Gradient descent methods and genetic algorithms have a small degree of parallelization

and, thus, other techniques with higher parallelization capability could better exploit the possi-

bilities of current computing infrastructures. In this work a novel methodology is proposed for

identification of parameters describing ionic current conductances of cardiac electrophysio-

logical models by using an optimization algorithm with trust region management [15]. The

algorithm minimizes an objective function subject to non-linear constraints associated with a

number of electrophysiological properties. The objective function and constraints are approxi-

mated by polynomial response surfaces which allow the optimization algorithm searching for

a solution to the problem without performing a direct evaluation of the model. The use of a

response surface helps to reduce the number of iterations of the algorithm and, thus, reduce

the time cost of optimizing the model. To guarantee the ability of the model to represent physi-

ological behavior, the region where the solution is searched for is limited based on experimen-

tally reported values of electrophysiological properties like APD, AP triangulation, diastolic

and systolic intracellular calcium concentrations and time constants of APD rate adaptation to

abrupt changes in cycle length (CL). The proposed methodology is applied to adjust the ionic

conductances of the human ventricular Carro-Rodriguez-Laguna-Pueyo (CRLP) model [7]

after incorporation of intracellular potassium, [K+]i, dynamics. The modified CRLP model is

compared against the most commonly used human ventricular AP models, namely the ten

Tusscher-Panfilov 2006 (TP06) [16], Grandi-Pasqualini-Bers (GPB) [4], O’Hara-Rudy (ORd)

[17] models as well as with the Carro-Rodriguez-Laguna-Pueyo (CRLP) [7] model.

The relevance of accounting for [K+]i dynamics is demonstrated by simulating a number of

transitions in the extracellular potassium concentration, as in hemodialysis studies [18], and

comparing the behavior of the original and modified CRLP models.

2 Materials and methods

2.1 Optimization problem

2.1.1 General formulation. A minimization problem with constraints can be written as:

min f ðxÞ ð1Þ

subject to

hðxÞ ¼ 0; ð2Þ

gðxÞ � 0; ð3Þ

xL � x � xU ; ð4Þ

where x is the vector of decision variables, xL and xU their respective lower and upper bounds,

f(x) is the objective function, and h(x) and g(x) are vector functions of equality and inequality

constraints, respectively.

2.1.2 Particularization to ionic conductances estimation. The general minimization

problem described in previous section was particularized in this study for estimation of ionic

current conductances. Since different ionic current conductances Gi may differ by orders of

magnitude, the following scaling was adopted for each of the elements of vector x:

xi ¼ 20 � log10

Gi

G0
i

; ð5Þ

where Gi is the unscaled ionic current conductance and G0
i is its initial value in the model.
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The objective function is defined for each particular problem. In this study, it was repre-

sented by the integral of the total potassium current during a cardiac cycle at 1 Hz steady-state

pacing, as fully described in 2.2.3. No equality constraint function was defined in this case. The

inequality constrain function was defined by imposing a number of electrophysiological prop-

erties to remain within experimentally observed ranges:

mLL � mðxÞ � mUU ð6Þ

where mLL and mUU are the lower and upper bounds delimiting physiological ranges, respec-

tively, and m(x) is the vector of electrophysiological properties calculated for x.

Eq 6 was reformulated to be consistent with the general formulation of the inequality con-

straints described in Eq 3:

gjðxÞ ¼
mjðxÞ � mj;CR

mj;RR

�
�
�
�
�

�
�
�
�
�
� 1 � 0; ð7Þ

where mj;CR ¼
ðmj;UL þmj;LLÞ=2 is the central point of the experimental range for the

electrophysiological property j and mj;RR ¼
ðmj;UL � mj;LLÞ=2 is the distance between mj,CR

and each of the limits of the experimental range.

2.1.3 Optimization using response surfaces. The optimization algorithm used in this

study seeks for a solution of the minimization problem, Eqs 1–4, by solving a sequence of

approximate constrained optimization problems within a region of trust. For the iteration k of

the algorithm, the approximate problem reads as:

min ~f ðxÞ ð8Þ

subject to

~hðxÞ ¼ 0; ð9Þ

~gðxÞ � 0; ð10Þ

k x k� D
k
; ð11Þ

where ~f ðxÞ, ~hðxÞ and ~gðxÞ are response surface approximations (RSA) of f(x), h(x), and g(x)

around xk, respectively, and Δk is the corresponding trust region radius. The trust region

radius defines a region of trust in which the RSA is assumed to be reliable. The validity of the

RSA can be evaluated through the trust region ratio test. For the objective function f(x), the

trust region ratio for iteration k was defined as:

rk
0
¼
f ðxkÞ � f ðxk;�Þ
~f ðxkÞ � ~f ðxk;�Þ

; ð12Þ

where xk,� is a solution of the minimization problem given by Eqs 8–11. This definition of the

trust region ratio is based on the consideration that rk
0
! 1 as the trust region radius Δk! 0.

If rk
0
� 0, the approximation is deemed as unacceptable and, consequently, the trust region

radius is reduced. If rk
0
� 1 and kxk,� − xkk = Δk, the RSA is evaluated as acceptable and Δk is

increased. If 0 < rk
0
< 1, Δk is kept unchanged, but the RSA is rebuilt around xk,�. Note that

rk
0
>> 1 is also indicative of poor RSA and Δk is reduced, but the optimizer is considered to be

moving in the right direction. The update of the trust region radius offers significant flexibility
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depending on the implementation. A particular updating rule will be presented in the follow-

ing section.

The algorithm proposed in this work is based on the one described in [15] but it simplifies

some aspects on how to manage and use the response surfaces and it reduces the number of

times the database needs to be generated. Instead of considering the augmented Lagrangian of

the problem, the proposal of this study is based on generating the response surface of the

model and looking for the minimum in this surface. Subsequently, this solution is validated by

using the trust region test in both the minimization function and the constraints of the model.

This notably reduces the computational cost, as the database is generated once per iteration

rather than every time there is a change in the parameters of the augmented Lagrangian.

2.1.4 Database generation and response surface approximation. One of the key ele-

ments of the minimization algorithm is building the RSA of the objective and constraint func-

tions that will be used to solve the approximate minimization problem. To construct a

response surface for a function of n variables, a large number of sample points are required.

Also, to construct a reliable RSA, the sample points must be adequately distributed. Sampling

techniques based on design of experiments are commonly used for this purpose [19]. In this

study, full factorial designs, which require 3n sampling points, were considered. A full factorial

design consists of a three-level factorial: the corner points of a hypercube, plus the center of

the hypercube and of each facet, plus the midpoints of the lines connecting the corners of the

hypercube. In the next sections, the set of results of the sampling technique in an iteration of

the algorithm for both the minimization and constraint functions will be referred to as data-
base. Second order polynomial response surfaces were used in all cases.

2.1.5 Minimization algorithm. The minimization algorithm implemented in this work is

shown in Fig 1. The database was computed only once per iteration of the algorithm or when-

ever the solution was rejected and the trust region radius was reduced. The trust region ratio

was used to validate the RSA for the objective function and constraints independently.

The basic steps of the algorithm shown in Fig 1 are briefly described in the following. The

index k indicates the iteration of the algorithm, i indicates the variable index and j represents

the constraint index.

Step 0: Initialization. Define values for the tolerances δ1 (solution tolerance), δ2 (gradient

tolerance) and δ3 (improvement tolerance), the minimum acceptable value ρL for the trust

region ratio to consider a trust region as acceptable and an upper limit Δmax for the trust region

radius. Define an initial value Δ0 for the size of the trust region and a starting point x0 for the

variables of the problem. Set the iteration counter at k = 0.

Step 1: Database generation. Compute the database as described in section 2.1.4.

Step 2: Response surfaces. Build the RSA of the objective function and constraints of the

problem around the current iterate xk.

Step 3: Find the minimum of the approximate problem. Find the minimum xk,� of the

constrained minimization problem defined by Eqs 4–11 in the trust region limited by Δk.
Step 4: Trust region test. Evaluate f and each of the properties mi in xk,� and calculate the

trust region ratio for the objective and constraint functions as in Eq 12.

rk
0
¼

f ðxk;�Þ � f ðxkÞ
~f ðxk;�Þ � ~f ðxkÞ

ð13Þ

rk
j ¼

mjðxk;�Þ � mjðxkÞ
~mjðxk;�Þ � ~mjðxkÞ

; 1 � j � M: ð14Þ
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The solution xk,� was accepted when rk
0
> 0 and one of the following two criteria was met:

i) the constraints in g(x) were feasible or; ii) jrk
j � 1j � rL; 8j. For this work, ρL = 0.25 was

used. If the solution was accepted, the flag flgkTR ¼ true was set and xk+1 ≔ xk,�, otherwise

flgkTR ¼ false and xk+1 ≔ xk.

Step 5: Trust region radius update. The trust region radius was updated as follows:

D
kþ1
¼

(
0:25D

k if flgkTR ¼ false;

D
k if flgkTR ¼ true and k xk;� � xk k< D

k
;

2D
k if flgkTR ¼ true and k xk;� � xk k¼ D

k
:

ð15Þ

Step 6: Algorithm termination. The algorithm ended if one of the following conditions

was satisfied:

1. kxk+1 − xkk< δ1 and flgkTR ¼ true: The distance between the last two accepted iterates was

too small to be significant.

Fig 1. Flow chart of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0204411.g001
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2. krϕ(xk+1)| < δ2 and flgkTR ¼ true: The gradient of the Lagrangian function was too small.

The Lagrangian function was defined as:

�ðxÞ ¼ f ðxÞ þ
XM

j¼1

l
k
j �mjðxÞ ð16Þ

where l
k
j are the Lagrange multipliers obtained in the constrained minimization problem

defined by Eqs 4–11 in the trust region (limited by Δk) in Step 3.

3. Δk+1 < δ3: The trust region radius became too small.

If none of these criteria was satisfied, then set k≔ k + 1 and go to step 1.

2.2 Upgrade of the CRLP model

2.2.1 Human ventricular AP models. Several computational models have been proposed

in the last ten to fifteen years to represent the electrical behavior of human ventricular cells.

For some years, the tenTusscher-Panfilov model (TP06) [16] was the most commonly used

human ventricular model for electrophysiological investigations. In 2010, the Grandi-Pasqua-
lini-Bers (GPB) model [4] was developed based on the Shannon et al. [20] rabbit ventricular

model. The GPB model provided a detailed description of intracellular calcium dynamics and

calcium buffers that allowed more accurate representation of certain experimental behaviors

than the TP06 model [7]. The O’Hara-Rudy dynamic (ORd) model was proposed in 2011 [17]

based on more extensive experimental data from undiseased human ventricles. In the same

year, a modification of the GPB model was proposed as the Carro-Rodriguez-Laguna-Pueyo
(CRLP) model [7]. This modification improved the GPB model response to allow replication

of various experimentally-measured risk-related markers, thus rendering it more suitable for

investigation of cardiac arrhythmias. In 2015, Himeno et al. proposed a new human ventricu-

lar cell model [21]. As opposed to the previously described models, the Himeno et al. model

included a description of excitation-contraction. The model comparison performed in the

present study was restricted to purely electrophysiological models like the TP06, GPB, ORd

and CRLP models.

One of the differences between the CRLP model and the ORd and TP06 models lies in the

representation of [K+]i dynamics. In the CRLP model, as in the GPB model, [K+]i was assumed

to be constant. Under steady-state conditions, [K+]i variations during an AP can be neglected.

Nevertheless, when there is a change in the investigated conditions or if the model is somewhat

altered, [K+]i may reach a new steady-state value. This is the case, for instance, when the stimu-

lation frequency is varied, as [K+]i becomes reduced in response to increased stimulation fre-

quency [17, 22]. Another scenario where [K+]i dynamics are relevant is in the simulation of

acute ischemia. Dutta et al. showed the limitations of using the GPB model with constant [K+]i

[23]. In the present work, the methodology described in section 2.1 was used to incorporate

[K+]i dynamics into the CRLP model while retaining its capacity to reproduce experimentally

observed values of arrhythmic risk-related markers.

2.2.2 [K+]i dynamics in the CRLP model. [K+]i dynamics were introduced through the

following equation:

d
dt
½Kþ�i ¼ � IK;tot �

Cmem

Vmyo � Frdy
ð17Þ

where IKtot is the total potassium current, Cmem is the membrane specific capacitance, Vmyo is

the bulk cytosol volume and Frdy is Faraday’s constant.
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IKtot was calculated as the sum of all potassium currents and the stimulus current:

IKtot ¼ Ito þ IKr þ IKs þ IK1 � 2 � INa;K þ ICaK þ IKp þ Istim ð18Þ

where Ito is the transient outward potassium current, IKr is the rapidly activating potassium cur-

rent, IKs is the slowly activating potassium current, IK1 is the inward rectifier potassium current,

INa,K is the sodium-potassium pump current, ICaK is the current generate by potassium ions

passing through the L-type calcium channels, IKp is the plateau potassium current, and Istim is

the stimulus current.

If Eq 17 is directly added to the CRLP and GPB models, [K+]i drifts (Fig 2, panels a) and c),

respectively). The continuous increase in [K+]i is due to a larger potassium influx in each car-

diac beat, which can in turn be explained by an imbalance in the potassium current. Although

it is not straightforward to establish a physiological range for [K+]i because there are no experi-

mental measurements of this concentration, all human ventricular cell models published in

the literature, despite having different [K+]i values under steady-state conditions, they all lie

within the range 120-145 mM. This range is in agreement with the corresponding experimen-

tally reported values for the resting membrane potential, which is close to the Nernst potential

for potassium [17].

In Fig 2, panels b) and d), the integral of the total potassium current during one cardiac

cycle is shown, which gives an idea of how far the models are from equilibrium. The above

noted issue associated with the introduction of [K+]i dynamics into the CRLP model can be

sorted out by readjusting the current conductances to maintain [K+]i homeostasis. Since, at

the same time, the performance of the model in terms of representation of electrophysiological

behavior wants to be retained, a constrained optimization problem was formulated in this

study. This problem was tackled by applying the response surface-based optimization methods

presented in 2.1.

For further model assessment, optimization was performed as described in the next para-

graph while considering different initial [K+]i values in the range 120-145 mM.

2.2.3 Optimization-driven model parameter update. A new set of current conductances

for the modified CRLP model was sought such that potassium homeostasis was preserved

while a number of electrophysiological properties were guaranteed to remain within experi-

mental limits. This was stated as a constrained optimization problem of the form:

min
Z

<CL>
IK;totðxÞ

� �2

ð19Þ

subject to

mLL � mðxÞ � mUU ; ð20Þ

xL � x � xU ; ð21Þ

where x is the vector of scaled current conductances (see 2.1.2), with lower an upper bounds xL

and xU, respectively,
R
<CL> represents the integral during a cardiac cycle and m is a vector

function of selected electrophysiological properties with lower and upper physiological bounds

defined by vectors mLL and mUU. Initialization was defined based on the epicardial CRLP

model (where [K+]i takes a constant value of 138 mM). Other initializations were additionally

tested, as described in 2.2.2.

2.2.4 Constraint functions. Seven ventricular electrophysiological properties of epicardial

cells were considered for definition of inequality constraints in 2.2.3:
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• APD90: APD is considered the main preclinical marker of drug cardiotoxicity. APD pro-

longation has been linked to long QT syndrome and increased risk of developing Torsades

de Pointes [24, 25]. In this study, APD90 was used to denote AP duration at 90%

repolarization.

• Triangulation: This marker quantifies the shape of the final part of the AP and is defined as

the difference between APD at 90% and 50% of repolarization. Low triangulation values

indicate square APs, while high values indicate triangular APs. Triangulation has been pro-

posed as a marker of pro-arrhythmia [24], with long APD90 values without triangular APs

considered as anti-arrhythmic and with triangular APs considered as pro-arrhythmic in

general.

• Systolic and diastolic intracellular calcium ([Ca2+]i) levels: Calcium transient properties

evaluated at different pacing frequencies have been reported as arrhythmic risk markers [26,

27]. In this study, diastolic (resting level) and systolic (peak value) calcium transient levels

were evaluated at 0.5 Hz and 1 Hz steady-state pacing.

• Time constants of APD90 adaptation to abrupt changes in CL: Adaptation of ventricular

repolarization duration to abrupt changes in CL has been proposed as an arrhythmic risk

marker [28]. In this study, the dynamics of APD90 adaptation to abrupt changes in CL were

fitted by two exponentials with associated time constants τfast and τslow, following the meth-

odology proposed in Pueyo et al. [29]. Only τslow has been considered since there is no avail-

able quantitative experimental data on τfast values.

Fig 2. Temporal evolution of [K+]i in CRLP and GPB epicardiacl cell models after introducing [K+]i dynamics. a)

and c) show [K+]i evolution when the models (CRLP and GPB, respectively) are stimulated with a CL of 1000 ms. b)

and d) show the evolution of the integral of IK,tot during one cycle for the same simulation as in a) and c).

https://doi.org/10.1371/journal.pone.0204411.g002
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Two stimulation protocols were used to calculate the above described markers:

• Steady-state protocol: A train of 3,000 stimulation pulses was delivered at a given CL. Simu-

lations were carried out using two different CL values: 1,000 and 2,000 ms. The evaluated

markers were: APD90 and triangulation at 1,000 ms; and diastolic and systolic [Ca2+]i at

1,000 and 2,000 ms.

• Abrupt changes in CL protocol: The cell was stimulated with a CL of 1,000 ms for 8 minutes

and then with a CL of 600 ms for additional 8 minutes. APD90 dynamics after the abrupt CL

change were best fitted by two exponentials, the second of which was characterized by τslow.

2.2.5 Physiological bounds for constraint functions. Lower and upper bounds mLL and

mUU were defined according to physiological experimental values reported in the literature for

the analyzed properties. The selected range for APD90 was 280-310 ms. Even though some

studies have reported wider ranges, up to 271-366 ms [30–32], a restricted interval was used to

keep the model within the same range of existing human ventricular cell models [4, 5, 7, 16,

17]. The range for triangulation was 44-112 ms [31, 32]. For the diastolic and systolic [Ca2+]i

levels at 1 Hz and 0.5 Hz stimulation, the CRLP model, as occurs with other recent human

ventricular AP models (GPB, ORd, TP06, TP04) [4, 5, 7, 16, 17, 33, 34], is out of the physiolog-

ical range reported in the literature [35, 36]. For that reason, the physiological range was

extended to ensure a feasible solution of the optimization problem. Nevertheless, the optimal

solution was evaluated to confirm that either it let the model lie within physiological range or

at least improved the results of the CRLP model. The physiological range for τslow was set to

70-110 s [37]. Table 1 summarizes the evaluated markers and their physiological ranges in the

second column, whereas the third column indicates the lower and upper bounds used for the

optimization.

2.2.6 Sensitivity analysis. Prior to solving the minimization problem, a sensitivity analysis

was performed on the CRLP model following the methodology described by Romero et al.
[34]. The aim was to identify the conductances that most notably influenced the objective

function (the integral of the total potassium current) and the constraints (electrophysiological

properties) in order to define the set of decision variables for the optimization.

For the sensitivity analysis, the conductances were varied by ±30% one at a time. Fourteen

conductances were considered in the sensitivity analysis, namely: Gto, the maximal conduc-

tance of the transient outward potassium current; GKs, the maximal conductance of the slowly

activating potassium current; GpCa, the maximal conductance of the sarcolemmal calcium

pump; GKr, the maximal conductance of the rapidly activating potassium current; GKp, the

maximal conductance of the plateau potassium current; GNaK, the maximal activity of the Na-

Table 1. Electrophysiological markers evaluated in the proposed response surface approximation-based optimization.

Physiol. Range Selected Range CRLP Model This work

APD90 (ms) 271-366 280-310 305.6 280.9

Triangulation (ms) 44-112 44-112 78 84.6

Sys. [Ca2+]i 1Hz (μM) 1.59-2.01 0.602-2.01 0.602 0.701

Sys. [Ca2+]i 0.5Hz (μM) 0.71-1.68 0.523-1.68 0.523 0.664

Dia. [Ca2+]i 1Hz (μM) 0.20-0.33 0.097-0.33 0.097 0.100

Dia. [Ca2+]i 0.5Hz (μM) 0.14-0.32 0.091-0.32 0.091 0.096

τslow (s) 70-110 70-110 105.6 106.0
R
CL IK,tot � dt (ms � pA/pF) -28.52 -3.9 � 10−9

https://doi.org/10.1371/journal.pone.0204411.t001
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K pump; Gncx, the maximal activity of the Na-Ca exchanger; GCaL, the maximal conductance

of the L-Type calcium current; GK1, the maximal conductance of the inward rectifier potas-

sium current; GNa, the maximal conductance of the fast sodium current; GClCa, the maximal

conductance of the calcium-activated chloride current; GNa,Bk, the maximal conductance of

the background sodium current; GCl,Bk, the maximal conductance of the background chloride

current; and GCa,Bk, the maximal conductance of the background calcium current.

For each property m and conductance p, the percentage of change (Dm;p;a) and sensitivity

(Sm;p;a) were calculated as follows [34]:

Dm;p;a ¼
Mp;a � Mcontrol

Mcontrol
� 100; ð22Þ

Sm;p;a ¼
Dm;p;a � Dm;p;� a

2 � a
� 100; ð23Þ

where Mp;a is the value of property m when the conductance p is varied by the percentage

a and Mcontrol is the value of property m under control conditions. As shown above,

sensitivity (Sm;p;a) is calculated as the ratio of the difference between the percentage of change

(Dm;p;a −Dm;p;−a) and the interval of change (2 � a). In particular, for this study a = 30%:

Sm;p;0:3 ¼
Dm;p;0:3 � Dm;p;� 0:3

2 � 0:3
� 100 ¼

Mp;0:3 � Mp;� 0:3

Mcontrol
�
105

6
ð24Þ

Sensitivity was calculated for each of the electrophysiological markers described in section

2.2.4 and for the integral of the total potassium current (IK,tot) during one cardiac cycle at 1 Hz

steady-state pacing.

2.2.7 Model comparison. Considering the difficulty of directly comparing the absolute

value of each conductance for different computational models, due to the dependence on the

whole current formulation, ionic current traces calculated during a cardiac cycle at 1 Hz

steady-state pacing were compared for the CRLP, TP06, GPB and ORd models. The compari-

sons aimed at verifying that the modified CRLP model had current densities of similar magni-

tude and ionic currents of similar shapes as calculated with other published models.

2.3 Frequency-dependence behavior

Pacing at different frequencies was simulated to assess whether the modified CRLP model

retained the frequency-dependence behavior of the original CRLP model. To this end, APD90

was calculated at steady-state for CLs ranging from 250 to 5000 ms (in each case computed

after pacing for 3,000 cycles).

2.4 Simulation of changes in potassium concentration

Hypokalemic and hyperkalemic conditions were simulated with the original and the modified

CRLP models. Two types of simulations were performed to compare the models with the

experimental results.

First, the effect of changing [K+]o was assessed when the cell was not stimulated to compare

with the experimental results described in [38]. Subsquently, and following the experiments

performed in [18], the extracellular potassium concentration, [K+]o, was increased from 2 mM

to 7 mM in 0.5 mM steps using a homogeneous 4-cm long fiber composed of epicardial cells.

The physiological [K+]o value of 5.4 mM replaced the value of 5.5 mM in the simulations [18].

The conductivity σ, defining the velocity of the stimulus propagation, was set to render a Con-

duction Velocity (CV) close to 65 cm/s under control conditions [39]. The cell capacitance
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was set to Cm = 1 μF/cm2. For each [K+]o value, the model was first stabilized (without stimula-

tion) until the product of the gates h � j reached 99% of the steady-state value hss � jss, which was

subsequently followed by 1 Hz pacing simulation. Stimulus current pulses twice the diastolic

threshold were applied at one end of the cable. The diastolic threshold was defined as the mini-

mum amplitude required for propagating five pulses along the fiber. The model was studied by

stimulating the tissue with a train of 100 basic stimulations (S1) delivered at a CL of 1,000 ms.

[K+]i was measured at the end of each stimulus at five different positions along the cable situ-

ated at distances from the origin of 1.5, 1.75, 2, 2.25 and 2.5 cm. The average value over the five

locations was calculated.

2.5 Implementation

The CRLP model was implemented in Matlab based on the original CellML file [7]. The code

used to compute the simulations and to calculate the different markers is freely available at

https://github.com/ChusCarro/MatCardiacMLab/releases/tag/0.1.0.

The minimization algorithm was implemented in Matlab. For 1D tissue simulations, a

semi-implicit operator-splitting scheme implemented in Fortran was used to solve the propa-

gation [40] with a space discretization of Δx = 0.1 mm and a time discretization of Δt = 0.002

ms, as in [7].

All computations were performed by using the high performance computing cluster (ICTS)

“NANBIOSIS”. Details about the cluster can be found at: http://www.nanbiosis.es/

u27-e1-hermes-cluster.

3 Results

3.1 Sensitivity analysis

Results of the sensitivity analysis applied to the epicardial version of the CRLP model are

shown in Fig 3. The value of the integral of the total potassium current, IK,tot, in one cardiac

cycle was highly dependent on the conductance of the background chloride current, GCl,bk,

and the L-type calcium current, GCaL (S30 values of -412.62% and 396.83%, respectively). Other

Fig 3. Results of the sensitivity analysis applied to the original CRLP model. The blue scale indicates relative

sensitivity for each marker. White color indicates maximum relative sensitivity and dark blue color indicates that

property and parameter are independent. Percentages in the white boxes indicate the absolute sensitivity of the

property. A minus sign in a box indicates that marker and model parameter vary inversely. ‘Trian’ stands for

Triangulation, ‘Sys’ stands for systolic and ‘Dia’ stands for diastolic.

https://doi.org/10.1371/journal.pone.0204411.g003
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currents were also found to play an important role in regulating potassium homeostasis: GNaK,

199.46%; GK1, -152.06%; Gto, -110.57%; GKr, -81.16%; and Gncx 62.72%. The currents with the

largest effect on the APD were found to be the same as for the objective function, although the

sensitivities were notably reduced: GCl,bk, -48.56%; and GCaL, 33.41%. Triangulation was

mainly modulated by: GK1, -57.7664%; and GKr, -20.1113%. Diastolic and systolic [Ca2+]i val-

ues were mostly influenced by GCaL (27.65% and 171.71%, respectively). These markers were

also influenced by changes in the following conductances: GNaK (-16.08%, -78.62%), Gncx

(-15.74%, -74.48%), GCl,bk (-14.53%, -80.66%) and GCa,bk (11.51%, 47.46%). Regarding τslow,

GNaK was the conductance with the largest effect on this marker (-128.37%), with the remain-

ing conductances not playing a significant role.

Based on these results, five conductances were selected as decision variables for the minimi-

zation problem described in 2.2.3, namely: GCl,bk, GCaL, Gncx, GK1, and Gto. Of note, GNaK was

discarded because any modification on this conductance significantly influenced τslow, with

this effect not being counterbalanced by changes in any other conductance (see Fig 3).

3.2 Non-linear optimization

The optimization algorithm found a minimum after four iterations. Variations in the updated

current conductances with respect to their initial values were: GCl,bk, +19.34%; GCaL, +3.93%;

Gncx, -33.25%; GK1, -14.08%; and Gto, +22.35%.

With this new set of conductance values, and after introducing [K+]i dynamics in the

model, [K+]i stabilized at 138 mM. The value of the electrophysiological markers are described

in Table 1. All markers were within physiological ranges or closer than with the original CRLP

model (last column in Table 1).

When the model was optimized while considering different initial [K+]i values in the range

120-145 mM, results were practically coincident with those reported above for [K+]i initialized

at 138 mM. At steady-state, [K+]i reached a value of 138 mM as well, differences in the values

of the markers where below 1% and the maximum difference between optimal conductances

was lower than 2.5%. In this case, the algorithm required six iterations rather than four to

reach the optimal solution.

3.3 Model comparison

To evaluate the impact of the new values for the estimated ionic conductances in the modified

CRLP model, the AP and the associated ionic currents (ICaL, IK1, Incx, ICl,bk and Ito) were com-

pared with the equivalent properties in the original CRLP model and in other human ventricu-

lar cell models. The results are shown in Fig 4. Other currents that were not considered for the

optimization but that could be altered as well, like IKr, IKs and IKp, are shown in Fig 5.

The main differences in the AP between the original and modified CRLP models were a

decrease in the membrane potential during the plateau phase as well as shortening of the APD.

There were small differences in the peak value of some currents, but in all cases the modified

CRLP model was within the range of the other models or within experimentally reported

bounds. ICaL peak was larger in the modified model with respect to the GPB model and the

original CRLP model, but smaller than in the TP06 model. IK1 peak was slightly smaller in the

modified model with respect to the original CRLP model, which had the smallest peak value

among all ventricular models, but in any case within the range reported experimentally (0.4-

1.8 pA/pF [31, 41]).

An important finding was that, while Gncx and GCl,bk in the modified CRLP model were sig-

nificantly different from those in the original CRLP model (-33.25% and +19.34% respec-

tively), the effects in terms of ionic current traces led to both Incx and ICl,bk not being notably
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different from those in the original CRLP model. The IKp current remained as in the original

model, while IKs was different but took really small values in both cases. IKr was diminished in

amplitude by 32.6% and its integral during a cycle was reduced by 30% with respect to the

CRLP model. The extent of APD prolongation following blockade of this current was 10% for

the modified CRLP model, as compared to 14% for the original CRLP model, being both val-

ues within experimentally defined limits [42].

Fig 4. Model comparison. Blue lines represent the results of this work with inclusion of [K+]i dynamics, green lines

represent the CRLP model, red lines represent the GPB model, cyan lines represent the TP06 model and purple lines

represent the ORd model. All the figures show results at steady-state (after pacing for 3,000 cycles at a CL of 1000 ms).

a) Action potential; b) Intracellular potassium concentration; c) Sodium-calcium exchanger Current; d) L-type

calcium current; e) Inward potassium current; f) Transient outward potassium current; and g) Background chloride

Current.

https://doi.org/10.1371/journal.pone.0204411.g004
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3.4 Frequency response

Fig 6 shows steady-state normalized APD90 values calculated with the original and modified

CRLP models. Normalization was performed with respect to the APD90 value for CL = 1000

ms. Both models presented very similar behaviors, with the only relevant difference being

observed for CL = 250 ms. For this CL, the modified CRLP model showed alternans, while the

original CRLP model did not.

3.5 Response to changes in extracellular potassium

Fig 7a shows the temporal evolution of membrane potential following changes in [K+]o for an

unstimulated cell simulated with the modified CRLP model. During the first 100 ms, mem-

brane potential varied following the corresponding change in [K+]o, in line with the results

reported in [38]. Fig 7b shows the time needed to reach 90% of the steady-state membrane

potential (t90%). The value for t90% in the simulation for the same change in [K+]o than in [38]

Fig 5. Model comparison. The colors in this figure are the same as those used in Fig 4. Results are shown at steady-

state (after pacing for 3,000 cycles at a CL of 1000 ms). The graphics on the right are zoomed versions of the graphics

on the left. a) Rapid delayed rectifier potassium current; b) Slow delayed rectifier potassium current; and c) Plateau

potassium current.

https://doi.org/10.1371/journal.pone.0204411.g005
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(from 4.4 mM to 6.6 mM) was 16.2 ms, which is somewhat faster than the experimentally

reported results in [38] for rabbit (80 ms) and rat (147 ms) ventricular myocytes.

Fig 8a shows a snapshot of [K+]i values calculated with the modified CRLP model at differ-

ent times following changes in [K+]o as described in 2.4. Fig 8b shows the temporal evolution

of [K+]i in response to changes in [K+]o. Under control conditions, [K+]i remained constant in

time. As expected, following simulated hyperkalemia ([K+]o> 5.4 mM), [K+]i increased as

[K+]o increased, whereas for simulated hypokalemia ([K+]o< 5.4 mM), [K+]i decreased in

response to [K+]o decreases. For [K+]o� 2.0 mM, tissue became inexcitable. In Table 2, the

steady-state value of [K+]i in the optimized CRLP model is shown for each simulated [K+]o

value.

3.6 Computational cost

Each iteration of the optimization algorithm involved computations associated with a number

of stimulation protocols. In Table 3, a summary of the computational cost is shown for each of

the protocols. In each iteration, the protocols were run twice: one for the generation of the

database (243 simulations in parallel) and another one for the evaluation of the solution (6

simulations in parallel). The variance in the computation times is due to the fact that

Fig 6. Steady-state APD90 values as a function of pacing CL.

https://doi.org/10.1371/journal.pone.0204411.g006

Fig 7. Results for an unstimulated cell simulated with the modified CRLP model following changes in [K+]o. a) Temporal

evolution of membrane potential; b) Time to achieve 90% of the steady-state membrane potential (t90%).

https://doi.org/10.1371/journal.pone.0204411.g007
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computations were run in different nodes of a high performance computing cluster, namely

the one described in section 2.5. The four iterations of the optimization algorithm were com-

puted in 23 hours and 16 minutes.

4 Discussion

This work proposes a mathematical framework to adjust ionic current conductances of cardiac

AP models by using response surface approximation-based optimization. The framework has

been applied to update a previously published human ventricular AP model, the CRLP model,

by incorporating [K+]i dynamics. Such incorporation involves readjustment of ionic current

conductances to avoid drifting in intracellular potassium. While adjusting for current

Fig 8. [K+]i evolution following [K+]o changes simulated with the modified CRLP model. a) [K+]i dependence on

[K+]o at different time instants; b) time course of [K+]i for different [K+]o values.

https://doi.org/10.1371/journal.pone.0204411.g008

Table 2. Steady-state values of [K+]i for different [K+]o values as calculated with the optimized CRLP model.

[K+]o (mM) [K+]i (mM)

2.5 73.5

3.0 84.8

3.5 95.8

4.0 107.2

4.5 118.3

5.0 129.3

5.4 138.0

6.0 151.4

6.5 161.6

7.0 172.5

https://doi.org/10.1371/journal.pone.0204411.t002

Table 3. Computational cost of the different protocols used for the optimization.

Protocol Mean STD Max

Steady-state CL = 1000 ms 01:31:45 00:41:31 02:29:31

Steady-state CL = 2000 ms 02:35:38 01:03:47 03:41:11

APD Rate Adaptation 00:28:36 00:14:17 00:53:57

https://doi.org/10.1371/journal.pone.0204411.t003
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conductances, a number of electrophysiological properties are required to remain within avail-

able experimental ranges by properly defining constraints to the optimization problem that is

being solved. The proposed framework can be easily extended to solve other problems fre-

quently arising when developing cardiac computational models, for instance related to the

update of existing models to reproduce the response to pharmacological ion channel inhibi-

tions on top of baseline conditions. In the following subsections, the main aspects of the pro-

posed methodology and the results obtained in this work are discussed.

4.1 Response surface optimization

The use of response surfaces to minimize an objective function subject to a number of con-

straints, as proposed in this study, allows reaching a solution to the proposed problem in a

small number of iterations, thus reducing the computational cost with respect to other previ-

ously published approaches. In [15], Rodriguez et al. proposed an algorithm that uses aug-

mented Lagrangian techniques and relies on successively building RSA of the augmented

Lagrangian to solve a minimization problem like that defined by Eqs 1–4. In this study, the

trust region ratio was used to independently validate the RSA for the objective function and

the constraints instead of considering the augmented Lagrangian of the problem. Our proposal

led to a reduction in the number of times the database was generated and, thus, simplified the

implementation. The model that is optimized in the present work is much more complex than

those used in [15], but the number of times the database was generated was smaller than in all

the cases described in [15].

Also, differently to other optimization algorithms based on e.g. Genetic Algorithms [12,

14], the response surface approach proposed in this study guarantees the convergence to a

local minimum of the problem when the response surfaces are built such that they match the

objective function up to the first order around the point where the approximation is built. In

addition, our response surface approach allows identifying a potential minimum anywhere

within the trust region, not necessarily contained in the database.

Finally, in this work the proposed optimization algorithm was used to solve a problem

where a new characteristic was added to a human ventricular cell model, the CRLP model,

while a number of electrophysiological markers were guaranteed to remain within physiologi-

cal range or closer to it than with the original CRLP model. In other studies, like [43], the aim

of the analysis is similar, but, as opposed to the present study, the objective function is defined

to include multiple electrophysiological properties, for some of which a physiological range

may be available while for others it may not, rather than considering the electrophsyiological

properties as elements to define the constraints imposed in the optimization. In any case, the

same response surface approximation-based optimization algorithm employed in the present

study could be applied to the problem defined in [43].

4.2 Database generation

The size of the database depends on the selected sampling technique. In this study a three-level

full factorial design was used for sampling, which involved 3N sample points, with N the num-

ber of variables to be adjusted (five in this study). However, the proposed optimization frame-

work is independent of the sampling strategy or the size of the database as long as the database

provides enough information to fit the response surface. For instance, increasing the factorial

number from 3 to 5 (the database size increased from 35 = 243 to 55 = 3125 sample points)

only reduced the total number of iterations from 4 to 3, without changing the identified opti-

mum. However, the computational cost increased tenfold.
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The advantage of using factorial designs is that they provide unbiased information for

parameter identification with polynomial RSAs since they provide optimal space filling [19].

However, other sampling strategies are also possible. Monte Carlo simulations represent a very

flexible sampling strategy where the optimal number of sampling points can be defined in

terms of the type of RSA to be used. In this regard, Monte Carlo simulations were used in [44]

to perform sensitivity analysis in electrophysiological models by means of linear multivariate

regression. In addition to generating the required data for model fitting, Monte Carlo simula-

tions were also used to perform population-based simulation studies, as in Wamsley et al. [45].

In this work, the full factorial technique was implemented in order to guarantee that the

algorithm was not limited by the sampling technique since the generated database is sufficient

to build a second order response surface. However, as mentioned above, other techniques

could be tested to reduce the computational cost when a larger number of current conduc-

tances are involved or when large parallel computing capacity is not available.

4.3 Computational cost

The major benefit of the methodology proposed in this study in terms of computational cost is

the high degree of parallelization. It should be noted that the global computation time depends

mainly on two factors: the employed cell model and the stimulation protocols that are per-

formed. As compared to the CRLP or GPB models, which take long computation times, the

computational time for a model like TP06 could be reduced to just a few hours. For the com-

putations of this study a high performance computing cluster was used. The number of simula-

tions involved per iteration makes it possible to use other types of infrastructures such as

GPUs.

Nevertheless, the computation times associated with the presented response surface

approximation-based methodology are short if compared with those for the same optimization

solved by using a genetic algorithm, which could require around 100 generations and would

cost more than 350 hours, even if all individuals in the population were simulated in parallel.

In [12], 500 generations were needed to fit the model, which would still involve longer compu-

tation times.

4.4 Definition of the optimization problem

In this work, the integral of the total potassium current (IK,tot) during one cardiac cycle was

selected as the objective function for minimization. This selection was made to maintain [K+]i

homeostasis after incorporation of [K+]i dynamics into the CRLP human ventricular model.

Optimal current conductances were identified, with additional constraints imposed to guaran-

tee that fundamental electrophysiological properties took values within experimental limits.

For some of those properties the physiological range reported in experimental studies of the

literature is extremely large. To avoid a solution for the modified CRLP model that, although

in physiological range, was very far from the average experimental behavior, the range of

allowed APD values was somewhat restricted, as described in 2.2.5.

4.5 Model comparison

The adjusted CRLP model developed in this study was compared with previous human ven-

tricular AP models published in the literature, namely the CRLP, GPB, TP06 and ORd models.

This comparison was made in terms of AP traces, [K+]i concentrations and ICaL, IK1, Incx, ICl,bk
and Ito currents. In practically all cases, the results obtained for the adjusted CRLP model were

along the lines of those obtained with the other models. The only current that was found to be

smaller for the modified CRLP model as compared to the other models, including the original
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CRLP model, was IKr. This reduced current led to shorter APD prolongation following IKr
blockade, but still within experimentally reported limits. Specifically, in [42] an average APD

prolongation of 56.3% with a standard deviation of 34.6% was reported. The difference

between the mean experimental prolongation and that obtained for the modified CRLP model

was within twice the experimental standard deviation.

One of the differences between the GPB / CRLP models and the other human ventricular

models is the inclusion of the ICl,bk current. This current was expected to have a minor role in

modulating electrophysiological properties, but, as reported in [33], APD showed the highest

sensitivity (-86%) to changes in the maximal ionic conductance of the ICl,bk current. In the

CRLP model, this sensitivity was reduced (-46%) but it was still large. As there is similarity

between the sensitivities of the APD and the integral of the total potassium current to varia-

tions in ionic conductances (see Fig 3), the ICl,bk current ended up having a very important

indirect role in modulating potassium balance.

As shown in the presented results, major differences between the modified and the original

CRLP models include APD shortening and decrease in the membrane potential during the pla-
teau phase. Regarding the latter, experimental results [46] show that the plateau voltage takes

values around 18 mV, while in the modified CRLP model the plateau voltage is 8 mV. Differ-

ences in Incx and ICl,bk, even if not large, could still underlie those major deviations of the modi-

fied CRLP model with respect to the original one. Future studies could include the membrane

potential during the plateau phase as an electrophysiological marker to be included in the opti-

mization algorithm for model refinement. This could definitely have an impact on balancing

the currents involved in this phase of the AP.

Our results demonstrate that with the proposed methodology it was possible to successfully

update the CRLP model by incorporating [K+]i dynamics while keeping the model’s ability to

reproduce risk-related markers for investigation of cardiac arrhythmias. As described in

Table 1, the evaluated risk markers remain within experimental limits or are closer to their

physiological values than with the original CRLP model.

4.6 Response to potassium concentration changes

While for some investigations the assumption of constant [K+]i may be valid, there are many

situations where [K+]i varies, for instance following changes in the frequency of stimulation or

in [K+]o values. As shown in 2.2.2, the assumption of constant [K+]i may also hide an imbal-

ance between potassium currents and [K+]i, as the latter is not allowed to change.

Simulation results obtained when varying the level of [K+]o allowed confirming that both

the incorporation of [K+]i dynamics and the use of the optimization algorithm to readjust the

ionic conductances improved the CRLP model for simulation of abnormal conditions (see sec-

tion 3.5). Although there are no experimental measurements of [K+]i, the model can be

assessed by using measurements that indirectly validate its behavior. On the one hand, the

model is able to reproduce behaviors similar to those of the experimental results presented in

[38]. On the other hand, the inclusion of [K+]i dynamics make it possible to evaluate variations

in [K+]i in response to [K+]o changes like those reported in hemodialysis scenarios [18]. In this

latter case, simulated [K+]i variations were in the expected direction as to compensate for the

effects of changing [K+]o.

When [K+]o increases, there is an increase in the Nernst potential for potassium and, thus, a

reduction in the driving force of potassium, which diminishes the amount of potassium leav-

ing the cell. Additionally, an increase in [K+]o alters the current through the sodium-potassium

pump. Both effects contribute to increase [K+]i, which leads to a reduction in the Nernst poten-

tial for potassium, thus returning the cell to an equilibrium state.
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5 Conclusions

The optimization framework proposed in this study allows estimating ionic current conduc-

tances of AP models at an affordable computational cost while guaranteeing physiologically

plausible values of selected electrophysiological properties. This framework has been applied

to introduce [K+]i dynamics into an existing human ventricular AP model, namely the CRLP

model. Solving the formulated optimization problem avoids the imbalance generated in the

CRLP model after introducing [K+]i dynamics, without deteriorating the performance of the

model in terms of representation of electrophysiological behavior and arrhythmic risk-related

properties. The updated CRLP model built in this study is thus suitable for investigation of car-

diac arrhythmias, particularly under conditions involving large changes in [K+]i.
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Writing – original draft: Jesús Carro.
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