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This paper presents a methodological framework for robust estimation of the correlation dimension in HRV signals. It includes (i)
a fast algorithm for on-line computation of correlation sums; (ii) log-log curves fitting to a sigmoidal function for robust maximum
slope estimation discarding the estimation according to fitting requirements; (iii) three different approaches for linear region slope
estimation based on latter point; and (iv) exponential fitting for robust estimation of saturation level of slope series with increasing
embedded dimension to finally obtain the correlation dimension estimate. Each approach for slope estimation leads to a correlation
dimension estimate, called ̂𝐷

2
, ̂𝐷
2(⊥)

, and ̂𝐷
2(max). ̂𝐷2 and ̂𝐷2(max) estimate the theoretical value of correlation dimension for the

Lorenz attractor with relative error of 4%, and ̂𝐷
2(⊥)

with 1%.The three approaches are applied to HRV signals of pregnant women
before spinal anesthesia for cesarean delivery in order to identify patients at risk for hypotension. ̂𝐷

2
keeps the 81% of accuracy

previously described in the literature while ̂𝐷
2(⊥)

and ̂𝐷
2(max) approaches reach 91% of accuracy in the same database.

1. Introduction

Heart rate variability (HRV) has beenwidely used as amarker
of the autonomic nervous system (ANS) regulation of the
heart. Classical HRV indices include global descriptive statis-
tics which characterize HRV distribution in the time domain
(mean heart rate and standard deviation of the normal-to-
normal beat interval, among others) and in the frequency
domain (power in the very low frequency, and low frequency
(LF) and high frequency (HF) bands). The activity of the two
main branches of the ANS, sympathetic and parasympathetic
systems, has been related with the power in the LF and HF
bands, respectively [1].

HRV data often present nonlinear characteristics, possi-
bly reflecting intrinsic physiological nonlinearities, such as
changes in the gain of baroreflex feedback loops or delays

in conduction time, which are not properly described by
classical HRV indices.

The most widespread methods used to characterize non-
linear system dynamics are based on chaos theory. The ques-
tion of whether HRV arises from a low-dimensional attractor
associated with a deterministic nonlinear dynamical system
or whether it has a stochastic origin is still under debate.

Of great interest is the concept of system complexity,
which refers to the richness of process dynamics. Complexity
measures are based on the theory of nonlinear systems but
may be applied to both linear and nonlinear systems. Several
techniques attempting to assess complexity have been devel-
oped such as detrended fluctuation analysis [2], Lempel-Ziv
complexity [3], Lyapunov exponents [4], the correlation
dimension (𝐷

2
) [5], and approximate and sample entropies

[6].
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The reduction of HRV complexity has been associated
with age, disease, and unbalanced cardiovascular regulation
[7]. Complexity measures have been proven to characterize
HRV signals more successfully than linear approaches in cer-
tain applications [8]. In [9–11] point correlation dimension
of HRV signals predicted hypotension events in pregnant
women during spinal anesthesia for cesarean section, some-
thing which time and frequency domain indices were unable
to do.

While these measurements are of considerable interest,
their application to HRV has some pitfalls that could mislead
their interpretation. One of such limitations arises from their
application to limited time series. Correlation dimension
estimation is highly dependent on the length of the time series
[12]. Several studies have reported the effect of data length on
𝐷

2
estimation, as well as proposals to alleviate this effect [13,

14]. Stationarity is another requirement that a time series
has to fulfil to obtain reliable results. However, satisfying the
constraint of finite series and stationarity at the same time is
usually difficult [15]. Yet another limitation of these measure-
ments is the long computational time required. Data length
exponentially increases the computational time cost in a
classical sequential approach. In the case of 𝐷

2
, several

attempts to try to reduce this factor have been reported by
Widman et al. [16] and Zurek et al. [17], the latter proposing
parallel computing using MPI (Message Passing Interface).

Themain goal of this study is to propose amethodological
framework for robust and fast estimation of𝐷

2
and its appli-

cation inHRV signals. Section 2 starts with a definition of the
correlation dimension and its classical estimation. An algo-
rithm for its fast computation is proposed. Robustness is
addressed by fitting the log-log curve to a sigmoid function
after which three alternative approaches for𝐷

2
estimation are

presented. Section 3 introduces synthetic and real (HRV
signals) data where the proposed estimates are evaluated and
interpreted. Section 4 presents the results while Section 5 sets
out the discussion and conclusions of the study.

2. Methods

2.1. Correlation Dimension. Let 𝑥(𝑛), 𝑛 = 1, . . . , 𝑁 be the
time series of interest, which in HRV analysis will be the 𝑅𝑅
interval series normalized to unit amplitude, with𝑁being the
total number of beats. A set of𝑚-dimensional vectors, y

𝑚
(𝑖),

called reconstructed vectors, are generated [18]:

y𝑚
𝑖
= [𝑥(𝑖), 𝑥(𝑖 + 𝜏), 𝑥(𝑖 + 2𝜏), . . . , 𝑥(𝑖 + (𝑚 − 1)𝜏)]

𝑇
, (1)

where 𝜏 represents the delay between consecutive samples in
the reconstructed space. Then, the amount of reconstructed
vectors is 𝑁

𝑚
= 𝑁 − 𝜏(𝑚 − 1) for each 𝑚-dimension. The

distance between each pair of reconstructed vectors, y𝑚
𝑖
, y𝑚
𝑗
,

is denoted as

𝑑

𝑚

𝑖,𝑗
= 𝑑 (y𝑚

𝑖
, y𝑚
𝑗
) (2)

and this can be computed as the norm of the difference vector
Δy𝑚
𝑖,𝑗
= y𝑚
𝑖
− y𝑚
𝑗
. (In Appendix A different norms and their

effect on correlation dimension estimates from finite time

series are discussed.) The correlation sum which represents
the probability of the reconstructed vector pair distance being
smaller than a certain threshold 𝑟 is computed as

𝐶

𝑚
(𝑟) =

1

𝑁

𝑚
(𝑁

𝑚
− 1)

𝑁
𝑚

∑

𝑖,𝑗=1

𝐻(𝑟 − 𝑑

𝑚

𝑖,𝑗
)

=

1

𝑁

𝑚
(𝑁

𝑚
− 1)

𝑁
𝑚

∑

𝑖=1

𝑐

𝑚

𝑖
(𝑟) ,

(3)

where𝐻(⋅) is the Heaviside function defined as:

𝐻(𝑥) = {

1, 𝑥 ≥ 0,

0, 𝑥 < 0,

(4)

and 𝑐𝑚
𝑖
(𝑟) = ∑

𝑁
𝑚

𝑗=1
𝐻(𝑟 − 𝑑

𝑚

𝑖,𝑗
).

For deterministic systems, 𝐶
𝑚
(𝑟) decreases monotoni-

cally to 0 as 𝑟 approaches 0, and it is expected that 𝐶
𝑚
(𝑟) is

well approximated by 𝐶
𝑚
(𝑟) ≈ 𝑟

𝐷
𝑚

2 . Thus, 𝐷𝑚
2
can be defined

as

𝐷

𝑚

2
= lim
𝑟→0

log𝐶
𝑚
(𝑟)

log (𝑟)
. (5)

For increasing𝑚,𝐷𝑚
2
values tend to saturate to a value𝐷

2

which constitutes the final correlation dimension estimate.

2.2. Fast Computation of Correlation Sums. One important
limitation of 𝐷

2
estimation is the long computational time

required mainly due to the sequential estimation of corre-
lation sums. This section describes an algorithm for the fast
computation of correlation sums based on matrix operations
(MO). A matrix S which contains the differences between all
pairs of samples of 𝑥(𝑛) is computed as

S = X − X𝑇, (6)

where X is the𝑁 ×𝑁matrix:

X =(

𝑥(1) 𝑥 (2) ⋅ ⋅ ⋅ 𝑥 (𝑁)

𝑥 (1) 𝑥 (2) ⋅ ⋅ ⋅ 𝑥 (𝑁)

𝑥 (1) 𝑥 (2) ⋅ ⋅ ⋅ 𝑥 (𝑁)

...
... d

...
𝑥 (1) 𝑥 (2) ⋅ ⋅ ⋅ 𝑥 (𝑁)

), (7)

=

x . . . xi,1 xi+ . . . xi+m− . . . xN,1

...
...

...
...

...
...

...
...

x1,j . . . xi,j xi+1,j . . . xi+m−1,j . . . xN,j

x1,j+1 . . . xi,j+1 xi+1,j+1 . . . xi+m−1,j+1 . . . xN,j+1

...
...

...
...

...
...

...
...

x1,j+m−1 . . . xi,j+m−1 xi+1,j+m−1 . . . xi+m−1,j+m−1 . . . xN,j+m−1

...
...

...
...

...
...

...
...

x1,N . . . xi,N xi+1,N . . . xi+m−1,N . . . xN,N

,

(8)
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where 𝑥
𝑖,𝑗
symbolizes 𝑥(𝑖)−𝑥(𝑗). For instance, the dashed box

contains the elements of the difference vector Δy𝑚
𝑖,𝑗

for 𝜏 =
1. For each embedded dimension 𝑚 and the reconstructed
vector 𝑖, the difference vectors Δy𝑚

𝑖,𝑗
generates a S𝑚

𝑖
matrix:

m
i =

xi,1 xi+ xi+m−1,m

...
...

...
...

xi,j xi+1,j+1 . . . xi+m−1,j+m−1

...
...

...
...

xi,N xi+1,N +1 . . .

. . .

xi+m−1,N

=

...

...

Δ m
i,N

T

Δ m
i,1

T

Δ m
i,j

T . (9)

The selected norm is applied to the matrix S𝑚
𝑖
, generating

the norm vector d𝑚
𝑖
, whose elements are distances d𝑚

𝑖,𝑗
. To

compute the limit in (5), distances should be compared with
a set of thresholds, which implies the repetition of the whole
process as many times as the number of thresholds. This
repetition is avoided since distances in d𝑚

𝑖
are compared with

a whole set of thresholds r = [𝑟
1
, 𝑟

2
, . . . , 𝑟

𝑁
𝑟

]:

Γ

𝑚

𝑖
= (

𝐻(𝑟1 − 𝑑
𝑚

𝑖,1
) 𝐻(𝑟2 − 𝑑

𝑚

𝑖,1
) ⋅ ⋅ ⋅ 𝐻(𝑟𝑁

𝑟

− 𝑑
𝑚

𝑖,1
)

𝐻(𝑟1 − 𝑑
𝑚

𝑖,2
) 𝐻(𝑟2 − 𝑑

𝑚

𝑖,2
) ⋅ ⋅ ⋅ 𝐻(𝑟𝑁

𝑟

− 𝑑
𝑚

𝑖,2
)

...
...

...
...

𝐻(𝑟1 − 𝑑
𝑚

𝑖,𝑁
𝑚

) 𝐻(𝑟2 − 𝑑
𝑚

𝑖,𝑁
𝑚

) ⋅ ⋅ ⋅ 𝐻(𝑟𝑁
𝑟

− 𝑑
𝑚

𝑖,𝑁
𝑚

)

),

(10)

where Γ𝑚
𝑖

is a 𝑁
𝑚
× 𝑁

𝑟
matrix, which contains ones and

zeros. The accumulative addition of each column represents
the partial correlation sum of the 𝑖th reconstructed vector for
a set of thresholds 𝑟:

c𝑚
𝑖
= Γ

𝑚

𝑖

𝑇1 = (

𝑐

𝑚

𝑖
(𝑟

1
)

𝑐

𝑚

𝑖
(𝑟

2
)

...
𝑐

𝑚

𝑖
(𝑟

𝑁
𝑟

)

) , (11)

where 1 is a𝑁
𝑚
× 1 vector whose elements are equal to one.

Finally, the procedure has to be repeated varying the 𝑖
index𝑁

𝑚
times to compute𝐶

𝑚
(𝑟).This technique saves com-

putational time due to the usage of a set of thresholds in one
step.

2.3. New Approaches for𝐷
2
Assessment

2.3.1. Sigmoid Curves as Surrogates of Log-Log Curves. 𝐷
2
has

to be estimated from (5) whose numerator and denominator
both tend to −∞ as 𝑟 tends to 0. Therefore, applying
L’Hôpital’s rule the equation can be rewritten as [19]

𝐷

𝑚

2
= lim
𝑟→0

𝜕 log𝐶
𝑚
(𝑟)

𝜕 log (𝑟)
. (12)

Since the size of the time series is finite, choosing small
values of 𝑟 to evaluate this limit is problematic. For values of
𝑟 close to 0, very few distances contribute to the correlation
sum,making the estimation unreliable.The evaluation of this

0
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C
m
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Figure 1: Log-log curves for a dynamic system. Data correspond to
an RR interval series extracted from 30mins of ECG recording.

expression is usually done in a linear region in the log(𝐶
𝑚
(𝑟))

versus log(𝑟) representation, called the log-log curve. The
slope of this linear region is considered an estimate of 𝐷𝑚

2
.

There are different approaches for estimating this slope.
Maximum slope searching can be done by directly computing
the increments in the log-log curve. Another approach is to
estimate numerically the maximum of the first derivative of
the log-log curve. Nevertheless these approaches encounter
some limitations due to the usual nonequidistant sampling of
𝑟 values in the logarithmic scale. Yet another limitation arises
in the presence of dynamic systems whose log-log curves dis-
play several linear regions, as can be seen in Figure 1
where the data corresponds to an RR interval series extracted
from a 30 minute ECG recording. In order to estimate the
slope of the linear region of the log-log curve, an attempt to
artificially extend the linear region is made by excluding the
self-comparisons (𝑑

𝑖,𝑖
) from the correlation sums.

However, the basis of the approach proposed in this
work to improve 𝐷

2
estimation lies in considering self-com-

parisons. Figure 2 illustrates how log-log curves behave in
both situations, considering or not considering self-compar-
isons. As it is shown, both share part of the linear region. Our
proposal is to use sigmoidal curve fitting (SCF) over the log-
log curves to obtain an analytic function whose maximum
slope in the linear region is well defined. These log-log
curves are reminiscent of the biasymptotic fractals studied by
Rigaut [20] and Dollinger et al. in [21] in which exponential
fittings were proposed. The sigmoidal fitting is applied to the
interpolated log-log curves computed with evenlyspaced 𝑟
values.

A modified Boltzmann sigmoid curve was used by
Navarro-Verdugo et al. [22] as a model for the phase transi-
tion of smart gels:

𝑓 (𝑥) = 𝐴

2
−

(𝐴

2
− 𝐴

1
)

𝐵 + 𝑒

(−𝑥+𝑥
𝑜
)/𝛼
,

(13)
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Figure 2: Log-log curves discarding and accepting self-comparisons. Arrows show the slope of the scaling range. Data correspond to an RR
interval series of 300 beats.

where𝐴
1
,𝐴
2
, 𝑥
𝑜
, and 𝐵 are the parameter designed.The first

derivative of 𝑓(𝑥) is

𝑑𝑓 (𝑥)

𝑑𝑥

= −

(𝐴

2
− 𝐴

1
) 𝑒

(−𝑥+𝑥
𝑜
)/𝛼

[𝛼(𝐵 + 𝑒

(−𝑥+𝑥
𝑜
)/𝛼
)

2

]

. (14)

In our study the sigmoid curve 𝑓(𝑥) is fitted to log-log
curve.The first derivative, (14), is determined analytically and
its maximum constitutes the slope of the linear range, that is,
̂

𝐷

𝑚

2
. Note that hat notation refers the use of SCF.
In order to achieve a goodfitting, the thresholds, r, have to

guarantee that both asymptotes are reached. In this work r ∈
[0.01 3] with a step of 0.01. The upper asymptote is reached
when all comparisons are above the threshold, 𝐶𝑚(𝑟) ≈ 1 ,
and the lower when only the self-comparison is below,
𝐶

𝑚
(𝑟) =1/𝑁

𝑚
(𝑁

𝑚
− 1).

The SCF approach is robust in the presence of dynamic
systems which exhibit log-log curves with more than one
linear region since when the fitting is not good enough, no
estimate is given. In this work, the requirement for a good fit-
ting is to achieve a regression factor greater than 0.8.

As the embedding dimension 𝑚 increases, the linear
regions of the log-log curves tend to be parallel to each other.
Thus, ̂𝐷𝑚

2
estimates tend to saturate to a certain value, which

is considered the correlation dimension ̂𝐷
2
. The correlation

dimension is estimated fitting the ̂𝐷𝑚
2
versus𝑚 curve follow-

ing a modified version of that used by Carvajal et al. [23]:

𝐷

𝑚

2
= 𝐷

2
(1 − 𝐴𝑒

−𝑘𝑚
) , (15)

where 𝐴, introduced in this study in order to reach the satu-
ration level more quickly than previously proposed, and 𝑘 are
exponential growth factors.

2.3.2. New Approaches for 𝐷
2
Estimation. As mentioned

previously, we chose ̂𝐷𝑚
2
as themaximum slope on each fitted

sigmoid curve. Nevertheless the linear range is composed of
more than one point. Instead of considering only one point
per curve, in this study we propose a new approach for 𝐷

2

estimation considering a set of points extracted from these
linear ranges.

The proposed strategy is based on selecting one point of
the linear range in the SCF log-log curve of the lowest embed-
ded dimension𝑚 and moving forward to the next embedded
dimension 𝑚 + 1, selecting the point of the corresponding
SCF log-log curve with minimum distance to the former
curve (i.e. where the perpendicular to the 𝑚th log-log curve
intersects the (𝑚 + 1)th log-log curve, as in the gradient
descent technique); see Figure 3. The procedure is repeated
up to the maximum embedded dimension analyzed. Then,
several sets of slopes are computed (one for each point in the
linear region around the maximum slope of the SCF log-log
curve of the lowest embedded dimension) providing a set of
correlation dimension estimates per embedded dimension
(̂𝐷𝑚
2(⊥),𝑟

). The dependence on 𝑟 in the notation indicates that
each set of correlation dimension estimates is linked to an 𝑟
value, corresponding to the first value of each set.

Finally, (15) is used to estimate the final correlation
dimension (̂𝐷

2(⊥),𝑟
) for each set of points.These (̂𝐷

2(⊥),𝑟
) esti-

mates are linked to the log(𝑟) value of the lowest embedded
dimension. Finally, the maximum of the ̂𝐷

2(⊥),𝑟
is selected as

the new𝐷
2
estimate, called ̂𝐷

2(⊥)
.

Another new approach for 𝐷
2
estimation based on sam-

ple entropy (SampEn) is now presented. SampEn was defined
by Zurek et al. [17] as

SampEn (𝑚, 𝑟,𝑁) = log (𝐶
𝑚
(𝑟)) − log (𝐶

𝑚+1
(𝑟)) , (16)
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where, in this case, 𝐶
𝑚
(𝑟) is computed as in (3), but without

considering self-comparisons. Let us define SampEn
𝑖=𝑗
(𝑚, 𝑟)

as the sample entropy considering self-pairs, which is easily
computed for all embedded dimensions 𝑚 and a huge set of
thresholds r using the fast algorithm described in Section 2.2.
We can generate a SampEn

𝑖=𝑗
(𝑚, 𝑟) surface from the fitted

sigmoid curves, as can be seen in Figure 4, an example of a
300-beat RR interval series extracted from one recording of
the database used in [10]. For each embedded dimension, the
value of 𝑟 which maximizes SampEn

𝑖=𝑗
(𝑚, 𝑟) is used to eval-

uate the slope of the linear region of the SCF log-log curves,
̂

𝐷

𝑚

2(max), yielding another 𝐷
2
estimate, called in this paper

̂

𝐷

2(max).

3. Materials

The selected time series chosen to validate the approaches
proposed in this paper to estimate𝐷

2
are the Lorenz attractor,

the MIX(𝑃) process, and real HRV signals, respectively.

Lorenz Attractor. The Lorenz system is described by three
coupled first order differential equations whose solution
exhibits a chaotic behaviour system for certain parameter val-
ues and initial conditions. This is called the Lorenz attractor:

𝑑𝑥

𝑑𝑡

= 𝜎 (𝑦 − 𝑥) ,

𝑑𝑦

𝑑𝑡

= 𝜌𝑥 − 𝑦 − 𝑥𝑧,

𝑑𝑧

𝑑𝑡

= −𝛽𝑧 + 𝑥𝑦.

(17)
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For each embedded dimensionmaximumpoint ismarkedwith solid
triangle. Circles correspond to the 𝑟 values which define ̂𝐷

2(⊥)
.

For parameter values 𝜎 = 10, 𝜌 = 28, and 𝛽 = 8/3
the theoretical𝐷

2
value is 2.02 [24]. In this study, the system

equations are discretized with a time step of 0.01.

𝑀𝐼𝑋(𝑃) Signals. MIX(𝑃) is a family of stochastic processes
that samples a sine for 𝑃 = 0 and becomes more random
as 𝑃 increases (𝑃 = 1 completely random) [5] following the
expression

MIX(𝑃)
𝑗
= (1 − 𝑍

𝑗
)𝑋

𝑗
+ 𝑍

𝑗
𝑌

𝑗
, (18)

where 𝑋
𝑗
=
√
2 sin(2𝜋𝑗/12), 𝑌

𝑗
≡ 𝑖.𝑖.𝑑 uniform random

variables on [−√3,√3], and 𝑍
𝑗
≡ 𝑖.𝑖.𝑑. random variables,

with 𝑍
𝑗
= 1 with probability 𝑃, and 𝑍

𝑗
= 0 with probability

1−𝑃. MIX indicates amixture of deterministic and stochastic
components.

HRV Signals. The HRV representation used in this study is
the time difference between the occurrences of consecutive
normal heart beats, the so-called RR interval. Ectopic beats
as well as missed and false detections introduce some extra
variability in theRR interval series which is not representative
of the ANS activity. Thus, they were detected and corrected
[25].The RR interval series analysed in this study belongs to a
database recorded at theMiguel Servet University Hospital in
Zaragoza (Spain).That database was used to predict hypoten-
sion events during spinal anesthesia in elective cesarean
delivery by HRV analysis [10]. It consists of ECG signals from
11 women with programmed cesarean section recorded at a
1000Hz sampling frequency immediately before the cesarean
surgery. Five of them suffered a hypotension event during the
surgery (Hyp) and 6 did not (NoHyp). The series analysed
correspond to 5 minutes in a lateral decubitus position. See
[10] for further database details.

4. Results

All the results presented in this section are computed using
the ℓ
∞
-norm. The effect of different norms in 𝐷

2
estimation

is discussed in Appendix A.
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Table 1: Computational time of correlation sums estimated for
Lorenz attractor series of different sample lengths. 𝑆

𝑝
is the speed-

up achieved and defined as 𝑆
𝑝
= 𝑇Seq/𝑇MO, where 𝑇Seq is the time

demand for a sequential algorithm and 𝑇MO the time demand for
the proposed technique based on matrix operations.

N (samples) 𝑇Seq (s) 𝑇MO (s) 𝑆

𝑝

300 1086 0.9 ≈1200
5000 8.69𝑒5 50 ≈16000
10000 3.63𝑒6 300 ≈12000

The computational time cost of the correlation sums
depends on the length of the data, the maximum embedded
dimension considered, and the amount of thresholds used.
The results shown in Table 1 correspond to computational
time required for different data lengths of Lorenz attractor
series, a maximum embedded dimension of 16, and a set of
300 threshold values 𝑟 evenlyspaced from 0.01 to 3.The com-
putational time required for a sequential approach is denoted
by𝑇Seq whereas the time required for the proposed technique,
based on matrix operations, is denoted by 𝑇MO. This allows
defining the speed up achieved by the novel approach as the
ratio between both measurements, 𝑆

𝑝
= 𝑇Sep/𝑇MO. As it is

shown in Table 1, 𝑆
𝑝
increases with data length. For a 300-

sample data (usual length for a 5minute RR interval series)
correlation sums are estimated in approximately 1 s.

The Lorenz attractor series was used to validate the new
proposed methodologies. Figure 5(a) displays the SCF log-
log curves for embedded dimensions𝑚 from 1 to 10. The sets
of points where the slope is evaluated according to (15) are
displayed for different starting points. For each starting point,
the corresponding set of points is selected following a gradi-
ent descent technique. Figure 5(b) shows the slope estimate
(̂𝐷𝑚
2(⊥),𝑟

) versus𝑚 for each starting point. Figure 5(c) displays
the correlation dimension estimate (̂𝐷

2(⊥),𝑟
) versus log(𝑟) for

each starting point. The maximum (̂𝐷
2(⊥), 𝑟

) constitutes the
novel𝐷

2
estimate (̂𝐷

2(⊥)
).

Table 2 displays correlation dimension estimates using
the different approaches presented in this study. Note that
although the three approaches give results close to the theo-
retical value of Lorenz attractor correlation dimension,
the ̂𝐷

2(⊥)
approach is the closest one. Relative errors for

approaches ̂𝐷
2
and ̂𝐷

2(max) are above 4%, while for ̂𝐷
2(⊥)

it
is just 1%; 𝐷

2
estimated as described in [10] is also included

for comparison purposes.
̂

𝐷

2
was applied to a set of MIX series with different 𝑃

values (0.1, 0.4, and 0.8).These estimates can be considered as
measures of the randomness of the signals when these signals
are finite stochastic processes; see Figure 6.

The same database for HRV analysis as in [10] was used.
The results shown in Table 2 are divided into hypotension
and nonhypotension groups. The approaches proposed in
this paper were applied as well as the classical correlation
dimension estimate described in [10] included for compari-
son purposes. The distribution of the data was found to be
not normally distributed by the Kolmogorov-Smirnov test,

Table 2: 𝐷
2
estimated by different approaches for Lorenz attrac-

tor series (5000 samples) and HRV signals (300 samples). Data
expressed as median | interquartile range.

Lorenz HRV
Hyp NoHyp P value

𝐷

2
[10] 1.93 5.92|0.57 4.39|1.26 0.028

̂

𝐷

2
1.93 5.94|0.60 4.81|0.79 0.028

̂

𝐷

2(⊥)
2.01 6.41|0.65 5.11|0.77 0.028

̂

𝐷

2(max) 1.93 5.88|0.49 4.83|0.70 0.010

Table 3: ROC area for the analysis of all studied correlation
dimension estimates for the database used. Accuracy, sensibility, and
specificity estimatedwith the correspondent cut points are expressed
in percentage.

ROC area Acc. Sen. Spe.
𝐷

2
[10] 0.900 81.8 71.4 100

̂

𝐷

2
0.900 81.8 71.4 100

̂

𝐷

2(⊥)
0.900 90.9 100 85.7

̂

𝐷

2(max) 0.967 90.9 83.3 100

and therefore the Mann-Whitney 𝑈 test was applied to eval-
uate their statistical differences in medians. The differences
between both groups for all estimates were found to be
statistically significantwith a𝑃 value lower than 0.03. In order
to evaluate the discriminant power of the proposedmeasures,
ROC analysis was performed. Area of the ROC curve,
accuracy, sensitivity, and specificity for all the proposed
approaches and the classical 𝐷

2
estimate used in [10] were

displayed in Table 3.The proposed ̂𝐷
2
estimates maintain the

accuracy achieved in [10] while the techniques based on the
SampEn surface and the gradient descent actually increase it.

5. Discussion and Conclusion

In this paper amethodological framework has been proposed
to compute the correlation dimension (𝐷

2
) of a limited time

series such as HRV signals which includes fast computation
of the correlation sums, sigmoidal curve fitting of log-log
curves, three approaches for estimating the slope of the linear
region, and exponential fitting of the ̂𝐷𝑚

2
versus𝑚 curves.

One important limitation for the application of 𝐷
2
to

HRV analysis is the long computational time required for
the correlation sums. In an attempt to solve this problem,
an algorithm has been proposed based on matrix operations.
In [17] another approach was described based on parallel
computing which decreased the time demand. Nevertheless,
the computational times achieved in the present work were
obtained with a regular computer (Windows 7 based PC,
Intel Core i7 3.5 GHz, 16GbRAM with Matlab R2011a). As
an example, for a signal of 300 sample length (a usual length
in typical 5min HRV analysis, ≈300 beats), the time demand
was reduced with respect to the sequential approach from 18
minutes to 1 second, which allows the online computation of
𝐷

2
in clinical practice. Computational time required for the

proposed approaches is discussed in Appendix B.
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Another limitation of the𝐷
2
estimate is its reliability. One

of the system characteristics that can lead to an unreliable
measurement of𝐷

2
is the nonstationarity of the data. Several

techniques attempting to characterize these dynamic systems
have been reported,mainly focused on changing the 𝜏param-
eter or even taking into account the time between the vectors
[13, 26, 27]. Searching the linear region of the log-log curves
becomes a difficult challenge when the system is nonstation-
ary sincemore than one linear region can appear and classical
𝐷

2
estimate is unreliable in those cases. The SCF approach is

more robust since it does not give any estimate if the fitting is
not good enough.

The novel approaches proposed in this study for the esti-
mation of 𝐷

2
use the SCF approach. ̂𝐷

2(⊥)
exploits the fact

that the linear region of the log-log curves is almost parallel
for high embedded dimensions. This allows a set of points
surrounding the maximum slope point to be considered,
and therefore several correlation dimension estimates are
obtained for these starting points. ̂𝐷

2(max) is based on the dif-
ferences between two consecutive log-log curves that define
the SampEn

𝑖=𝑗
surface.This surface showedmaximum values

for each embedded dimension,𝑚, and a specific threshold, 𝑟,
providing another estimation of the correlation dimension.
̂

𝐷

2(⊥)
was found to be the closest to the theoretical correlation

dimension value for the Lorenz attractor series with 5000 size
points and for ℎ = 0.01, with a relative error of 1%, while ̂𝐷

2

and ̂𝐷
2(max) obtained a relative error of 4%with the same data.

The correlation dimension is known to be a surrogate of
the fractal dimension of a chaotic attractor [12]. However,
when applied to limited time series, nonzero finite correlation
dimension values do not imply the existence of an under-
lying chaotic attractor. For example, when applied to MIX
processes, nonzero finite𝐷

2
values were obtained, higher for

more random processes. Thus, although 𝐷
2
cannot be inter-

preted as the fractal dimension of an underlying chaotic
attractor, it still gives a measure of the complexity of the pro-
cess at least regarding its unpredictability.

Thus, the 𝐷
2
estimate in HRV signals may shed light on

the degree of complexity of the ANS or how many degrees
of freedom it has. The group of women (Hyp) suffering
hypotension events occurring during the surgery of a pro-
grammed cesarean section under spinal anesthesia showed
higher 𝐷

2
values than the group who did not (NoHyp), in

the lateral decubitus position. As an example Figure 7 shows
one patient of each group and the ̂𝐷

2(⊥)
estimate. All the

proposed correlation dimension estimates not only maintain
the accuracy obtained in [10], they also increase it. Predicting
hypotension is a challenge since it occurs in the 60% of the
cases producing fetal stress [28]. If the goal is to predict those
who are going to suffer hypotension, then the estimates that
performed 100% of specificity will be selected, being𝐷

2
[10],

̂

𝐷

2
, and ̂𝐷

2(max). Otherwise, if the goal is to use prophylaxis in
the less number of patients to prevent hypotension, then the
estimates that performed 100% of sensitivity will be chosen,
and in this case it is ̂𝐷

2(⊥)
. The effect of prophyilaxis on

patients who finally are not going to suffer a hypotension
event and the relation with fetal stress needs further studies.

The contribution of this paper to the field is the proposal
of a methodological framework for a reliable estimation of
the correlation dimension from a limited time series, such as
HRV signals, avoiding or at least alleviating the misleading
interpretations that can be made from classical correlation
dimension estimates. The computational speed-up achieved
may allow this framework to be considered for monitoring
in clinical practice. Nevertheless, the main limitation for the
application of these methodologies to HRV analysis lies in
its relation with the underlying physiology, which is still
unclear and needs further studies. In spite of the fact that the
framework proposed in this paper is focused on the charac-
terization of HRV signals, its applicability could be extended
to a wide range of fields. However, an evaluation would be
needed to ascertain whether the proposed approaches are
appropriate in each particular case.
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Appendices

A. Use of Norms and Thresholds in
Correlation Dimension Estimates

The correlation dimension is considered norm invariant [14].
However, the effect of selecting the norm in correlation
dimension estimates deserves further attention when applied
to a finite data set. The norm of the difference vector Δy𝑚

𝑖,𝑗

defines the distance 𝑑𝑚
𝑖,𝑗
in (2). Norms can be defined from ℓ

1

(‖ ⋅ ‖
1
) to ℓ
∞
(‖ ⋅ ‖
∞
). Left panel in Figure 8 shows normunity

for ℓ
1
and for ℓ

2
. Moreover, it is illustrated how a distance 𝑑2

𝑖,𝑗

can be lower than the norm unity or not depending on which
norm is used. The norm unity is chosen as an example of
any threshold 𝑟 used in the correlation dimension algorithm.
Therefore, by fixing the set of thresholds, the appearance of
the linear region of the log-log curve can be compromised.

In Figure 8 the right panel shows how the application
of different norms shifts the log-log curves losing the entire
linear region in some cases due to the fixed range of thresh-
olds. The range of these thresholds should be long enough to
ensure that the linear regions are contained therein; thus, the
election of the norm compromises the set of thresholds used.

In the SCF approach it is particularly important that the
two asymptotic regions should be represented in the log-log
curve. Therefore, the correct selection of the norm and the
range of the set of thresholds are critical to assure the good-
ness of the SCF approach. Table 4 shows the correlation
dimension estimates for 5000 data length of Lorenz attractor

Table 4: Correlation dimension estimates for the different proposed
approaches, using different norms for Lorenz attractor series (5000
samples) using different norms.

Lorenz attractor
ℓ

1
ℓ

2
ℓ

∞

𝐷

2
[10] 1.95 1.94 1.93

̂

𝐷

2
1.69 1.70 1.93

̂

𝐷

2(⊥)
1.84 1.74 2.01

̂

𝐷

2(max) 1.99 1.71 1.93

series. The effect of different norms is reflected in the esti-
mates since the set of thresholds was fixed. As it is shown, the
application of ℓ

∞
-norm, combined with the fixed set of

thresholds used, achieves closest values with respect to the
theoretical correlation dimension value for Lorenz attractor,
2.01.

B. Computational Time Demand
of Novel Approaches to Correlation
Dimension Estimates

In Section 2.2 a new technique based on matrix operations
(MO) was introduced in order to compute correlation sums
which represent the core of the correlation dimension algo-
rithm. Nevertheless, in the paper no computational time cost
was considered for the new proposed approaches for corre-
lation dimension estimates. Table 5 shows the time required
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Table 5: Computational time cost for correlation dimension esti-
mates by all proposed approaches considering Lorenz attractor
series and HRV signals in which ℓ

∞
-norm was applied. Data

expressed as mean ± standard deviation.

Lorenz HRV
(5000 samples) (300 samples)

𝑇

𝐷
2

(s) [10] (8.86 ± 0.35)e5 3314 ± 180
𝑇

𝐷̂
2

(s) 194 ± 29 4.66 ± 0.58
𝑇

𝐷̂
2(⊥)

(s) 260 ± 38 214 ± 30
𝑇

𝐷̂
2(max)

(s) 194 ± 29 4.30 ± 0.56

for the correlation dimension estimates including that used
in [10].

10 realizations of Lorenz attractor series were generated
whose initial conditions were randomly chosen. It is notice-
able that the time cost of ̂𝐷

2(⊥)
is higher compared to the

others in both cases, the Lorenz series and the HRV signals
(11 subjects), since it uses several sets of slope estimated
to compute correlation dimension. Furthermore, the ratio
between them is higher for the HRV signals than for the
Lorenz series. Each of the different sets of thresholds is asso-
ciated with an 𝑟 value in an interval centred on the maximum
slope for𝑚 = 1. This interval is defined as a decrease in 50%
of the amplitude of the maximum in the SCF first derivative.
Themore abrupt the transition zone in the sigmoid, the lower
the amount of starting points. Thus, each realization is done
with a different number of points, varying the computational
time.
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