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A B S T R A C T   

Objective: Noninvasive screening of hypo- and hyperkalemia can prevent fatal arrhythmia in end-stage renal 
disease (ESRD) patients, but current methods for monitoring of serum potassium ([K+]) have important limita-
tions. We investigated changes in nonlinear dynamics and morphology of the T wave in the electrocardiogram 
(ECG) of ESRD patients during hemodialysis (HD), assessing their relationship with [K+] and designing a [K+]

estimator. 
Methods: ECG recordings from twenty-nine ESRD patients undergoing HD were processed. T waves in 2-min 
windows were extracted at each hour during an HD session as well as at 48 h after HD start. T wave 
nonlinear dynamics were characterized by two indices related to the maximum Lyapunov exponent (λt, λwt) and 
a divergence-related index (η). Morphological variability in the T wave was evaluated by three time warping- 
based indices (dw, reflecting morphological variability in the time domain, and da and dNL

a , in the amplitude 
domain). [K+]was measured from blood samples extracted during and after HD. Stage-specific and patient- 
specific [K+] estimators were built based on the quantified indices and leave-one-out cross-validation was per-
formed separately for each of the estimators. 
Results: The analyzed indices showed high inter-individual variability in their relationship with [K+]. Never-
theless, all of them had higher values at the HD start and 48 h after it, corresponding to the highest [K+]. The 
indices η and dw were the most strongly correlated with [K+] (median Pearson correlation coefficient of 0.78 and 
0.83, respectively) and were used in univariable and multivariable linear [K+] estimators. Agreement between 
actual and estimated [K+] was confirmed, with averaged errors over patients and time points being 0.000 ±
0.875 mM and 0.046 ± 0.690 mM for stage-specific and patient-specific multivariable [K+] estimators, 
respectively. 
Conclusion: ECG descriptors of T wave nonlinear dynamics and morphological variability allow noninvasive 
monitoring of [K+] in ESRD patients. 
Significance: ECG markers have the potential to be used for hypo- and hyperkalemia screening in ESRD patients.   

1. Introduction 

Chronic kidney disease (CKD) affects 10% of the worldwide popu-
lation and is associated with increased mortality, decreased quality of 
life and high economic cost [1]. In the final stage of CKD, so called 
end-stage renal disease (ESRD), patients can no longer maintain normal 

serum potassium levels ([K+]). Abnormal [K+] can cause fatal cardiac 
arrhythmia [2–5]. Indeed, cardiovascular diseases are the main cause of 
death in ESRD patients [6] and ventricular arrhythmias are their most 
common cardiac complication [7]. Changes in [K+] affect cardiac elec-
trical activity and are reflected in the electrocardiogram (ECG) [2,3, 
8–11]. Because of its noninvasive nature and ease of use, markers 
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derived from the ECG are useful tools for [K+] monitoring and, thus, for 
risk assessment and triggering early-warning alerts. 

The QT interval of the ECG has commonly been used to assess cardiac 
effects in patients undergoing hemodialysis (HD) [12–17]. However, 
contradictory findings have been presented in the literature, with some 
studies reporting QT prolongation with decreasing [K+] [14,15,17–19] 
and others reporting QT shortening or no effect [20–22]. 

Other studies have proposed ECG-derived [K+] estimators based on 
the ratio of the T wave slope to the square root of the amplitude [23] and 
of the T wave slope to the amplitude [24–26]. Additionally, the rela-
tionship between [K+] and the T wave of the ECG has been quantified 
using characteristics like the trailing slope, amplitude or center of 
gravity of the T wave and the ratio of the T and R wave amplitudes [27]. 

ECG markers relying on a specific interval duration or on an ampli-
tude calculated at a single time point may present large variability in-
dependent of [K+] variations, which may be due to noise or wave 
delineation errors, particularly for low-amplitude waves. In recently 
published studies [28–30], we proposed the use of warping-based T 
wave morphology markers to improve estimation of [K+] changes during 
HD in ESRD patients. Here, we propose to characterize nonlinear dy-
namics of the T wave using markers based on maximum Lyapunov ex-
ponents and a divergence-related marker. We hypothesized that 
elevated [K+] at the start of HD and 48 h later is associated with higher 
variability in the form of dynamical instabilities, which will be reflected 
in larger values of the quantified nonlinear dynamics markers [31,32]. 
In particular, larger repolarization variability at elevated [K+] would be 
expected to lead to larger rates of divergence of phase space trajectories 
associated with T waves and, consequently, higher Lyapunov exponents. 
This type of [K+]-related changes in nonlinear dynamics could be com-
plementary to other types of T wave morphology, duration and ampli-
tude changes investigated previously. Next, in our study we evaluated 
the degree of correlation between each of the analyzed markers and [K+]

in ESRD patients during and after HD. Univariable and multivariable 
regression models including markers of T wave nonlinear dynamics in 
combination with warping-based markers of T wave morphology were 
built and their performance for [K+] estimation was assessed. 

2. Methods 

2.1. Clinical measurements 

48-h 12-lead ECGs, with 3.75 μV resolution and 1 kHz sampling 
frequency (H12+, Mortara Instruments, Milwaukee, WI, USA), were 
collected from 29 ESRD patients undergoing HD at Hospital Clínico 
Universitario de Zaragoza (HCUZ) (Fig. 1). Concurrently, six blood 
samples were taken, five during the HD session and one 48 h after HD 
start, with patients in supine position. The first blood sample was taken 
at the HD onset (h0) and the next three samples (h1, h2 and h3), every 
hour during the HD session (Fig. 1 in red). The fifth sample (h4) was 
taken at the end of the session (minute 215 or 245, depending on the 
patient) and the sixth 48 h after the start, immediately before the next 
session (h48). [K+] was measured from the extracted blood samples using 

a Cobas 6000 c501 analyzer (Roche Diagnostic, Germany) by an indirect 
ion selective electrode method. The Research Ethics Committee of 
Aragón approved the study protocol (CEICA, ref. PI18/003) on February 
14, 2018, and all patients gave signed informed consent. Table 1 shows 
demographic population characteristics, [K+] and [Ca2+] values, as well 
as HD duration and dialysate composition. 

A flow chart from ECG pre-processing to the determination of the 
estimators is shown in Fig. 2. 

2.2. ECG pre-processing 

ECG signals were band-pass filtered (0.5–40 Hz) to remove baseline 
wander, muscular noise and powerline interference. QRS detection and 
wave delineation were performed in each ECG lead using a wavelet- 
based delineation method [33]. To highlight the T waves, spatial prin-
cipal components (PCs) were derived from the T waves of the eight in-
dependent leads [29,34] in a stable 10-min ECG segment at the end of 
the HD session. This segment was selected because it corresponded to 
the time when the patient was discharged from hospital with restored 
serum [K+]. The full ECG recording was then projected onto the direc-
tion of the first PC and used for further analysis that involves evaluation 
of different segments along the recording. The onset, peak and end of the 
T waves were delineated on the projection onto the first PC using the 
same wavelet-based delineation method [33] and the markers such 
obtained were used in all subsequent analysis. 

2.3. T wave morphology markers 

Time-warping methods were used to compute T wave morphological 
descriptors, as previously described [28,29,35]. Two-minute ECG 

Fig. 1. Diagram of the study protocol. h0 to h4 and h48 are the time stages corresponding to blood sample extraction, with indication of the time in minutes from the 
start of the ECG acquisition. 

Table 1 
Characteristics of the ESRD study population. Values are expressed as 
number (%) for categorical variables and median (interquartile range) 
for continuous variables.  

Characteristics Quantity 

Age [years] 75 (12) 
Gender [male/female] 20 (69%)/9 (31%) 

Electrolyte concentrations 
[K+] [Pre HD] (mM)  5.05 (1.57) 

[K+] [End HD] (mM)  3.35 (0.62) 

[Ca2+] [Pre HD] (mM) 2.15 (0.18) 
[Ca2+] [End HD] (mM) 2.32 (0.20)  

#Patients (%) 
HD session duration 

240 min 26 (90%) 
210 min 3 (10%) 

Dialysate composition 
Potassium (1.5 mM) 21 (73%) 
Potassium (3 mM) 5 (17%) 
Potassium (variable mM) 3 (10%) 
Calcium (0.75 mM) 8 (28%) 
Calcium (0.63 mM) 21 (72%)  
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segments at the HD start (h0), at the end of each HD hour (h1 to h4) and at 
48 h (h48) were analyzed to compute mean warped T waves (MWTWs), 
which are optimal representative averages obtained after time-warping 
all the T waves in the analyzed segment [35]. The predominant T wave 
polarity was identified as the most frequent polarity in the analyzed 
2-min window, with an average of 90% of T waves in each analyzed 
segment found to present such predominant polarity (see Fig. S1 in 
Supplementary Material) [28,29]. For MWTW computation, only the T 
waves having the predominant polarity were considered after alignment 
with respect to their gravity center [35] so that the calculated MWTW 
was not affected by potential outlier T waves. This procedure provided 
an initial MWTW. Next, the subset of T waves presenting wave durations 
within reported limits and a Spearman correlation coefficient > 0.98 
with the computed initial MWTW was selected and the final MWTW for 
the segment was obtained [28,29]. For each patient, a reference T wave 
was defined as the MWTW computed at the end of the HD session (h4). 

The MWTW for a given segment was denoted as fs(ts) = [f s(ts(1)),… 
, f s(ts(Ns) ] )

⊤ and the reference T wave as fr(tr) =

[f r(tr(1)),…, f r(tr(Nr))]
⊤, where tr = [tr(1),…, tr(Nr)]

⊤, ts =

[ts(1),…, ts(Ns)]
⊤ and Nr and Ns are the total durations of tr and ts. Let 

γ(tr) be the warping function that relates tr and ts, such that fs(γ(tr)) 
denotes the reparametrization of fs(ts) using γ(tr). The square-root slope 
function (SRSF) transformation was used to find the optimal warping 
function, γ*(tr), defined as the function γ minimizing the amplitude 
difference between the SRSF of the fs(γ(tr)) and fr(tr) waves [35]. 

Fig. 3(a) shows fr (blue) and fs (red), with their respective time do-
mains, tr and ts. The optimally warped T wave (red), fs(γ*(tr)), is shown 
in Fig. 3(b), together with the reference T wave (blue), fr(tr). The inter- 
MWTW difference fd(tr), shown in black in Fig. 3(b), was computed as 
the difference between the MWTW fs(γ*(tr)) and the reference fr(tr): 

fd(tr) = fs(γ∗(tr)) − fr(tr). (1) 

The time-warping marker dw, computed as in Refs. [29,35] and 
shown as the green area in Fig. 3 (d), quantified the level of warping 
required to optimally align the T waves fs(ts) and fr(tr). 

The amplitude marker da, computed as the area contained between 
fr(tr) and fs(γ*(tr)) normalized by the L2-norm of fr(tr), quantified the 
amplitude differences after time warping the two T waves [35]. 

The marker dw incorporates information from the linear and 

nonlinear warping required to match both T waves in the time domain. 
Similarly, the marker da incorporates information in the amplitude 
domain. The nonlinear components of da, denoted by dNL

a , were addi-
tionally quantified as described in Refs. [28,29,35]. 

The warping-based T wave markers during (h0, h1, h2, h3, h4) and 
after (h48) HD included:  

● dw, representing temporal variations in T wave morphology 
(expressed in ms),  

● da, representing amplitude variations in T wave morphology 
(expressed as %), and 

Fig. 2. Flow chart showing the ECG processing steps performed in this study, from the collection of raw ECGs to the estimation of [K+].  

Fig. 3. Time-warping analysis for one ECG recording. Panel (a) shows refer-
ence (blue) and investigated (red) T waves obtained from an ECG segment 
during HD. Panel (b) shows the warped T waves, which have the same duration 
while keeping the original amplitude, and the difference between them (black). 
Panel (c) shows the warped T waves after normalization by their L-2 norms. In 
panel (d), the green area between the blue line and the red curve represents dw, 
which quantifies the total amount of warping in the time domain. The dark gray 
solid line is the linear regression function γ∗l (tr) best fitted to γ*(tr). 
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● dNL
a , representing nonlinear amplitude variations in T wave 

morphology (expressed as %). 

2.4. T wave nonlinear dynamics markers 

T wave nonlinear dynamics were characterized by computing 
markers based on maximum Lyapunov exponents computed using 
Rosenstein’s method [36] and another divergence-related marker, as 
follows. 

2.4.1. Lyapunov exponent-based markers λt and λwt 

Let’s consider 2-min ECG segments as defined above for each 
analyzed patient and HD stage. The sequence of concatenated T waves 
for each of these segments, after having tilted the waves to make their 
onset and end have zero amplitude, is denoted by: 

f = [f⊤1 , f
⊤
2 ,…, f⊤B ]

⊤
= [f (1), f (2),…, f (N)]

⊤ (2)  

with fk = [fk(1), fk(2),…, fk(Nk)]
⊤ denoting the k-th T wave of Nk samples 

(i.e. of duration Nk ms, since the sampling frequency is 1 kHz), B the 
number of beats in the segment and N =

∑B
k=1Nk the number of samples 

of sequence f. Fig. 4, panels (a)–(c), shows T waves in three analyzed 
segments of an ECG recording. 

The reconstructed trajectories for delay values of τ were represented 
by vectors 

f(τ)(j) = [f (j), f (j + τ),…, f (j + (m − 1)τ)]⊤ (3)  

with j ∈ {1, 2, …, M} and M = N − (m − 1)τ, where m is the embedding 
dimension, here set to 30, and τ the delay in ms, here set to 
⌈N1/(m − 1)⌉, where N1 is the duration of the first T wave, in ms. For 
each f(τ)(j), its nearest neighbor f(τ)(̂ȷ) was searched for by minimizing 

dj

(

0
)

= min
f(τ) (̂ȷ)

⃒
⃒
⃒
⃒f(τ)

(
j
)
− f(τ)

(
ȷ̂
)⃒
⃒
⃒
⃒, (4)  

with |j − ȷ̂| > p, and p set to 25. The notation ‖ ⋅‖ represents the L2 norm. 
Next, the distance between the nearest neighbors f(τ)(j) and f(τ)(̂ȷ)

was computed after i steps as: 

dj
(
i
)
=

⃒
⃒
⃒
⃒f(τ)

(
j + i

)
− f(τ)

(
ȷ̂ + i

)⃒
⃒
⃒
⃒, (5)  

where i = 1, 2, …, I, and I = ⌈N/5⌉. 
For each value of i, the average y(i) of the logarithm of the functions 

dj(i) for j = 1, 2, …, M − I, was computed as: 

y(i) =
1

M − I
∑M− I

j=1
ln(dj(i)). (6) 

The largest Lyapunov exponent λt was estimated as the slope of the 
least-squares fit to the initial linear portion of y(i), i = 1, …, cp, with cp 
being the point where the signal changes most rapidly in mean and slope 
[37]. Despite being computed from the linear portion of y(i), this index 
accounts for nonlinear dynamics of the T wave, as can be observed from 
equations (2)–(6). 

Fig. 4, panels (d)–(f), shows λt from a patient at three different HD 
stages (h0, h1, h48) and the corresponding functions y(i) for varying i 
together with its linear fit for i = 1, …, cp. 

Additionally, another marker, denoted by λwt, was estimated from 
the same sequence of T waves in the analyzed 2-min segments but after 
warping. The procedure used to calculate λwt was the same as above but 
with f representing the sequence of concatenated warped T waves in the 
2-min segment. The calculation of λwt and its comparison with λt serves 
to analyze the contribution of amplitude variability, separately from 
time variability, to the maximum Lyapunov exponent. 

2.4.2. Divergence-related marker η 
T wave nonlinear dynamics were further evaluated by computing the 

marker η based on the divergence of trajectories from the inter-MWTW 
difference defined in equation (1). Specifically, η was computed by 
averaging yd(i) from i = cp + 1 to i = I: 

η =
1

I − cp

∑I

i=cp+1
yd(i), (7)  

where yd(i) was computed as y(i) in (6) but for the inter-MWTW fd rather 
than for f. In the calculation of yd(i), M = N − (m − 1)τ, where m = 22, τ 
= 3 ms and p = 25, with N the duration of the inter-MWTW fd in ms. 

Fig. 5 shows η for inter-MWTW fd from a patient at different HD 
stages (h0, h1, h48) as well as the corresponding functions yd(i) for 
varying i. Values of η for T waves from different ECG segments with 
distinct wave morphologies (upright, inverted, biphasic) and their 
functions yd(i) for varying i are shown in the Supplementary Material 
(Fig. S2). 

For calculation of η, inter-MWTW at h4 was computed by taking the 
difference between the reference T wave and a MWTW computed from 
the 2-min ECG segment just before the segment taken at the end of the 
HD hour. 

2.5. Synthetically generated T waves 

The ability of λt, λwt, η, dw, da and dNL
a to capture gradual linear and 

nonlinear T wave time and amplitude variations along time, both in the 

Fig. 4. Panels a–c: A few T waves from 2-min ECG segments for a particular 
patient at different HD stages (h0, h1, h48). Panels d–f: y(i) versus index i varying 
from 1 to I as described in the text. Values of λt obtained as the slope of y(i) are 
shown for each HD time point. 

Fig. 5. Panels a–c: Inter-MWTWs from a particular patient at different HD 
stages (h0, h1, h48). Panels d–f: yd(i) computed as described in the text, with 
indication of the corresponding η values. 
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absence and presence of temporal inter-beat variability, was assessed by 
generating sets of synthetic T waves in which changes were simulated 
according to specifically defined functions, as described in the following. 

2.5.1. Simulation of T wave duration and amplitude changes 
We considered a preprocessed PCA-transformed T wave obtained 

from a particular patient as a reference T wave, fr(tr). We defined 
nonlinear T wave amplitude changes by: 

fk
​ NL(t

r) = fr(tr) + c(k)sin
(

2π 1
4Nr

tr
)

, (8)  

where c(k) = 25 sin[π(BT +k)/(2BT)] being k = 1, …, BT the index of a T 
wave and BT the total number of simulated beats, which was set to the 
number of beats during the whole HD session in the patient from whom 
the reference T wave was selected. The simulated T waves in the first 2- 
min segment were identified as representative of h0, while the simulated 
T waves for beats in 2-min segments at the end of the first, second, third 
and fourth hours were taken as representative of h1, h2, h3 and h4, 
respectively. 

Additional linear T wave amplitude changes were generated on top 
of the nonlinear amplitude changes: 

fk
l (t

r) = fk
NL(t

r)⋅b(k) (9)  

where b(k) = 1 + 0.25 sin(π(BT + k)/(2BT)). 
Nonlinear T wave duration changes were generated as follows: 

tk
​ NL = tr + g(k)

Nr

Nk
⋅sin

(

2π 1
Nr

tr
)

, (10)  

where g(k) = 10 k− 1
BT − 1 − 10. 

Additional linear T wave duration changes were simulated on top of 
the nonlinear duration changes: 

tk
l = γk(tk

​ NL), (11)  

where γk(tk
​ NL) stretches tk

​ NL according to a downsampling factor a(k) =

0.25 k− 1
BT − 1+ 0.75. 

Combined simulated T wave duration and amplitude changes were 
defined according to: 

fk
S(t

k) = fk
l (t

k
l ). (12) 

In this study, we used six different cases, C#, which corresponded to 
linear and nonlinear duration and amplitude changes in the T waves:  

● C1 considered the reference T wave and maintained its duration and 
amplitude along the whole simulation  

● C2, defined by nonlinear amplitude changes, 
● C3, defined by linear amplitude changes on top of nonlinear ampli-

tude ones,  
● C4, defined by nonlinear duration changes,  
● C5, defined by linear duration changes on top of nonlinear duration 

ones, and  
● C6, corresponding to the combined effects of linear and nonlinear 

amplitude and duration modulations in the T waves. 

2.5.2. Simulation of temporal inter-beat variability 
Realistic variability signals were obtained from an ESRD patient, 

with index q0, for each 2-min segment representative of each stage 
during and after HD. Variability signals were defined as the difference of 
each individual aligned T wave and the corresponding average in the 2- 
min window: 

fk
v = fk

v,q0
= fk −

1
B
∑B

k=1
fk. (13) 

To make the magnitude of temporal inter-beat variability be 

representative of the averaged variability over patients rather than 
representative of an individual patient, the following factors were 
computed for each patient in a 2-min window around each HD stage 
point and the median over all patients was calculated. Two different 
approaches were used to compute the factors associated with variability 
modulation in each patient. On the one hand, inter-beat variability 
factors at a given HD stage were defined for each patient q as: 

αInter
v,q =

1
NInter

∑NInter

n=1
f Inter

IQRv,q
(n), (14)  

f Inter
IQRv,q

(n) = IQR{f 1
v,q(n), f

2
v,q(n),…, f B

v,q(n)}, (15)  

where IQR represents the interquartile range operation, B is the number 
of beats in the 2-min segment and NInter is the number of samples in the 
fInter
IQRv

. 
Similarly, intra-beat variability factors at a given HD stage were 

defined for each patient q as: 

αIntra
v,q =

1
B
∑B

k=1
f k

IQRv,q
, (16)  

f k
IQRv,q

= IQR{f k
v,q(1), f

k
v,q(2),…, f k

v,q(Nk)}. (17) 

Representative scaling factors accounting for information from all 
patients, denoted by α̃Inter

v and α̃Intra
v , were calculated by taking the me-

dian of the variability factors αInter
v,q and αIntra

v,q over all patients. The 
calculated factors were applied to the variability signal, fk

v , and added to 
the synthetic T wave, fk

S, obtained as described in section 2.5.1, to have 
representative variability in the simulation: 

fk
S+vInter

=
α̃Inter

v

αInter
v,q0

⋅fk
v,q0

+ fk
S, (18)  

and 

fk
S+vIntra

=
α̃Intra

v

αIntra
v,q0

⋅fk
v,q0

+ fk
S, (19)  

where αInter
v,q0 

and αIntra
v,q0 

were computed from the variability signals of the 
particular patient q0. 

For each analyzed HD stage, the generated T waves with added 
variability, i.e. fk

S+vInter 
and fk

S+vIntra
, were concatenated for all simulated 

beats k = 1, 2, …, B. 
Additionally, MWTWs and inter-MWTWs were computed from 

simulated T waves in 2-min segments to assess the response of dw, da, dNL
a 

and η to the simulated duration and amplitude changes, both with and 
without additional scaled intra-beat variability. Inter-beat variability 
was used to assess the performance of λt and λwt. 

2.6. Correlation analysis and statistical comparisons 

To assess the relationship between each investigated T wave marker 
and [K+] during and after HD, Pearson and Spearman correlation ana-
lyses were performed for each patient. 

To quantify the relationship of T wave markers and [K+] indepen-
dently of other factors known to affect the T wave like serum calcium 
concentration ([Ca2+]) or the RR interval, linear partial correlation 
analysis was performed for each patient. 

The duration of the ECG recordings was 48 h for all patients, except 
for a few that ended some minutes earlier, mainly due to electrode 
detachment or battery exhaustion. However, given the small expected 
drift of [K+] in this short time period, we assumed that the end of the 
ECG recording corresponded to the [K+] blood sample taken at 48 h. For 
this reason, correlation coefficients were computed using the five values 
of [K+] at HD stages hi, i ∈ {0, 1, 2, 3, 4}, as well as at i = 48 h. 
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Wilcoxon signed-rank tests were performed to test for significant 
differences in λt, λwt, η, dw, da and dNL

a at different time stages during and 
after HD. The use of a nonparametric statistical test was based on the 
lack of normality of the data distributions according to Shapiro-Wilk 
test. p < 0.05 was considered statistically significant. 

Student’s t-test was applied to test whether Pearson correlation co-
efficient r between each T wave marker and [K+] was significantly 
different from 0 in mean over the population, after converting the sta-
tistical distribution of r into a normal distribution using Fisher’s z 
transform [38]. 

The performance of our investigated T wave markers was compared 
with that of the previously proposed T wave markers TS/A [25,26] and 
TS/

̅̅̅
A

√ [23], which were computed from MWTWs at time points h0, h1, h2, 
h3, h4 and h48 during and after HD (see Supplementary Material):  

● TS/A, representing the ratio between the maximal downward slope 
(in absolute value) and the amplitude of the T wave [25,26].  

● TS/
̅̅̅
A

√ , representing the ratio between the maximal downward slope 
(in absolute value) and the square root of the amplitude of the T 
wave [23]. 

All statistical analyses were performed using MATLAB version 
R2020a for Windows (MathWorks Inc., MI, USA). 

2.7. Univariable and multivariable estimation of [K+]

To estimate [K+] from the analyzed T wave markers, univariable and 
multivariable linear regression models were built. The univariable 
models included either η or dw and the multivariable model included 
both. 

The univariable estimators [K+]
dw and [K+]

η and the multivariable 
estimator [K+]

m were defined as: 

[K+]
η
= βη

0 + βη
1⋅η, (20)  

[K+]
dw = βdw

0 + βdw
1 ⋅dw, (21)  

[K+]
m
= βm

0 + βm
1 ⋅η + βm

2 ⋅dw. (22) 

For the univariable models, the coefficients β = [ βη
0 βη

1 ]
T or β =

[
βdw

0 βdw
1

]T were computed as: 

β̂ = (XT X)
− 1XT yT , (23)  

with X =
[

jT xT
b
]
. The definition of jT, xT

b and y is different for time- 
and patient-specific estimators, as described in the following. 

For a given HD stage i, the stage-specific estimator β̂ was calculated 
from equation (23) by considering j = [1, 1, …, 1] of dimension 1 × Q, 
with Q the number of patients. The vector xb = [bi,1, bi,2, …, bi,Q] con-
tained the values of the marker b, being either η or dw, at the considered 
HD stage i from all the patients q = 1, …, Q. The vector y = [[K+]i,1,

[K+]i,2,…,[K+]i,Q], contained the measured values of [K+] at the HD stage 
i for all patients. 

For a given patient q, the patient-specific estimator β̂ was calculated 
by considering j = [1, 1, …, 1] of dimension 1 × 6. The vector xb = [b0,q, 
b1,q, b2,q, b3,q, b4,q, b48,q] contained the values of b, either η or dw, for 
patient q at all HD stages i = 0, 1, 2, 3, 4, 48. The vector y = [[K+]0,q,

[K+]1,q, [K
+]2,q, [K

+]3,q, [K
+]4,q, [K

+]48,q] contained the measured values of 
[K+] values for patient q at all HD stages i. 

For the multivariable model, β = [βm
0 , β

m
1 , β

m
2 ]

T was calculated from 
equation (23), now using X = [jT, xT

b(1) , xT
b(2) ], with xb(1) containing the 

values of η and xb(2) containing the values of dw and defined as described 
above for either HD-stage- or patient-specific estimators. 

Leave-one-out cross validation was used to assess the performance of 

the [K+] estimators: 

● Stage-specific estimators: The estimator was trained with Q − 1 pa-
tients for each HD stage individually and then tested for the Q-th 
patient. This process was repeated for all HD stages.  

● Patient-specific estimators: The estimator was trained with five HD 
stage points for each patient individually and tested for the 6th stage. 
This process was repeated for all patients. 

The error ε between measured and estimated [K+] values was 
computed as 

ε = [K+]a − [K+]e, (24)  

where [K+]a is [K+] measured from blood test and [K+]e is the estimated 
[K+]. The relative error Rv was computed as 

Rv =
[K+]a − [K+]e

[K+]𝒟
, (25)  

where [K+]𝒟 was defined, for each patient, as the difference between 
maximum and minimum [K+]a values across HD stage. The relative error 
Rr was computed as 

Rr =
[K+]a − [K+]e

[K+]ℛ
, (26)  

where [K+]ℛ was defined as the difference between maximum 75th and 
minimum 25th percentiles of [K+] across patients at each HD stage. 

To assess the agreement between actual and estimated [K+] values, 
Bland-Altman analysis was performed [39]. Figures in the Supplemen-
tary Material show the difference vs the mean of actual and estimated 
[K+] for all patients at all HD time points. 

It should be noted that a [K+] estimator was not computed at the end 
of the HD session (h4) since the morphological T wave marker dw was 
zero by definition, as the reference was taken at that time stage. 

3. Results 

3.1. Robust calculation of T wave nonlinear dynamics markers 

Fig. 6 shows λt, λwt and η for variations in the values of the param-
eters p, τ and m around their default values so as to assess the sensitivity 
of these markers to their parameters. The individual T waves in a 2-min 
window from a particular patient at a given HD stage were used for the 
computation of λt and λwt, whereas the corresponding inter-MWTW was 
used for the computation of η. Thus, the default values of the parameters 
p, τ and m were different for λt and λwt than for η, as described in section 
2.4. As can be seen from Fig. 6, λt and λwt were more sensitive to τ and m 
than to p but they tended to be stable around the values τ = 6 and m = 30 
employed here. The marker η, computed from inter-MWTW, was almost 
stable around the chosen values p = 25, τ = 3 and m = 22. 

3.2. Simulation of changes in T wave amplitude, duration and temporal 
inter-beat variability 

Fig. 7, top panels, shows T waves under simulated linear and 
nonlinear duration and amplitude changes. Each panel shows the last T 
wave (fk

S) in a simulated 2-min segment representing an HD stage. The 
bottom panels show the variability signals (fk

v) added to the T waves. 
Tall and narrow T waves are observed at h0, representing the situation at 
the HD start, with a subsequent amplitude decrease and duration in-
crease along time to represent variations during HD. 

Fig. 8 shows the evolution of T wave markers (λt, η, dw, da and dNL
a ) 

for simulated linear and nonlinear variations in duration and amplitude 
(C2 to C6), with (panels f–j) and without (panels a–e) added variability 
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to T waves. As can be seen from the figure, the Lyapunov exponent- 
based marker λt reflects temporal inter-beat variability in the T wave 
well, while the divergence marker η and morphology-based markers dw, 
da and dNL

a are able to describe linear and nonlinear duration or ampli-
tude changes. The markers dw and η are the ones best reflecting simu-
lated time changes and combined time and amplitude changes in the T 
wave, respectively. Results for λwt were similar to those obtained for λt, 
although the decreasing trend along simulated time was less clear. 

3.3. Characterization of T wave changes during and after HD 

Fig. 9, panels a–f, shows the changes in the analyzed T wave markers 
(λt, λwt, η, dw, da and dNL

a ) together with [K+] changes during and after 
the HD session for the analyzed ESRD patients’ recordings. Illustrative T 
waves for a patient are shown in the bottom panels g–h, presenting the 
reference T wave (blue), each investigated T wave (red) and inter- 
MWTW (black) during and after the HD session, both before (panel g) 
and after (panel h) warping and averaging. 

A decreasing trend in all markers (right y-axis, in red) with 
decreasing [K+] (left y-axis, in blue) was observed during HD, from h0 
(HD start) to h4 (HD end). The marker values increased with increasing 
[K+] from the HD end to the 48-th hour after the HD start. Particularly 
remarkable changes can be seen for the morphology marker dw and for 
the nonlinear dynamics marker η. Since we took the end of the HD 

session (h4) as reference for computation of dw, da and dNL
a , these 

markers take zero value at this HD stage. From the bottom panels of 
Fig. 9, tall and narrow T waves can be observed before (h0) and 48 h 
after HD (h48), corresponding to the highest [K+] values. 

3.4. Correlation between T wave markers and [K+]

Fig. 10 shows the results of the correlation analysis. The linear cor-
relation coefficients between [K+] and each of the T wave markers are 
shown in black and the partial linear correlation coefficients after 
removing the effects of RR and [Ca2+] are shown in red and blue, 
respectively. The markers dw, η, dNL

a and λt were the most highly linearly 
correlated with [K+], with median Pearson r over patients presented in 
Table 2 λwt and da poorly correlated with [K+]. Also, dw and η were the 
most strongly correlated with [K+] after removing the effects of RR and 
these two indices, together with da and dNL

a , were the most strongly 
correlated with [K+] after removing the effects of [Ca2+]. Results ob-
tained for Pearson and Spearman correlation coefficients between [K+]

and each the T wave markers investigated in this study and others 
previously proposed in the literature are presented in Table SI of the 
Supplementary Material, with the highest values obtained for dw, η and 
TS/A. 

Table 2 also shows the p-values from Student’s t-test to assess the 
statistical significance of non-zero mean Fisher’s z-transformed Pearson 

Fig. 6. Panels a–c: Sensitivity of λt (left), λwt (middle) 
and η (right) for different values of the parameters 
representing the period (p), delay (τ) and embedding 
dimension (m) calculated from unwarped and warped 
T waves in a 2-min window and inter-MWTW of a 
patient at a particular HD stage (h4). Note that the 
default values of p, τ and m used in the calculation of 
λt and λwt are different from the ones used in the 
calculation of η, which explains differences in the x- 
axis of panels (a) and (b) with respect to panel (c).   

Fig. 7. Simulated (last) T wave from a sequence of 2 min T waves (fk
S) in linear and nonlinear duration and amplitude domain (top panels) and the variability (fk

v) in 
2 min T waves (bottom panels) during HD. Solid black and red T waves correspond to nonlinear and linear amplitude modulation (C2, C3), solid cyan and magenta T 
waves correspond to nonlinear and linear duration modulation (C4, C5), and solid green T wave includes both time and amplitude modulation (C6). Blue T wave 
corresponds to the reference T wave (C1). 
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correlation coefficients between T wave markers and [K+]. As can be 
seen from the table, all the analyzed T wave markers, except for da and 
λwt, correlated significantly with [K+]. 

To confirm that T wave nonlinear dynamics markers (λt, λwt and η) 
provided complementary information to morphological markers (dw, da 

and dNL
a ), linear correlation analysis was performed and results are 

shown in Table 3. As can be observed, the markers dNL
a and η correlated 

strongly. 

Fig. 8. Panels a–j: T wave markers (λ, η, dw, da and dNL
a ) in linear and nonlinear duration and amplitude simulations during HD, with (bottom panels f–j) and without 

(top panels a–e) adding scaled variability’s. Solid black and dotted red results correspond to nonlinear and combined nonlinear and linear amplitude modulation (C2, 
C3), dotted cyan and solid blue results correspond to nonlinear and combined nonlinear and linear duration modulation (C4, C5), and dotted green results includes 
both time and amplitude modulations (C6). 

Fig. 9. Panels a–f: Changes in λt, λwt, η, dw, da and dNL
a with [K+] variations for the analyzed patients’ recordings during and after HD. In panels a–f, * indicates p <

0.05 and ** indicates p < 0.01 in the comparison of each marker between consecutive time stages. The central line indicates the median, whereas top and bottom 
edges show the 25th and 75th percentiles, respectively. Panel g: T waves of a patient during and after HD. Panel h: Warped T waves of a patient during and after HD, 
with the reference T wave (blue), each analyzed T wave (red) and inter-MWTW (black) being displayed. Δ denotes the change in [K+] with respect to the end of the 
HD session and the units in the legends of panels (g) and (h) are mM. 
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3.5. ECG-based estimation of [K+]

Fig. 11 shows the error ε for univariable and multivariable [K+] es-
timators for all ESRD patients at each HD stage using both stage-specific 
and patient-specific approaches. Particularly for the multivariable esti-
mator, Table 4 shows the estimated [K+]

m
e values using stage-specific, 

[K+]
m,S
e , and patient-specific, [K+]

m,P
e , approaches and compares them 

with the measured [K+]a values. 
Tables 5 and 6 show the relative errors Rv and Rr between actual and 

estimated [K+] at each HD stage for the multivariable estimator using 
stage-specific and patient-specific approaches. 

Table 7 shows the median and IQR values of intra-patient Pearson 

Fig. 10. Correlation coefficients between T wave markers (λt, λwt, η, dw, da, and dNL
a ) and [K+] from patients’ ECGs. Black boxplots: Pearson correlation coefficients. 

Red boxplots: Partial linear correlation coefficients after removing the effects of RR. Blue boxplots: Partial linear correlation coefficients after removing the effects of 
[Ca2+]. Each purple dot represents the correlation coefficient for an individual patient. The central line indicates the median, whereas top and bottom edges show the 
25th and 75th percentiles, respectively. 

Table 2 
Median pearson r and partial correlation coefficients after removing the effects 
of RR (rRR) and [Ca2+] (r[Ca2+]), and P-values from student’s T-test to evaluate 
statistical significance of non-zero mean fisher’s Z-transformed pearson corre-
lation coefficient between T wave markers and [K+].  

[K+] λt λwt η dw da dNL
a  

r 0.63 0.32 0.78 0.83 0.29 0.66 
rRR 0.69 0.36 0.79 0.87 0.07 0.66 
r[Ca2+] 0.38 0.12 0.41 0.54 0.45 0.41 
p-values <0.01  0.01 <0.01  <0.01  0.18 <0.01   

Table 3 
Intra-patient pearson correlation coefficients (r) between morphological and 
nonlinear dynamics T wave markers.  

Parameter λt λwt η 

dw 0.66 (0.43) 0.42 (0.58) 0.55 (0.73) 
da 0.29 (1.25) 0.05 (0.95) − 0.12 (1.62) 
dNL

a  0.57 (0.42) 0.21 (0.60) 0.72 (0.25) 

*Values are expressed as median (IQR). 

Fig. 11. Error ε between estimated and actual [K+] for all ESRD patients during and after HD using univariable (η or dw) and multivariable (η and dw) estimators with 
stage-specific (panel (a)) or patient-specific (panel (b)) approaches. The central red dot represents the mean of the errors, whereas top and bottom edges show the 
standard deviation (SD) for all the patients. The central black dotted horizontal line represents a reference at ‘0’. 

Table 4 
Results for the multivariable [K+]

m
e estimator at each HD stage. [K+]

m,S
e : Esti-

mated [K+] using stage-specific approach; [K+]
m,P
e : Estimated [K+] using patient- 

specific approach.  

Actual vs 
Estimated [K+]

h0 h1 h2 h3 h48 

[K+]a  5.23 ±
1.10 

4.05 ±
0.78 

3.70 ±
0.58 

3.48 ±
0.52 

5.01 ±
0.93 

[K+]
m,S
e  

5.20 ±
0.33 

4.05 ±
0.20 

3.70 ±
0.16 

3.46 ±
0.14 

5.04 ±
0.31 

[K+]
m,P
e  

4.78 ±
1.45 

4.21 ±
0.68 

3.82 ±
0.76 

3.63 ±
0.73 

4.78 ±
1.26  

Table 5 
Relative errors Rv using stage-specific (S) and patient-specific (P) approaches for 
the multivariable estimator.  

Rv h0 h1 h2 h3 h48 

S − 0.20 ±
0.68 

− 0.13 ±
0.45 

− 0.10 ±
0.35 

− 0.07 ±
0.29 

− 0.17 ±
0.57 

P 0.30 ± 0.61 − 0.11 ±
0.28 

− 0.09 ±
0.26 

− 0.09 ±
0.20 

0.18 ± 0.38 

*Values are expressed as mean ± standard deviation. 
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correlation coefficient between actual and estimated [K+] for uni-
variable and multivariable estimators using stage-specific and patient- 
specific approaches. 

Bland-Altman plots between actual and estimated [K+] for the pro-
posed markers are shown in Supplementary Material (Figs. S3–S7). 

A comparison between estimation errors obtained for T wave 
markers analyzed in the present study and in previous studies is pre-
sented in Tables 8–9. 

4. Discussion 

We analyzed the T waves of the ECG in ESRD patients during and 
after HD by nonlinear dynamics and morphology markers. Three 
nonlinear dynamics markers were evaluated: the first two, λt and λwt, 
assessed repolarization instabilities and temporal inter-beat variability 
by computing the maximum Lyapunov exponent from T wave sequences 
before and after warping, respectively; the third one, η, was proposed in 
this study to measure intra-beat differences in an averaged representa-
tive T wave after subtraction of a reference wave. Additionally, three 
warping-based markers were evaluated to assess morphological vari-
ability in the time domain (dw) and amplitude domain (da and dNL

a ). A 
comparison between our investigated markers and previously proposed 
markers, TS/A [25,26] and TS/

̅̅̅
A

√ [23], was performed. The correlation 
between the analyzed T wave markers and serum [K+] during and after 
HD was found to be particularly strong for η and dw. ECG estimators of 
[K+] were built based on individual and combined values of these two 
markers. We found a tight relationship between actual and estimated 
[K+] values, especially when the estimation used population ECG data 
evaluated at the same time stage after the start of an HD session. Our 

results can be used for noninvasive monitoring of [K+] in ESRD patients 
to anticipate arrhythmic risk associated with hypo- or hyperkalemia. 

4.1. T waves variations during and after HD 

This study investigated maximum Lyapunov exponent-based 
markers to characterize changes in the T wave of the ECG and their 
association with serum electrolyte levels. Previous studies have inves-
tigated indices of repolarization instability in patients undergoing HD, 
including T wave alternans [40], beat-to-beat QT interval variability 
[13] or T wave periodic repolarization dynamics [41]. However, most of 
these studies either have not been able to establish a clear correlation 
between the values of the evaluated indices and serum potassium levels 
or have reported moderate correlation coefficients, thus limiting their 
possibilities for ambulatory [K+] monitoring. We assessed whether 
nonlinear dynamics of the T wave could help in capturing relevant in-
formation on the changes in repolarization characteristics during and 
after HD. Also, on the basis of recent studies where we measured T wave 
morphological variability by time warping-based techniques and we 
showed its tight relationship with [K+], we investigated the combination 
of nonlinear dynamics and morphology descriptors to improve their 
individual performances for [K+] monitoring. 

To characterize nonlinear dynamics we evaluated the maximum 
Lyapunov exponent from 2-min sequences of T waves taken every hour 
from the start of HD and 48 h after it. Lyapunov exponents quantify the 
sensitivity of a dynamical system to the initial conditions by measuring 
how a small change in the system variables at a certain time affects the 
behavior of the system at a future time [36]. Here, we calculated λt and 
λwt, representing the maximum Lyapunov exponent from unwarped and 
warped T wave sequences, respectively, and we found them to take 
positive values at all evaluated stages during and after HD. These results 
would indicate chaotic behavior in the form of local repolarization in-
stabilities, which are significantly larger at the onset of the HD sessions 
when [K+] is elevated. 

Also, we investigated a novel marker, η, evaluated from inter- 
MWTWs computed during and after HD to describe intra-beat dissimi-
larities and their variations with [K+]. We found η to take higher values 
at the beginning of HD sessions, which would point to larger intra-beat 
differences in repolarization associated with raised [K+]. This is 
concordant with the fact that T wave amplitude increases with [K+] and 
so does its difference with respect to the reference T wave. 

To confirm the robustness of our calculations, we varied the values of 
the parameters used in the definition of λt, λwt and η and found relatively 
modest effects around the default parameter values as compared to 
changes measured during HD, particularly for η. To assess the specific 
information captured by the investigated nonlinear dynamics markers, 
we generated synthetic T waves and showed that λt and λwt mainly re-
flected temporal inter-beat variability while η was more sensitive to 
simulated amplitude and duration modulations. 

Table 6 
Relative errors Rr using stage-specific (S) and patient-specific (P) approaches for 
the multivariable estimator.  

Rr h0 h1 h2 h3 h48 

S 0.011 ±
0.442 

0.000 ±
0.315 

− 0.001 ±
0.234 

− 0.002 ±
0.201 

− 0.008 ±
0.347 

P 0.163 ±
0.348 

− 0.058 ±
0.194 

− 0.042 ±
0.184 

− 0.065 ±
0.142 

0.085 ±
0.246 

*Values are expressed as mean ± standard deviation. 

Table 7 
Intra-patient pearson correlation coefficients (r) between actual and estimated 
[K+] (r[K+],[K+]e

) using stage-specific (S) and patient-specific (P) approaches for 
univariable and multivariable estimators.  

r[K+],[K+]e  
η dw η, dw 

S 0.98 (0.03) 0.97 (0.06) 0.97 (0.05) 
P 0.32 (1.29) 0.65 (1.07) 0.77 (0.88) 

*Values are expressed as median (IQR). 

Table 8 
Estimation errors (ε) for T wave markers and their combinations using stage- 
specific (S) estimators.  

ε(S) h0 h1 h2 h3 h48 

TS/A 0.019 ±
1.159 

0.620 ±
0.517 

0.003 ±
0.630 

0.004 ±
0.559 

0.007 ±
0.730 

TS/
̅̅̅
A

√ 0.009 ±
1.180 

− 0.001 ±
0.825 

0.003 ±
0.627 

0.001 ±
0.554 

0.003 ±
0.947 

dw 0.010 ±
1.132 

0.012 ±
0.845 

0.008 ±
0.636 

0.009 ±
0.543 

− 0.032 ±
0.919 

η 0.016 ±
1.221 

− 0.006 ±
0.847 

− 0.009 ±
0.621 

− 0.010 ±
0.574 

0.005 ±
0.996 

dw and 
η 

0.030 ±
1.225 

− 0.001 ±
0.874 

− 0.002 ±
0.648 

− 0.006 ±
0.556 

− 0.023 ±
0.960 

*Values are expressed as mean ± standard deviation and the units are mM. 

Table 9 
Estimation errors (ε) for T wave markers and their combinations using patient- 
specific (P) estimators.  

ε(P) h0 h1 h2 h3 h48 

TS/A 0.967 ±
0.729 

0.479 ±
0.455 

0.357 ±
0.350 

0.381 ±
0.409 

0.922 ±
1.192 

TS/
̅̅̅
A

√ 0.904 ±
1.413 

0.022 ±
0.827 

− 0.248 ±
0.299 

− 0.333 ±
0.402 

0.353 ±
1.373 

dw 0.665 ±
0.981 

− 0.202 ±
0.533 

− 0.143 ±
0.540 

− 0.282 ±
0.418 

0.407 ±
0.582 

η 0.831 ±
0.802 

− 0.287 ±
0.525 

− 0.435 ±
0.318 

− 0.390 ±
0.419 

0.530 ±
0.672 

dw and 
η 

0.451 ±
0.964 

− 0.161 ±
0.539 

− 0.116 ±
0.508 

− 0.180 ±
0.392 

0.235 ±
0.681 

*Values are expressed as mean ± standard deviation and the units are mM. 
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4.2. Correlation of T wave changes markers to [K+]

The correlation with [K+] was particularly strong for the nonlinear 
dynamics marker η and the time-domain morphological variability 
marker dw, with median Pearson correlation coefficients across patients 
above 0.78. Importantly, the relationship between each of these two 
markers and [K+] remained tight even after removal of the effects of 
covariates like heart rate, with partial linear correlation coefficients still 
above 0.78. Such a relationship was, however, weaker when the effects 
of [Ca2+] were removed. This could be explained by [K+] and [Ca2+] 
exerting concurrent changes in the T wave during HD. 

Previous works have shown that the T wave of the ECG is altered by 
variations in [K+] [3,9–11], with narrow and peaked T waves recorded 
under high levels of [K+] [2,3,5,42], in agreement with our observations. 
The effects of [K+] on specific T wave features like width, amplitude, 
slope, slope-to-amplitude or amplitude-to-slope ratio have been quan-
tified [25–27,43,44]. Some of these features are very sensitive to T wave 
delineation and thus could be more prone to errors when measured in 
ambulatory recordings. Other markers, like the slope-to-amplitude, 
were tested in a previous study of us and were found to present 
changes that were as strongly correlated to [K+] variations as the 
time-domain morphology marker dw, both with and without removing 
the effects of other covariates like heart rate and [Ca2+] [28]. 

Morphological characteristics of the T wave have been evaluated in 
previous studies, as recently reviewed [11]. In particular, a morphology 
combination score (MCS) based on T wave asymmetry, flatness and 
notching [45,46] has been used to analyze the relationship between 
changes in the T wave shape and [K+] variations in large scale pop-
ulations [47]. A strong correlation was found between MCS and [K+]

when the latter varied in the range 2–4.1 mM but not in the range 4.2–6 
mM. Our proposed markers of T wave morphological variability were 
strongly correlated with [K+] in a wide range of values, including both 
hypo- and hyperkalemic values. For some of our morphology markers, 
such a relationship was better represented by a nonlinear function than 
by a linear one [30], which agrees with previous studies describing 
nonlinear relationships between T wave markers like the 
slope-to-amplitude ratio and [K+] [26] and could help to explain the 
lower linear correlations found in other studies investigating 
[K+]-induced alterations in ECG repolarization. 

Mathematical modeling and numerical simulation have been used as 
tools to provide mechanistic understanding of ECG changes elicited in 
response to electrolyte variations and to improve the processing 
methods used to derive ECG markers with capacity for [K+] monitoring 
[11,26,48,49]. In the case of T wave morphology markers, in silico 
analysis has been used to explain the high inter-individual variation in 
patterns measured in ESRD patients with varying [K+] [28,50]. Differ-
ences in transmural distributions of endocardial, midmyocardial and 
epicardial cells contributed to explain the inter-individual variability in 
the T wave response to [K+] variations. In the case of T wave nonlinear 
dynamics, this is the first study investigating the markers λt, λwt and η 
and their relationship to [K+]. Similarly to the morphological markers, 
we observed large inter-individual differences in nonlinear dynamics 
characteristics. Our work on synthetic T waves simulating linear and 
nonlinear amplitude and duration changes served to establish the effects 
captured by these indices, with different levels of temporal inter-beat 
variability having a direct effect on their magnitudes, as discussed in 
the previous section. 

4.3. Estimation of [K+] from T wave markers 

Taking the two markers presenting the highest correlation with [K+], 
i.e. η and dw, we designed ECG-based [K+] estimators. On top of uni-
variable estimators using one of these two markers, we built multivar-
iable estimators based on their combination. For each of the constructed 
estimators, we considered both stage-specific and patient-specific 

approaches, with the first approach estimating [K+] for a patient at a 
given HD stage based on population data measured at the same stage 
with respect to the start of an HD session and the second approach 
estimating [K+] for a patient at a given time stage based on data from the 
same patient measured at different time stages. The stage-specific 
approach rendered results that were unbiased in mean and median 
over patients. However, the dispersion was generally larger than for the 
patient-specific approach. The combination of the two markers η and dw 
led to overall improvements in terms of reduced estimation errors 
(Fig. 11 and Table 9). Multivariable [K+] estimates also correlated 
significantly better with actual [K+] than univariable estimates in the 
patient-specific approach. Agreement between actual and estimated 
[K+] was promising using our proposed T wave markers as compared to 
previously proposed T wave markers [23,25,26], which was confirmed 
by Bland-Altman analysis and calculation of estimation errors. The 
estimation errors over patients and HD stages using the patient-specific 
approach were 0.046 ± 0.69 mM for the combination of η and dw, while 
they were 0.091 ± 0.96 mM for TS/A and 0.139 ± 1.07 mM for TS/

̅̅̅
A

√ . 
Also, we confirmed the suitability of [K+] estimation based on our ECG 
proposed markers under synthetic noisy scenarios, in which we took the 
ECG signal of a patient and we added noise at signal-to-noise ratio (SNR) 
values down to 5 dB. Estimation errors (ε) based on dw and η were, in 
median over HD points, always below 0.4 mM, while these reached 0.73 
mM for TS/A at the lowest SNRs (Fig. S8 in Supplementary Material). 

The highest estimation errors were obtained at the start of the HD 
session (h0) and 48 h after it (h48), corresponding to the highest [K+]

values. The reason for this could lie in the fact that these HD stages are 
associated with [K+] values well apart from the ones measured at h1, h2, 
h3 and h4, which translates into large differences in the T wave markers 
at h0 and h48 as compared to other HD points. In the learning phase, the 
estimators are fitted to all the available values along and after HD, with 
large relevance of the high number of HD stages corresponding to lower 
[K+], which would explain the lower performance of the estimators at h0 
and h48. Future research could be designed so as to have more available 
[K+] measurements during the time period from the end of the HD ses-
sion to the start of a new session 48 h later, or during the first hour of the 
HD. This would allow improved learning of the estimators, which could 
also be designed to account for nonlinear relationships between the 
investigated repolarization markers and [K+]. Previous studies have 
shown the relevance of accounting for such nonlinearities in the design 
of the estimators [26,30], which we discarded in the present study due 
to the limited number of sampled HD stages per patient. 

The above discussed results suggest that T wave nonlinear dynamics 
and warping-based morphology markers have value for [K+] monitoring 
during inter-dialytic periods in ESRD patients. 

4.4. Study limitations and future research 

This study analyzed 48-h ECG recordings of 29 ESRD patients. Future 
studies including a larger number of patients and more frequent blood 
samples during the inter-dialytic period would allow to confirm the 
present findings and extend the investigation to ECG-based nonlinear 
estimators of [K+]. 

We focused our research on the effects of [K+] on ventricular repo-
larization. The impact of other electrolytes like [Ca2+] and [Mg2+] could 
also be analyzed and univariable and multivariable estimators could be 
derived from ECGs. While some reports have already described alter-
ations in T wave morphology in response to variations in [Ca2+] and 
[Mg2+] [10,20,51–53], the impact on T wave nonlinear dynamics re-
mains unknown. 

Other multivariable estimators including indices reported in previ-
ous studies [23–26,54] could be tested to analyze its potential for 
improved noninvasive monitoring of [K+]. 

The present work could be extended to include deep learning-based 
approaches for serum electrolyte estimation provided large data sets of 
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ECG recordings and concomitant blood samples were available for the 
analysis, in line with studies already addressing hypo- and hyperkalemia 
screening from the ECG using deep learning methods [55–57]. 

5. Conclusions 

Noninvasive monitoring of [K+] in ESRD patients based on combined 
T wave nonlinear dynamics and morphological variability markers is 
feasible. The proposed methods can find application in hypo- and 
hyperkalemia screening, which can be of major relevance to anticipate 
arrhythmic events in these patients. 
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