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Background. Nonlinear heart rate variability (HRV) indices have extended the description of autonomic nervous system (ANS)
regulation of the heart. One of those indices is approximate entropy, ApEn, which has become a commonly used measure of
the irregularity of a time series. To calculate ApEn, a priori definition of parameters like the threshold on similarity and the
embedding dimension is required, which has been shown to be critical for interpretation of the results. Thus, searching for a
parameter-freeApEn-based index could be advantageous for standardizing the use and interpretationof this widely applied entropy
measurement. Methods. A novel entropy index called multidimensional approximate entropy, 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥, is proposed based on
summing the contribution of maximum approximate entropies over a wide range of embedding dimensions while selecting the
similarity threshold leading to maximum ApEn value in each dimension. Synthetic RR interval time series with varying levels of
stochasticity, generated by bothMIX(P) processes and white/pink noise, were used to validate the properties of the proposed index.
Aging and congestive heart failure (CHF)were characterized fromRR interval time series of available databases.Results. In synthetic
time series, 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 values were proportional to the level of randomness; i.e., 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 increased for higher values of P in
generatedMIX(P) processes andwas larger for white than for pink noise.This result was a consequence of allmaximumapproximate
entropy values being increased for higher levels of randomness in all considered embedding dimensions. This is in contrast to the
results obtained for approximate entropies computed with a fixed similarity threshold, which presented inconsistent results for
different embedding dimensions. Evaluation of the proposed index on available databases revealed that aging was associated with
a notable reduction in 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 values. On the other hand, 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 evaluated during the night period was considerably
larger in CHF patients than in healthy subjects. Conclusion. A novel parameter-free multidimensional approximate entropy index,
𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥, is proposed and tested over synthetic data to confirm its capacity to represent a range of randomness levels in HRV
time series. 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 values are reduced in elderly patients, which may correspond to the reported loss of ANS adaptability in
this population segment. Increased𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 values measured in CHF patients versus healthy subjects during the night period
point to greater irregularity of heart rate dynamics caused by the disease.

1. Introduction

Approximate entropy (ApEn) was introduced by Pincus and
coworkers [1] in 1991 as an entropic measurement to quantify
the regularity of medical data. Ten years later, Richmann
and Moorman [2] introduced sample entropy (SampEn),
a variation of ApEn reducing the bias of considering self-
comparisons and being more independent of data length.
Both approaches have been widely used to characterize

medical disorders or discriminate between healthy and
pathological conditions [3–9]. However, these entropy mea-
sures are by definition dependent on two predefined param-
eter values, namely: m, the embedding dimension (i.e.,
the length of reconstructed vectors), and r, the tolerance
threshold (i.e., similarity value for comparing reconstructed
vectors). These parameters have been assigned diverse values
in published heart rate variability (HRV) studies (e.g., m
= 1 or 2; r = 0.1 to 0.25 times the standard deviation of
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the time series) [9–19]. Thus, one main drawback of these
entropy indices lies in the comparison between studies, since
diverse values of a priori parameters can lead to different
physiological interpretations.

Entropy-based methods, and in particular SampEn-based
ones, have received great attention in the last ten to fifteen
years. Alternatives have been proposed to make this index
independent of a priori parameter definition, thus facili-
tating the standardization of its application. In this regard,
multiscale entropy (MSE) and refined MSE approaches were
introduced to take into account complexity properties at
different scales by applying the coarse-graining technique
[15, 20–22]. Each scale was characterized by a new time series
derived from the original one by averaging and decimation
[15]. However, they still required the predefined parameters
m and r. Alternatives, such as the use of a density function
instead of a tolerance value, was proposed to improve estima-
tion of Renyi entropy, generalizing the Shannon entropy [23,
24]. Other entropy-based approaches have been proposed to
avoid the need for predefining specific parameters. In this
regard, permutation entropy of a given order was calculated
from the relative frequencies of all permutations of that
order of the analyzed time series [25]. Dispersion entropy
was suggested as a more reliable method than sample or
permutation entropies. However, the need for defining the
tolerance threshold r is not strictly avoided, but this is
replacedwith the definition of a number of classes [26]. Rank-
based methods were investigated to quantify the amount
of shuffling by sorting the ranks of the mutual distances
between pairs ofm-long vectors [27]. Although this approach
avoids predefinition of the threshold value, the embedding
dimension requires a priori definition. On the other hand,
the cumulative histogram was proposed to overcome the
limitation of defining a tolerance r value in the computation
of sample entropy, yielding the approximate entropy profile
[28]. An approach to measure bubble entropy, which was
shown to be independent of the embedding dimension m for
sufficiently large values of this parameter, was introduced in
[29]. Several of the above described approaches showed good
performance to characterize pathological versus healthy con-
ditions and led to a reduction in the associated computational
load. Nevertheless, they still presented dependence on some
parameters, like the embedding dimension or the tolerance
value.

Although SampEn was introduced as an improvement
of ApEn entropy, advances towards the standardization of
ApEn have been investigated as well. Different approaches
have been proposed to identify the values of the embedding
dimension m or the threshold r used for the characterization
of nonlinear dynamics in chaotic time series [30–35]. With
regard to the embedding dimension, the false nearest neigh-
bor method was used to search for the lowest embedding
dimension m that allows phase-space reconstruction. Very
different values of m were reported for different models and
experimental data [30]. The lowest values of m were found
to be 2, 3, and 6 for Hénon, Lorenz, and Mackey-Glass
time series, respectively [31]. With regard to the tolerance
threshold r, some studies focused on searching for the value,
denoted by rmax(m), that maximizes ApEn [32, 33, 36]. The

correspondingApEn-based index, maximumApEn, was used
to show that white noise series was more irregular than cross-
chirp signal [37]. In addition, this indexwas reported to better
enhance HRV and blood pressure variability differences
between supine and upright position with respect to the
use of fixed r values, typically 0.1-0.25 times the standard
deviation [34]. ApEn profile, based on cumulative histogram
computations, was proposed to avoid the shortcomings of
a priori definition of the tolerance threshold [38]. HRV
indices derived from such ApEn profiles were shown to
better separate young versus old individuals as compared
to classical ApEn approach. To reduce the influence of the
threshold r on the previous method, an adaptive cumulative
histogram method was proposed [39]. Total and average
cross-approximate entropies, aswell as the standard deviation
of cross-approximate entropy, distinguished financial time
series successfully. It should be noted that although r is
generally referred to as a fixed value, the parameter that
is fixed is the factor multiplying the standard deviation of
the analyzed time series, rather than the threshold r itself.
In the literature, identification of the values of r and m
used to characterize different time series is still unclear, as
highlighted by the highly diverse published values [34, 35].

In this study, we aimed to introduce an ApEn-based index
that avoids the need for a priori parameter definition and,
thus, allows standardization of entropy-based measurements.
In particular, 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 is proposed based on summation
of maximum ApEn values over different embedding dimen-
sions for each given HRV time series. This multidimen-
sional index does not require the use of the coarse-graining
technique and overcomes the variations in data length for
different time scales. Furthermore, its computation provides
entropic estimation without the need for ad hoc selection of
input parameter values. The ability of the proposed index
𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 to represent different degrees of randomness in
time series is first tested in synthetically generated signals and
subsequently used to characterize HRV changes induced by
aging and by congestive heart failure (CHF).

2. Materials and Methods

2.1. Materials. MIX processes: a family of processes com-
bining deterministic and stochastic behavior were studied.
The degree of stochasticity was controlled by parameter P.
MIX(P) generated a sine for P = 0 (pure deterministic) and
became more random as P increased up to 1 (P = 1, pure
stochastic):

𝑀𝐼𝑋(𝑃)𝑗 = (1 − 𝑍𝑗)𝑋𝑗 + 𝑍𝑗𝑌𝑗, (1)

where 𝑋𝑗 = √2 sin(2𝑗𝜋/12), 𝑌𝑗 ∼ are i.i.d. uniform random
variables on [−√3√3], and 𝑍𝑗 ∼ are i.i.d. random variables,
with 𝑍𝑗 = 1 having probability P and 𝑍𝑗 = 0 probability 1-
P [40]. For each P value in {0, 0.25, 0.5, 0.75, 1}, 30 processes
were generated, each containing 300 samples.

Noise time series: (i) White and pink noise (1/f ) time
series with zero mean and unit variance were studied. A
total of 30 white and pink noise processes, respectively,
were generated, each containing 300 samples. (ii) Bandpass
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filtered noise derived from white noise time series filtered
in two frequency passbands, representing the low (LF) and
high (HF) frequency components, with variable bandwidths.
Specifically, three types of bandpass filters with the following
passband limits were considered: BW1 (LF= 0.09-0.13Hz and
HF = 0.22-0.28Hz); BW2 (LF = 0.07-0.15Hz and HF = 0.19-
0.31Hz); andBW3 (LF=0.05-0.17Hz andHF=0.16-0.34Hz).
In all cases, the power of LF and HF spectral components,
𝑃𝐿𝐹 (0.04-0.15Hz) and𝑃𝐻𝐹 (0.15-0.4Hz), remained invariant.
A total of 30 filtered white noise time series per type were
generated.

2.1.1. Fantasia Database. Heartbeat locations from continu-
ous electrocardiographic (ECG) signals sampled at 250Hz
were available from twenty young (21-34 y.o., mean 25.9)
and 20 elderly rigorously screened healthy subjects (68-85
y.o., mean 74.5) undergoing 120 minutes of supine rest-
ing while watching the movie Fantasia (Disney, 1940) to
help maintain wakefulness. Further database information
is available in [41]. Recordings can be downloaded from
http://www.physionet.org [42].The whole 2-hour recordings
were analyzed.

2.1.2. Congestive Heart Failure and Normal Sinus Rhythm
Databases. For the CHF cohort, heartbeat locations from 44
CHF patients, aged 55.5 ± 11.4 y.o., of the Congestive Heart
Failure RR Interval Database and the BIDMC Congestive
Heart Failure Database (including patients in all NYHA
classes) were considered.

For the healthy population, heartbeat locations from 72
healthy subjects, aged 54.6 ± 16 y.o., of the MIT-BIH Normal
Sinus Rhythm Database and the Normal Sinus Rhythm RR
Interval Database were considered.

These databases were available from http://www.phy-
sionet.org [42]. The analyzed heartbeat locations of all
databases were obtained from an automatic ECG annotator
and were subsequently manually reviewed and corrected by
experts among Physionet collaborators. In this study, those
heartbeat locations were corrected for ectopic beats based
on instantaneous heart rate variation [43]. Subsequently, the
time intervals between consecutive heartbeats were used to
define the RR interval time series. Each RR time series was
divided into 300-sample segments, with 50% overlapping,
and interpolated at 2Hz to attenuate the effect of heart rate
mean as sampling rate [44]. A 3-hour night period centered
on the 300-sample segment with minimum heart rate mean
(HRM) was selected in all cases to minimize the influence
caused by potentially different daily activities.

Estimation of linear and nonlinear HRV indices was
performed on each segment. Subsequently, the median value
of each index over those segments was computed as the
representative value for each of the analyzed time series.

2.2. Methods

2.2.1. Approximate Entropy. Let 𝑥(𝑛), 𝑛 = 1, . . . , 𝑁, be the
time series of interest, which is normalized by its standard

deviation and 𝑦𝑚𝑖 the 𝑖th reconstructed vector of embedding
dimension m.

𝑦
𝑚
𝑖 = [𝑥 (𝑖) , 𝑥 (𝑖 + 1) , 𝑥 (𝑖 + 2) , . . . , 𝑥 (𝑖 + (𝑚 − 1))]𝑇 (2)

The amount of reconstructed vectors was𝑁𝑚 = 𝑁 − (𝑚 − 1)
for each embedding dimension m. The distance, computed
by the 𝐿∞ norm, between each pair of reconstructed vectors,
𝑦
𝑚
𝑖 ,𝑦
𝑚
𝑗 , was denoted by 𝑑𝑚𝑖,𝑗. Each distance was compared

with a threshold r to compute the number of reconstructed
vectors that lie within a hyperspace centered in the recon-
structed vector of reference:

𝐶𝑚𝑖 (𝑟) =
1
𝑁𝑚

𝑁
𝑚

∑
𝑗=1

𝐻(𝑟 − 𝑑𝑚𝑖,𝑗) , (3)

where 𝐶𝑚𝑖 is the correlation sum and H is the Heaviside
function.

This procedure was repeated with all reconstructed vec-
tors and the probability of a pattern of length m appearing
along the time series was denoted by the following.

𝜙𝑚 (𝑟) = 1
𝑁𝑚

𝑁
𝑚

∑
𝑖=1

log (𝐶𝑚𝑖 (𝑟)) (4)

𝐴𝑝𝐸𝑛 (𝑚, 𝑟) = 𝜙𝑚 (𝑟) − 𝜙𝑚+1 (𝑟) (5)

In this study, m = 2 and r = 0.2 were considered, leading to
computation of ApEn(2, 0.2).

2.2.2. Maximum Approximate Entropy. For each embedding
dimension m, the threshold r leading to maximum approxi-
mate entropy, denoted by rmax(m), was determined as in [45]
and the maximum value ApEn(m, rmax(m)) was calculated
[36]. For the sake of comparison with ApEn(2, 0.2), ApEn(2,
rmax(2)) was calculated.

2.2.3. Multidimensional Approximate Entropy. The multidi-
mensional entropy index,MApEn(r), was introduced by sum-
ming up the approximate entropies for a range of embedding
dimensions:

𝑀𝐴𝑝𝐸𝑛 (𝑟) =
𝑚=𝑚
𝑚𝑎𝑥

∑
𝑚=1

𝐴𝑝𝐸𝑛 (𝑚, 𝑟) , (6)

where mmax = 15. To additionally remove the dependence of
the tolerance threshold, the value rmax(m) was identified for
each embedding dimension m, leading to the definition of
𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥.

𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 =
𝑚=𝑚
𝑚𝑎𝑥

∑
𝑚=1

𝐴𝑝𝐸𝑛 (𝑚, 𝑟𝑚𝑎𝑥 (𝑚)) (7)

ApEn, SampEn, and correlation dimension D2 were com-
puted using the methodology described in [45], considering
a range for the tolerance threshold r varying from 0.01 to
3 times the standard deviation of the time series with a
resolution of 0.01.

http://www.physionet.org
http://www.physionet.org
http://www.physionet.org
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Figure 1: Nonlinear indices: (a) ApEn(2,0.2); (b) SampEn(2,0.2); (c) ApEn(2,rmax(2)); and (d) D2 evaluated over MIX(P) processes with
varying stochastic levels and pink and white noise time series. ∗ indicates statistically significant differences by Mann-Whitney U test (p-
values < 0.05) when comparing MIX(P) processes or pink versus white noise time series. Data are shown as median and interquartile range
over 30 realizations.

2.2.4. Time- and Frequency-Domain HRV Indices. Time- and
frequency-domain indices were obtained from the raw RR
time series and from the modulating signal of the integral
pulse frequency modulation (IPFM) model, respectively,
using 300 heartbeats as analysis windows.

HRM and the square root of themean squared differences
of successive normal heartbeat intervals (RMSSD) were
calculated.

Spectral analysis was performed on a modulating signal,
m(t), assumed to carry information about the autonomic
nervous system (ANS) activity, which was estimated based
on the IPFM model compensating for the influence of
HRM [46]. Power in the low frequency (PLF, 0.04-0.15Hz),
related to sympathetic and parasympathetic activity, and
high frequency bands (PHF, 0.15-0.4Hz), as a parasympa-
thetic modulation estimation, as well as normalized low
frequency power (PLFn = PLF/(PLF+PHF)) was estimated
[47].

2.3. Statistical Analysis. The normality of data distributions
was tested by the Kolmogorov-Smirnov test. Nonlinear as
well as time- and frequency-domain HRV indices were
compared between young and elderly subjects and between
CHFpatients and healthy subjects by t-test orMann-Whitney
U test depending on whether data distributions fulfilled the
normality criterion or not. Only paired comparisons (rather
than othermultiple comparisons)were performed. Spearman
correlation between the proposed index 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 and
other HRV indices was computed.

3. Results

3.1. Synthetic Data. Figures 1 and 2 show the values of the
analyzed nonlinear HRV indices computed over MIX(P)
processes and pink and white noise time series. In the
comparison of MIX(P) processes with randomness degree
below P = 0.75 (0 versus 0.25; 0.25 versus 0.5; and 0.5
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Figure 2: (a)MApEn(0.2) and (b)𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 evaluated overMIX(P) processes with varying stochastic levels as well as white and pink noise.
(∗) indicates statistically significant differences by Mann-WhitneyU test (p-values < 0.05) when comparing MIX(P) processes or pink versus
white noise time series. Data are shown as median and interquartile range over 30 realizations.

versus 0.75) all nonlinear indices led to statistically significant
differences. In the comparison between MIX(P) processes
with P above 0.75 (0.75 versus 1) no statistically significant
differences were found for any of the nonlinear indices.
ApEn(2, 0.2) and ApEn(2,rmax(2)) as well as nonlinear index
values were higher for greater levels of randomness until
MIX(0.75); however above P = 0.75 an increase in the level
of randomness was not captured by ApEn or by any of the
nonlinear indices. Regarding the separation of pink andwhite
noise time series, all the analyzed indices were able to separate
them. The range of rmax(2) values was found to lie in the
interval 0.2-0.3 times the standard deviation of the time
series, which is commonly used in the literature (see Table
S1 in Supplementary Materials for additional information).
The multidimensional index MApEn(r) was able to separate
pink and white noise time series for all tested values of
the tolerance threshold r (results only shown for r = 0.2,
Figure 2(a)).

While statistically significant differences were found for
bothMApEn(0.2) and𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 when comparing different
stochastic processes, the former presented decreasing values
as randomness increased, while the latter showed opposite
results. To analyze these differences, the results of evaluating
ApEn for two embedding dimensions, namely,m = 2 andm =
6, are illustrated in Figure 3. The use of a fixed threshold did
not always allow ApEn to characterize the randomness level
of the MIX(P) processes. As an example, for m = 6, the use
of the fixed threshold r = 0.2 led to MIX(0.25) having much
larger complexity thanMIX(0.5),MIX(0.75), andMIX(1). For
m = 2, however, MIX(0.25) presented the lowest complexity.
When combining results from different scales, MApEn(0.2)
showed lower values as the randomness level increased, thus
not being able to reflect the degree of stochasticity in the time
series (Figure 2(a)). However, the use of ApEn(m, rmax(m))
when computing 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 served to characterize MIX(P)
processes according to their stochasticity level for any value of

m, which then rendered 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 suitable to characterize
stochasticity levels (Figure 2(b)).

In Figures 4(a) and 4(b) ApEn(m, 0.2) and ApEn(m,
rmax(m)) are shown for pink and white noise when the
embedding dimension m was varied from 1 to 15. ApEn(m,
0.2) values were higher for white noise than for pink noise
for low embedding dimension values, while presenting the
opposite behavior for large embedding dimensions. Themul-
tidimensional index MApEn(0.2) resulted in higher values
for white than for pink noise, reflecting the behavior found
for the lowest embedding dimensions (Figure 2(a)). On the
other hand, ApEn(m, rmax(m)) was consistently larger for
white than pink noise across all embedding dimensions and,
consequently, differences between these noise time series
were amplified when computing 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 (Figure 2(b))
with respect toMApEn(0.2) (Figure 2(a)).

As the statistical significance in the comparison of sim-
ulated data highly depends on the number of simulated
processes (30 in the comparisons shown in Figure 2(b)),
a study was performed to characterize such a dependence
for the proposed index 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 when this is compared
in all cases shown in Figure 2(b). Results are presented in
Table 1 for a number of processes varying from 5 to 30 in
5-process steps. As shown in the table, p-values decreased
as the number of simulated processes increased. For a p-
value of 0.05, statistical significancewas already achieved for a
number of simulated processes as low as 5 in all comparisons
indicated as significant in the results presented in Figure 2(b)
corresponding to 30 simulated processes.

The median spectrum obtained from each type of band-
pass filtered noise time series is illustrated in Figure 5(a).
Time- and frequency-domain indices, as well as the proposed
𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 index, were estimated over these filtered noise
time series (see Figure S4 in Supplementary Materials for
time- and frequency-domain indices). Statistically significant
differences when comparing the different filtered noise time
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(b) for a particular stochastic realization. Dashed line indicates r = 0.2 in both panels. ApEn(2,rmax(2)), ApEn(6,rmax(6)), rmax(2), and rmax(6)
values are displayed for each case.
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Figure 4: ApEn computed across embedding dimensions for pink noise (grey) and white noise (black) using different thresholds (a) r(m) =
0.2 and (b) r(m) = rmax(m). ∗ indicates statistically significant differences by Mann-Whitney U test (p-values < 0.05) between pink and white
noise for a given embedding dimension. Data are shown as median and interquartile range over 30 realizations.

Table 1: P-values fromMann-WhitneyU test comparing the index𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 over different synthetic time series when varying the number
N of simulated stochastic processes.

𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 N = 5 N = 10 N = 15 N = 20 N = 25 N = 30
MIX(0) vs. MIX(0.25) 0.0079 6.4e-05 6.9e-07 8.0e-09 9.7e-11 1.2e-12
MIX(0.25) vs. MIX(0.5) 0.0079 1.8e-04 3.4e-06 6.8e-08 1.4e-09 3.02e-11
MIX(0.5) vs. MIX(0.75) 0.0079 0.001 4.02e-05 1.2e-06 4.9e-08 4.9e-09
MIX(0.75) vs. MIX(1) 0.55 0.43 0.80 0.32 0.17 0.25
Pink vs. White noise 0.0079 1.8e-04 3.4e-06 6.8e-08 1.4e-09 3.02e-11
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Figure 5: (a) Median spectrum and (b) 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 values obtained per type of filtered white noise time series. ∗ indicates statistically
significant differences by Mann-Whitney U test (p-values < 0.05). Data are shown as median and interquartile range over 30 realizations.

series were found only for 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 by Mann-Whitney
U test (Figure 5(b)). Additionally, the dependence of the
statistical significance on the number of realizations was
studied forRMSSD,PHF, PLF, PLFn, and𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 (see Table
S6 in Supplementary Materials).

3.2. Real Data. One subject from the young cohort and
another one from the elderly cohort were discarded for
analysis, as their RR time series were not suitable for ectopic
beats correction due to the fact that their variability values
reached themaximum allowed HR variation, thus precluding
distinction between normal and ectopic beats [43].

ApEn(2, 0.2), ApEn(2, rmax(2)),MApEn(0.2),𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥,
SampEn(2, 0.2), and D2 values showed a trend for higher
values in young than in elderly subjects, but only𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥
showed statistically significantly higher values in young
subjects (see Figures 6 and 7). On the other hand, all analyzed
nonlinear HRV indices, with the exception of MApEn(0.2),
were statistically significantly larger in CHF patients than in
healthy subjects (Figures 6 and 7).

Figure 8 presents ApEn(m,0.2) and ApEn(m, rmax(m)), as
contributors to MApEn(0.2) and 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 (Figures 6(a)
and 6(b)) separately for each of the analyzed cohorts. The
indexApEn(m, 0.2)was found to have higher values in young
subjects than in elderly subjects for low embedding dimen-
sions (m <= 3), even if not achieving statistical significance
in all cases (Figure 8(a)). Similarly, CHF patients showed
higher ApEn(m, 0.2) values than healthy subjects for low
values of the embedding dimensionm (Figure 8(c)). For large
embedding dimensions, opposite results were found in the
two comparisons. Similar results were found forApEn(m, 0.1)
andApEn(m, 0.15) (see Figure S1 in Supplementary Materials,
where additional results are presented for other commonly
used r values). Regarding ApEn(m, rmax(m)), statistically
significantly higher values were found in young versus elderly

and in CHF patients versus healthy subjects for most values
of the embedding dimension m, while for the remaining
values of m the compared values could not be statistically
distinguished.

HRM and RMSSD values are displayed in Figure 9 for the
studied groups. No statistically significant differences were
found forHRM when comparing young and elderly subjects,
although a tendency to lower HRM values in the elderly
group was observed. HRM was statistically significantly
higher in CHF patients as compared to healthy subjects.
On the other hand, the RMSSD index showed statistically
significant differences between both pairs of groups, with
elderly subjects andCHFpatients presenting reducedRMSSD
values.

Values of the frequency-domain HRV indices PLF, PHF,
and PLFn are shown in Figure 10 for the four studied groups.
Significant differences were found for PLF and PHF in the
two comparisons. PLFn only showed statistically significant
differences for the comparison between CHF patients and
healthy subjects.

Figure 11 illustrates the relationship between 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥
and RMSSD (a) and PHF (b). Correlation coefficients com-
puted over the four analyzed groups are shown in Table 2.

4. Discussion

4.1. Searching for Standardizing Approximate Entropy. Non-
linear HRV analysis has extended the description of ANS
regulation of cardiac electrical activity. The use of nonlinear
HRV indices has provided new physiological insights into
ventricular dysfunction, ventricular tachycardia, obstetrical
complications under anesthesia, mental disorders, and aging,
among others [3–9]. Nevertheless, the physiological inter-
pretation of some common nonlinear HRV indices could be
biased by the a priori selection of parameter values intrinsic
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Figure 6: Regularity and complexity indices: (a) ApEn(2,0.2); (b) SampEn(2,0.2); (c) ApEn(2,rmax(2)); and (d) D2 comparing young versus
elderly, and healthy subjects versus CHF patients. ∗ indicates statistically significant differences by Mann-Whitney U test (p-values < 0.05)
between groups. Data are shown as median and interquartile range.

Yo
un

g

El
de

rly

H
ea

lth
y

CH
F

2.8

3

3.2

3.4

3.6

3.8

M
Ap

En
(0
.2

)

(a)

Yo
un

g

El
de

rly

H
ea

lth
y

CH
F

∗∗

M
Ap

EＨ
Ｇ
；
Ｒ

5

5.5

6

6.5

7

7.5

8

(b)
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Figure 8: Approximate entropy values computed for thresholds set at 0.2 and rmax(m) across embedding dimensions in young (black) and
elderly (grey) groups shown in (a) and (b), and in healthy subjects (dotted grey) and CHF patients (dashed black) during the night period in
(c) and (d). ∗ indicates statistically significant differences by Mann-Whitney U test (p-values < 0.05) between groups for a given embedding
dimension. Data are shown as median and interquartile range.

Table 2: Spearman correlation coefficients between𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 and RMSSD and between𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 and PHF.

𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 vs. RMSSD 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 vs. P𝐻𝐹
𝜌 p-value 𝜌 p-value

Young 0.02 0.93 0.21 0.37
Elderly -0.04 0.86 0.08 0.73
Healthy -0.13 0.26 0.023 0.85
CHF -0.57 0.0001 -0.65 0.0001

to their definitions. Some investigations have addressed the
automatic search for those parameter values based on specific
time series characteristics [32, 35, 38]. Indices like TotalApEn
and maximum approximate entropy are still dependent on
the definition of the embedding dimension m. The values
of m vary from one study to another even though there
is a general tendency to set m = 2 to estimate ApEn(2,

rmax(2)). In this study, the index 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 has been pro-
posed based on summing the maximal approximate entropy
values over all analyzed embedding dimensions. Although
the computation of 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 requires setting a maximum
embedding dimension value, the relative contribution of
ApEn(m,rmax(m)) values to the final 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 estimation
largely decreases as m increases, thus rendering 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥
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Figure 9: (a) HRM and (b) RMSSD values in young versus elderly and CHF patients versus healthy subjects during the night period. ∗
indicates statistically significant differences by Mann-Whitney U test (p-values < 0.05) between groups.
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Figure 10: Frequency-domain indices: (a) PLF; (b) PHF; and (c) PLFn computed comparing young and elderly, and CHF patients and healthy
subjects during the night period. ∗ indicates statistically significant differences by Mann-Whitney U test (p-values < 0.05) between groups.
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practically independent of such selection. In fact, in this
study ApEn(m,rmax(m)) was found to present a remarkable
decay for m varying from 1 to less than 10, while it remained
approximately constant or with a very slow decay from
that point onwards. Thus, a value of 15 or any other larger
value for the maximum embedding dimension is expected
to provide essentially the same outcomes. As a consequence,
the proposed index, 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥, can be seen as an entropy-
based index not requiring a priori parameter definition for
its computation. The algorithm described in [45] for D2
estimation was used in this study to compute the analyzed
nonlinear indices. By using this algorithm, nonlinear HRV
indices could be computed in less than a second for a 300-
sample time series, whereas the computational time for the
sequential algorithm over the same time series was 1086
seconds (18mins), in both cases using a Windows� 7 based
PC, Intel� Core� i7 3.5GHz, 16Gb RAM with Matlab�
R2015a.

Other SampEn-based indicesmeasuring time series irreg-
ularity such as rank entropy, permutation entropy, and bubble
entropy have been proposed as methods aimed at providing
entropy definitions independent of a priori selected param-
eter values [25, 27, 29]. The multiscale extension of these
SampEn-based methods, by considering the coarse-graining
derived series, served as a basis for this study to formulate a
multidimensional approach, overcoming the coarse-graining
limitations for short-term HRV data analysis.

4.2. Analysis of Synthetic Data. The proposed index
𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 has been tested for characterization of synthetic
time series. Statistically significantly larger values of
𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 were found for white than for pink noise.
This behavior was also reproduced by all other tested
nonlinear HRV indices including MApEn(0.2), although
such differences were found to be attenuated when using
a fixed tolerance threshold as compared to using the one
leading to maximum entropy.

The evaluation of the proposed marker over synthetic
data generated byMIX(P) processes revealed that the greater
the stochastic level, the higher the value of𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥, which
is in agreement with the results shown by other nonlinear
HRV indices, like D2, ApEn, and SampEn, describing com-
plexity of the time series. On the contrary, the use of a
fixed threshold r, e.g., with value 0.2, in the computation of
MApEn(r) was not able to reflect the level of randomness of
the MIX(P) time series.

An additional simulation study was carried out by analyz-
ing three types of filtered white noise time series whose time-
and frequency-domain indices were statistically similar. The
analysis showed that 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 provides complementary
information to that from time- and frequency-domain
indices. According to the simulation results,𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 was
sensitive to changes in spectrum shape involving changes in
HRV regularity. The narrower the spectral components, the
lower the 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 value is, according to a more regular
signal.

In the comparisons of simulated populations, the number
of stochastic processes is expected to influence the statistical

significance. Results have been presented to confirm the
decrease in the p-valueswhen the proposed index𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥
was compared over different synthetic populations with an
increasingly higher number of simulated processes. The
number of processes required to attain a given significance
was derived for each performed statistical comparison. Our
results, in line with previous studies published in the lit-
erature [48], point out the importance of reporting the
number of considered processes along with the p-value of any
statistical comparison over synthetically generated data.

4.3. Aging and Congestive Heart Failure Assessment by Non-
linear HRV Analysis. The effect of aging was evaluated
in healthy subjects during supine resting conditions, with
subjects being awake. Lower values were found in the elderly
cohort with respect to the young one for all analyzed nonlin-
ear indices, with differences being statistically significant for
our proposed𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 index. Our results are in agreement
with previous studies where aging has been reported as a
cause for decreased complexity and irregularity of the beat-
to-beat RR series [8, 20, 38, 41, 49]. This reduction has been
associated with an impairment to adapt against external or
internal perturbations [41, 50].HRM,RMSSD, and PHF values
were also decreased, while PLFn values were increased in the
elderly cohort, pointing to a potential enhancement in the
sympathetic modulation of sinoatrial node activity.

The impact of CHF was assessed by comparing all
our analyzed indices between failing patients and healthy
controls during the night period while they were sleeping.
According to the results obtained for all the studied nonlinear
HRV indices, including the proposed 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 index,
statistically significantly higher complexity and irregularity
were found in CHF patients with respect to healthy sub-
jects. Similar results were found when restricting the age
of the individuals to the range covering from 55 to 75
years old, pointing out that age has no relevant effect on
the comparison between CHF patients and healthy subjects
for the compared cohorts. Similarly, NYHA class had no
impact on the distinction between CHF patients and healthy
subjects, as demonstrated by restricting the analysis to CHF
patients in NYHA classes III-IV, which led to similar results
to those found for the whole CHF population (see Figure
S2 in Supplementary Materials for additional details on the
performed comparisons).

Spectral HRV analysis showed a significant decrease in
PLFn for CHF patients with respect to healthy subjects. In
previous studies, CHF has been reported to be associated
with an increase in the sympathetic tone and a decreased
peripheral response to adrenergic input [51, 52]. Studies
considering pharmacological blockades have demonstrated
that sympathetic blockade leads to increases in ApEn and
decreases in PLF and PLFn, while sympathetic activation
decreases the values of all nonlinear indices and increases
PLFn [53, 54]. Thus, an increase in PLFn as well as a decrease
in irregularity/complexity indices could be expected in CHF
patients when compared to healthy subjects. However, in our
data both a decrease in PLFn and an increase in irregular-
ity/complexity indices were observed in CHF with respect
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to controls. A decrease in the low frequency content of
HRV has been related to the progression of heart failure
in CHF patients with advanced disease [52]. This appar-
ently contradictory results may be explained by a decreased
responsiveness to sympathetic modulation [55].

CHF has been characterized by ApEn in the litera-
ture, but results have been found to be dependent on the
applied method [56]. For instance, the use of a point-
process paradigm for describing the heartbeat generation led
to greater irregularity and/or complexity values in healthy
subjects as compared to CHF patients, whereas the use of
raw RR interval time series showed the opposite tendency
[56].MSE, which extends the classical SampEn definition to a
time-scale representation, has been applied to describe heart
rate dynamics in CHF [20]. Costa et al. reported that healthy
subjects presented greaterMSE values than CHF patients, but
in particular the elderly healthy cohort showed lower MSE
values in the first scale than the CHF group. Although a
relationship between MSE-derived indices and sympathetic
and parasympathetic modulation has been reported [57], the
methodological differences comparing MSE-derived indices
and𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 do not allow translation of the physiological
interpretation to the present study.

In our study CHF patients and healthy subjects showed
diverse ApEn values, being greater in one or the other group
depending on the tolerance r and the embedding dimension
m values. Therefore, the different results obtained in the
present study and in [21] could be due to the method itself
(ApEn here and SampEn in [21]) and/or to the values used
for the tolerance threshold (rmax(m) in this study and fixed
thresholds in [21]). ApEn(m, rmax(m)) values were found to
be larger in CHF patients than in healthy subjects for all
considered embedding dimensions, contrary to the lower
MSE values in CHF patients reported for all scales in [21].
Additionally, to discard the effect of the segment length
of analysis in underlying differences between the results
presented here and results in [21], our proposed multi-
dimensional index 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 was also tested for longer
segments of HRV analysis (up to 4000 samples rather than
300 samples). Results confirmed that 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 presented
essentially the same discriminative capacity between healthy
and CHF groups for the different analyzed segment lengths,
with higher values corresponding toCHF patients (see Figure
S3 in Supplementary Materials). This led us to conclude that
the selected segment length for HRV analysis was not a
factor explaining the higher𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 values found in CHF
patients.

Of note, the CHF patients included in the present study
were enrolled in a long-term study to evaluate the efficacy of
drugs, in particular milrinone and digoxin, and these drugs
may have had an effect on autonomic modulation of heart
rate. In addition, no information was available in relation to
other concomitant disorders that CHF patients might suffer,
such as obstructive sleep apneas, particularly considering that
these were evaluated during the night period [58].

Finally, our proposed index, even if not showing remark-
ably higher discriminative capacity than other traditional
HRV indices in separating young versus elderly subjects and
CHF patients versus healthy subjects, could be capturing

different information from that of those other indices and,
consequently, it might prove useful as a complementary tool
to characterize the effects of diseases or conditions. This
is supported by the simulation study considering filtered
white noise time series whose time- and frequency-domain
indices were invariant. Other studies have also reported that
the combination of entropy-based indices with time- and
frequency-domain ones, when analyzed in patient popula-
tions similar to those of the present study (CHF patients
versus healthy subjects), provided better classification results
than by using only time- and frequency-domain indices [59,
60]. The added value of 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 in clinical and experi-
mental applications should be the focus of future research
studies.

5. Conclusions

Amultidimensional approximate entropy index,𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥,
is proposed as a parameter-free entropy-based measurement.
By considering maximum approximate entropy values across
embedding dimensions, the proposed index increases the
estimation robustness. This has been tested by evaluating
the methodology on synthetic time series, including MIX(P)
processes as well as pink and white noise, confirming that
𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 consistently characterized the degree of ran-
domness in the series, whereas ApEn computed by using
fixed thresholds produces inconsistent results depending on
the analyzed embedding dimension. 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 provided
additional information in the analysis of the effects of aging.
Specifically, 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 was found to be higher in elderly
than young subjects, thus capturing heart rate complexity
changes possibly reflecting loss of ANS adaptability in the
elderly population. In addition, 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 was found to be
increased in CHF patients as compared to healthy subjects
during the night period, indicating greater HR complex-
ity due to CHF. In conclusion, 𝑀𝐴𝑝𝐸𝑛𝑚𝑎𝑥 can provide
robust information on nonlinear HR dynamics with the
advantage of being independent of preselected parameter
values.

Data Availability

Synthetic data can be found in the following link: https://drive
.google.com/open?id=1wCjF0dJmmXqdwn7Qx371GHXrN
N0WyjP. The databases, Fantasia Database, Congestive
Heart Failure RR Interval Database, BIDMC Congestive
Heart Failure Database, and Normal Sinus Rhythm, used
for nonlinear HRV analyses can be downloaded from
http://www.physionet.org.
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Supplementary Materials

Supplementary Materials are provided.Three figures and five
tables that can be found in separate files. Table S1. 𝑟𝑚𝑎𝑥(2)
values computed on synthetic and real data. Mann-Whitney
U test was used to evaluate statistical differences between
consecutive row data. Data are shown in terms of median
(1st|3rd) quartiles. Figure S1. Approximate entropy values
computed for thresholds r set at 0.1 and 0.15 across embed-
ding dimensions in young (black) and elderly (grey) groups
shown in the upper panels, and in healthy subjects (dotted
grey) and CHF patients (dashed black) during the night
period in the lower panels. ∗ indicates statistically significant
differences. Data are shown as median and interquartile
range. Figure S2. Results of nonlinear indices computed
on two subsets from healthy and CHF databases during
night period, restricting age range covering from 55 to 75
years old and restricting CHF patients in NYHA classes
III - IV. ∗ indicates statistically significant differences. Data
are shown as median and interquartile range. Figure S3.
MApEnmax values computed for young (solid black) versus
elderly (solid grey), and healthy subjects (dotted black) versus
CHF patients (dashed grey) in time series of 4000 samples.
∗ indicates statistically significant differences (𝑝-values <
0.05 (dark), p-values < 0.07 (grey)). Data are shown as
median and interquartile range. Table S2. P-values and AUC
(Area Under Roc Curve) computed on synthetic data for the
nonlinear indices. Mann-Whitney U test was used to evaluate
statistical differences. Table S3. P-values computed in the
comparison between ApEn(m, 0.2) and ApEn(m, 𝑟𝑚𝑎𝑥(m))
across embedding dimensions. Mann-Whitney U test was
used to evaluate statistical differences. Data are shown in
terms of median (IQR). Table S4. P-values and AUC (Area
Under Roc Curve) computed on HRV data for nonlinear
indices. Mann-Whitney U test was used to evaluate statistical
differences. Table S5. P-values and AUC (Area Under Roc
Curve) computed on HRV data for temporal and spectral
indices. Mann-Whitney U test was used to evaluate statistical
differences. Figure S4. (a) RMSSD, (b) PHF, (c) PLF, and
(d) PLFn values obtained per type of filtered white noise
time series. ∗ indicates statistically significant differences by
Mann-Whitney U test (𝑝-values < 0.05). Data are shown as
median and interquartile range over 30 realizations. Table
S6. P-values from Mann-Whitney U test comparing the
indices RMSSD, PHF , PLF , PLFn, and MApEnmax over filtered
white noise time series by considering BW1, BW2, and BW3,

varying the number N of simulated processes. P-values <
0.05, marked in bold, are considered statistically significant.
(Supplementary Materials)

References

[1] S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, “A
regularity statistic for medical data analysis,” Journal of Clinical
Monitoring and Computing, vol. 7, no. 4, pp. 335–345, 1991.

[2] J. S. Richman and J. R. Moorman, “Physiological time-series
analysis using approximate entropy and sample entropy,”Amer-
ican Journal of Physiology-Heart and Circulatory Physiology, vol.
278, no. 6, pp. H2039–H2049, 2000.

[3] L. A. Fleisher, S.M. Pincus, and S.H. Rosenbaum, “Approximate
entropy of heart rate as a correlate of postoperative ventricular
dysfunction,” Anesthesiology, vol. 78, no. 4, pp. 683–692, 1993.

[4] D. Landry P, F. M. Bennett, and N. E. Oriol, “Analysis of Heart
Rate Dynamics as a Measure of Autonomic Tone in Obstetrical
Patients Undergoing Epidural or Spinal Anesthesia,” Regional
Anesthesia, vol. 19, no. 3, pp. 189-95, 1994.

[5] A. L. Goldberger, J. E. Mietus, D. R. Rigney, M. L. Wood, and
S. M. Fortney, “Effects of head-down bed rest on complex heart
rate variability: Response to LBNP testing,” Journal of Applied
Physiology, vol. 77, no. 6, pp. 2863–2869, 1994.

[6] S. A. Schuckers, “Use of approximate entropy measurements
to classify ventricular tachycardia and fibrillation,” Journal of
Electrocardiology, vol. 31, pp. 101–105, 1998.

[7] V. Yeragani K, R. Nadella, B. Hinze, S. Yeragani, and V. C.
Jampala, “Nonlinear Measures of Heart Period Variability:
Decreased Measures of Symbolic Dynamics in Patients with
PanicDisorder,”Depression andAnxiety, vol. 12, no. 2, pp. 67–77,
2000.

[8] F. Beckers, B. Verheyden, and A. E. Aubert, “Aging and nonlin-
ear heart rate control in a healthy population,”American Journal
of Physiology-Heart and Circulatory Physiology, vol. 290, no. 6,
pp. H2560–H2570, 2006.

[9] M. Sabeti, S. Katebi, and R. Boostani, “Entropy and complexity
measures for EEG signal classification of schizophrenic and
control participants,” Artificial Intelligence in Medicine, vol. 47,
no. 3, pp. 263–274, 2009.

[10] S. M. Pincus and A. L. Goldberger, “Physiological time-series
analysis: what does regularity quantify?” American Journal of
Physiology-Heart and Circulatory Physiology, vol. 266, no. 4, pp.
H1643–H1656, 1994.

[11] V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate
entropy-based epileptic EEG detection using artificial neural
networks,” IEEE Transactions on Information Technology in
Biomedicine, vol. 11, no. 3, pp. 288–295, 2007.

[12] Q. Yuan,W. Zhou, S. Li, andD.Cai, “Epileptic EEGclassification
based on extreme learning machine and nonlinear features,”
Epilepsy Research, vol. 96, no. 1-2, pp. 29–38, 2011.

[13] D. Abásolo, R. Hornero, P. Espino, J. Poza, C. I. Sánchez, and
R. De La Rosa, “Analysis of regularity in the EEG background
activity of Alzheimer’s disease patients with Approximate
Entropy,”Clinical Neurophysiology, vol. 116, no. 8, pp. 1826–1834,
2005.

[14] M. Ferrario,M.G. Signorini, G.Magenes, and S. Cerutti, “Com-
parison of entropy-based regularity estimators: Application to
the fetal heart rate signal for the identification of fetal distress,”
IEEE Transactions on Biomedical Engineering, vol. 53, no. 1, pp.
119–125, 2006.

http://downloads.hindawi.com/journals/complexity/2018/4953273.f1.docx


14 Complexity

[15] M.Costa, A. L. Goldberger, andC.-K. Peng, “Multiscale entropy
analysis of complex physiologic time series,” Physical Review
Letters, vol. 89, no. 6, Article ID 068102, 2002.

[16] S. Pincus, “Approximate entropy (ApEn) as a complexity mea-
sure,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 5, no. 1, pp. 110–117, 1995.

[17] M. G. Signorini, M. Ferrario, S. Cerutti, and G. Magenes,
“Advances in monitoring cardiovascular signals. Contribution
of nonlinear signal processing,” in Proceedings of the 2011 33rd
Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pp. 6568–6571, Boston, MA,
August 2011.

[18] V. Bari, J. F. Valencia, M. Vallverdu et al., “Refined multiscale
entropy analysis of heart period and QT interval variabilities in
long QT syndrome type-1 patients,” in Proceedings of the 2013
35th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), pp. 5554–5557, Osaka,
July 2013.

[19] F. Aletti, M. Ferrario, T. B. A. de Jesus et al., “Heart rate vari-
ability in children with cyanotic and acyanotic congenital heart
disease: analysis by spectral and non linear indices.,”Conference
proceedings: IEEE Engineering in Medicine and Biology Society,
pp. 4189–4192, 2012.

[20] M. Costa, A. L. Goldberger, and C. Peng, “Multiscale entropy
analysis of biological signals,” Physical Review E: Statistical,
Nonlinear, and Soft Matter Physics, vol. 71, no. 2, Article ID
021906, 2005.

[21] J. F. Valencia, A. Porta, M. Vallverdú et al., “Refined multiscale
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