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Preface

Bioelectrical signals have been recorded and analyzed for several decades
but still continue to excite physicians and engineers. Novel signal processing
techniques have helped uncover information which completely changed the
way various diseases previously were diagnosed. In fact, it is today difficult
to imagine a situation when diseases related to the heart, the brain, or the
muscles are diagnosed without also including certain information derived
from bioelectrical signals. Such information is essential to therapeutic de-
vices in cardiac, neurological, and neuromuscular applications, and will in
the future, when systematically fused with other types of biomedical signals,
continue to improve the quality of life of many patients. Monitoring of home-
based patients is becoming increasingly popular in health care, frequently
involving bioelectrical signals which can be safely and comfortably recorded
using noninvasive techniques.

The aim of this book is to present a comprehensive overview of tech-
niques with particular relevance to the processing of bioelectrical signals.
The presentation is problem-driven and deals with issues having received
considerable attention from both a scientific viewpoint, i.e., in the form of
publications and conference presentations, and a viewpoint of product de-
velopment. Since biomedical signal processing has been largely synonymous
with the processing of ECG, EEG, EMG, and evoked potentials, we have
focused the presentation on issues related to these four types of bioelectrical
signals. It is yet our conviction that the reader is fully capable of transfer-
ring the way of thinking developed herein for bioelectrical signals, as well as
to transfer the developed methods, when later dealing with other types of
biomedical signals.

Choosing a problem-driven presentation means, in this book, that differ-
ent methods are described within the context of a certain bioelectrical signal.
For example, power spectral analysis is described within the context of EEG
signal processing though such analysis is certainly well-established in other
biomedical applications as well. While some may feel that the realm of a
method’s usefulness is depreciated with this kind of presentation, we hope
nonetheless that the power in connecting a particular type of signal to a

vii



viii Preface

particular method outweighs the disadvantages. On occasion, the problem-
driven presentation also means the display of a smorgasbord of methods
developed to solve a certain problem such as the cancellation of powerline
interference. We hope that this way of dealing with a problem would serve
the reader well by offering an idea of the diversity with which a problem can
be solved. Not all methods considered in this textbook are directly appli-
cable in clinical practice but may require one or several heuristic add-ons
before their performance become satisfactory; the exact definition of such
add-ons is rarely disclosed in the original publication of a method but needs
to be developed by those interested in the method’s pursuit.

With the display of different methods for solving a particular problem
comes the natural wish of knowing which method offers the best perfor-
mance. We have, however, abstained from making such comparisons due to
the many pitfalls associated with choosing performance measure, data set,
and so forth. We would instead like to challenge the reader to delve into this
important aspect.

Biomedical signal processing has today reached certain maturity as an
academic subject and is now supported by the availability of a handful of
textbooks. Being an interdisciplinary subject by nature, biomedical signal
processing has to be taught quite differently depending on the educational
program. For students in biomedical engineering a course in physiology is
part of the curriculum, whereas students in electrical engineering and com-
puter science usually lack such a course. In order to maintain the interdisci-
plinary nature when teaching the latter group of students, we have included
chapters or sections with brief, self-contained introductions to the under-
lying electrophysiology, recording techniques, and some important clinical
applications. Without any prior knowledge of these aspects, a course in
biomedical signal processing runs the risk of losing its very essence.

It is evident that a course on biomedical signal processing may em-
brace widely different contents—an observation which not only applies to
the choice of biomedical signals but also to the choice of methodologies.
Rather than yield to the temptation to include as much as possible, we have
deliberately avoided to cover certain important techniques including pattern
recognition, artificial neural networks, higher-order statistics, and nonlinear
dynamics. Though important in biomedical applications, the fundamentals
of these techniques are well-covered by a number of textbooks.

This book is intended for final year undergraduate students and gradu-
ate students in biomedical engineering, electrical engineering, and computer
science. It is suitable for a one-quarter or one-semester course depending
on the content covered and the amount of emphasis put on problem solving
and project work. A necessary prerequisite is the fundamentals of digital
signal processing as presented in textbooks such as [1, 2]. Since many re-
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cent methods used in biomedical applications are based on concepts from
statistical modeling and signal processing, a basic course in probability the-
ory and stochastic processes is another important prerequisite. It is also
desirable that the reader has certain familiarity with linear algebra so that
common matrix operations (summarized in Appendix A) can be performed.
Readers who want to achieve a deeper understanding of statistical signal pro-
cessing are referred to a number of highly recommended textbooks on this
topic [3–5]. Adaptive filtering is a topic which is just briefly touched upon
in this book; comprehensive coverage of such filters and their properties can
be found in [6].

This book may also be used as a comprehensive reference for practic-
ing engineers, physicians, researchers and, of course, anyone interested in
finding out what information can be derived from bioelectrical signals. For
practicing engineers, we have used selected parts of the book for a short
course on biomedical signal processing (i.e., 2–3 days); in such cases, the
main emphasis should be put on the significance of different methods rather
than on mathematical details.

Contents Overview

Chapter 1 puts biomedical signal processing in context, and gives a brief
description of bioelectricity and its manifestation on the body surface as
signals. General aspects on signal acquisition and performance evaluation
are briefly considered.

Chapter 2 provides the reader with the basics of the brain, serving as a
background to the following chapter on EEG signal processing. Some com-
mon EEG patterns are described and their relationships to cerebral pathol-
ogy are pointed out. An understanding of EEG signal characteristics, as well
as the purposes for which the characteristics can be exploited, is essential in-
formation when assimilating the contents of Chapter 3. The main themes in
Chapter 3 on EEG signal processing are related to artifact rejection and spec-
tral analysis; two techniques of critical importance to EEG interpretation.
Special attention is given to the multitude of spectral analysis techniques
and a section on time–frequency analysis is included.

Chapter 4 provides a comprehensive overview of noise reduction tech-
niques for use with event-related signals, here treated within the context
of evoked potentials. Similar to EEG signals and spectral analysis, evoked
potentials and signal averaging became “partners” at a very early stage in
the history of biomedical signal processing, thus motivating the emphasis
on this partnership. The overview of noise reduction techniques covers both
ensemble averaging (and its spawn) and more advanced approaches where
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the signal is modeled and filtered using a basis function expansion; wavelets
represent one such popular approach.

Chapter 5 deals with myoelectric activity and the related EMG signal
recorded either by noninvasive or invasive techniques (and makes a minor
departure from the general framework of dealing with signals recorded on
the body surface). Of the many developed methods for EMG signal analysis,
we cover some central ones related to muscle force and conduction velocity
where signal modeling and statistical estimation techniques are involved.

Chapter 6 contains a background to the electrophysiology of the heart,
describes the main characteristics of the ECG signal in terms of morphology
and rhythm, and prepares the way for Chapters 7 and 8 by mentioning the
most important ECG applications. Chapter 7 describes a suite of methods,
essential to any system which performs ECG signal analysis, developed for
the purpose of noise reduction, heartbeat detection and delineation, and
data compression. Chapter 8 is completely devoted to the analysis of heart
rate variability—an area of considerable clinical and technical interest in
recent years—and describes techniques for representing and characterizing
such variability in the time and frequency domain.

We have included an extensive, but not exhaustive, number of references
which give the interested reader rich possibilities to further explore the orig-
inal presentations of the methods. References are almost exclusively made
to journal publications since these are easily retrieved from libraries. As a
result, the very first publication of a method, often appearing in a conference
proceeding, is not acknowledged for which we apologize.

A collection of problems has been developed in order to illustrate the pre-
sented methods and their applications. While some problems are straightfor-
ward to solve, others require considerable effort and background knowledge
and are intended as “appetizers” for students interested in pursuing research
in biomedical signal processing. An accompanying manual with detailed so-
lutions to all problems is available at the publisher’s web site

www.books.elsevier.com/0124375529

to instructors who adopt the book.
Any course on biomedical signal processing must include one or several

projects which give the student an opportunity to process signals and to
learn the pros and cons of a method. We have developed a companion web
site where several project descriptions are listed and signals available for
download; its location is

www.biosignal.lth.se
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An important goal with this web site is to allow the inclusion of new projects
so that projects can be submitted by anyone interested in teaching the con-
tents of this book (submission instructions are available at the web site).

Those interested in using this book for a one-quarter course may want to
omit the sections on time–frequency analysis (Section 3.6), basis functions
and related adaptive analysis (Sections 4.5 and 4.6), wavelets (Section 4.7),
and certain parts of Chapter 8 dealing with heart rate variability; the math-
ematical level is relatively advanced in all these parts. A shorter course may
to a lesser extent deal with problem solving, however, we strongly encour-
age the inclusion of at least one project since it provides the student with
experiences essential to the understanding of biomedical signal processing.
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son (Lund), Ana Paula Rocha (Porto), Helen Sheppard (Lund), Owe Svens-
son (Lund), Galen Wagner (Durham), and Viktor Öwall (Lund). Their dif-
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Chapter 1

Introduction

The function of the human body is frequently associated with signals of elec-
trical, chemical, or acoustic origin. Such signals convey information which
may not be immediately perceived but which is hidden in the signal’s struc-
ture. This information has to be “decoded” or extracted in some way before
the signals can be given meaningful interpretations. The signals reflect prop-
erties of their associated underlying biological systems, and their decoding
has been found very helpful in explaining and identifying various pathologi-
cal conditions. The decoding process is sometimes straightforward and may
only involve very limited, manual effort such as visual inspection of the sig-
nal on a paper print-out or computer screen. However, the complexity of
a signal is often quite considerable, and, therefore, biomedical signal pro-
cessing has become an indispensable tool for extracting clinically significant
information hidden in the signal.

Biomedical signal processing represents an interdisciplinary topic. Know-
ledge of the physiology of the human body is crucial to avoid the risk of
designing an analysis method which distorts, or even removes, significant
information. It is also valuable to have a sound knowledge of other topics
such as anatomy, linear algebra, calculus, statistics, and circuit design.

Biomedical signal processing has, by some, been viewed as a stepping-
stone for developing diagnostic systems which offer fully automated analysis.
Some decades ago when computers first arrived in the area of medicine, au-
tomation was the overriding goal. However, this goal has been considerably
modified over the years, not only because of the inherent difficulties in devel-
oping such systems, but equally so because the physician must be ultimately
responsible for the diagnostic decisions taken. While fully automated anal-
ysis may be warranted in a few situations, today’s goal is rather to develop
computer systems which offer advanced aid to the physician in making well-

1
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founded decisions. In these systems biomedical signal processing has come
to play a very important role.

Research in biomedical signal processing has so far mainly been con-
cerned with the analysis of one particular signal type at a time (“unimodal
signal analysis”); a fact, which to a large extent, influences the content of
the present textbook. However, the emerging interest in multimodal signal
analysis will definitely help to explain, in more detail, how different physio-
logical subsystems interact with each other, such as the interaction between
blood pressure and heart rate in the cardiovascular system. By exploring the
mutual information contained in different signals, more qualified diagnostic
decisions can be made. The increased algorithmic complexity associated
with multimodal analysis is not a serious limitation since it will be met
by the rapid advancement of computer technology and the ever-increasing
computational speed.

1.1 Biomedical Signal Processing: Objectives and
Contexts

1.1.1 Objectives

Biomedical signal processing has many objectives, and some of the most
important ones are presented below. We also describe the main contexts in
which biomedical signal processing is applied. Other challenging objectives
and contexts can certainly be defined by those interested in pursuing a career
in this fascinating, interdisciplinary field.

Historically, biomedical signals have often been assessed visually, and
manual ruler-based procedures were developed to make sure that measure-
ments could be obtained in a standardized manner. However, it is well-
known that there is relatively poor concordance between manually obtained
measurements, and this may lead to unreliable diagnostic conclusions. A
fundamental objective of biomedical signal processing is therefore to reduce
the subjectivity of manual measurements. The introduction of computer-
based methods for the purpose of objectively quantifying different signal
characteristics is the result of a desire to improve measurement accuracy as
well as reproducibility.

In addition to reducing measurement subjectivity, biomedical signal pro-
cessing is used in its own right for developing methods that extract features
to help characterize and understand the information contained in a signal.
Such feature extraction methods can be designed to mimic manual measure-
ments, but are equally often designed to extract information which is not
readily available from the signal through visual assessment. For example,
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small variations in heart rate that cannot be perceived by the human eye
have been found to contain very valuable clinical information when quanti-
fied in detail using a suitable signal processing technique; see Chapter 8 for
more details on this particular topic. Although it is certainly desirable to
extract features that have an intuitive meaning to the physician, it is not
necessarily those features which yield the best performance in clinical terms.

In many situations, the recorded signal is corrupted by different types
of noise and interference, sometimes originating from another physiological
process of the body. For example, situations may arise when ocular ac-
tivity interferes with the desired brain signal, when electrodes are poorly
attached to the body surface, or when an external source such as the sinu-
soidal 50/60 Hz powerline interferes with the signal. Hence, noise reduction
represents a crucial objective of biomedical signal processing so as to mitigate
the technical deficiencies of a recording, as well as to separate the desired
physiological process from interfering processes. In fact, the desired signal is
in certain situations so dramatically masked by noise that its very presence
can only be revealed once appropriate signal processing has been applied.
This is particularly evident for certain types of transient, very low-amplitude
activity such as evoked potentials, which are part of brain signals, and late
potentials, which are part of heart signals.

Certain diagnostic procedures require that a signal be recorded on a long
timescale, sometimes lasting for several days. Such recordings are, for exam-
ple, routinely done for the purpose of analyzing abnormal sleep patterns or
to identify intermittently occurring disturbances in the heart rhythm. The
resulting recording, which often involves many channels, amounts to huge
data sizes, which quickly fill up hard disk storage space once a number of pa-
tients have been examined. Transmission of biomedical signals across public
telephone networks is another, increasingly important application in which
large amounts of data are involved. For both these situations, data compres-
sion of the digitized signal is essential and, consequently, another objective
of biomedical signal processing. General-purpose methods of data compres-
sion, such as those used for sending documents over the internet, do not
perform particularly well since the inherent characteristics of the biomedical
signal are not at all exploited. Better performance can be obtained by ap-
plying tailored algorithms for data compression of biomedical signals. Data
compression can also be understood in a wider sense as the process in which
clinical information from a long-term recording is condensed into a smaller
data set that is more manageable for the person analyzing the data. In this
latter sense, it is highly desirable to develop signal processing algorithms
which are able to determine and delimit clinically significant episodes.

Mathematical signal modeling and simulation constitute other important
objectives in biomedical signal processing which can help to attain a bet-
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ter understanding of physiological processes. With suitably defined model
equations it is possible to simulate signals which resemble those recorded
on the cellular level or on the body surface, thereby offering insight into the
relationship between the model parameters and the characteristics of the ob-
served signal. Examples of bioelectrical models include models of the head
and brain for localizing sources of neural activity and models of the thorax
and the heart for simulating different cardiac rhythms. Signal modeling is
also central to the branch of signal processing called “model-based signal
processing,” where algorithm development is based on the optimization of
an appropriately selected performance criterion. In employing the model-
based approach, the suggested signal model is fitted to the observed signal
by selecting those values of the model parameters which optimize the perfor-
mance criterion. While model-based biomedical signal processing represents
a systematic approach to the design of algorithms—to be frequently adopted
in the present textbook—it does not always lead to superior performance;
heuristic approaches may actually perform just as well and sometimes even
better. It is a well-known fact that many commercial, medical devices rely
on the implementation of ad hoc techniques in order to achieve satisfactory
performance.

The complexity of a signal model depends on the problem to be solved.
In most signal processing contexts, it is fortunately not necessary to develop
a multilevel model which accounts for cellular mechanisms, current propa-
gation in tissue, and other biological properties. Rather, it is often sufficient
to develop a “phenomenological” model which only accounts for phenomena
which are relevant to the specific problem at hand.

1.1.2 Contexts

The other purpose of this section is to point out the three major clinical
contexts in which algorithms for biomedical signal processing are designed,
namely, the contexts of

• diagnosis,

• therapy, and

• monitoring.

In the diagnostic context, medical conditions are identified from the ex-
amination of signal information, reflecting the function of an organ such
as the brain or the heart, in combination with other symptoms and clinical
signs. A signal is often acquired by a noninvasive procedure which makes the
examination less taxing on the patient. Most of these procedures are also
associated with inexpensive technology for acquisition and analysis, thus
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increasing the likelihood that the technology can be disseminated to coun-
tries with less developed economies. A diagnostic decision rarely requires
immediate availability of the results from signal analysis, but it is usually
acceptable to wait a few minutes for the analysis to be completed. Hence,
signal analysis can be done off-line on a personal computer, thus relying on
standardized hardware and operating system, possibly supplemented with
a digital signal processor (DSP) board for accelerating certain bottleneck
computations. Algorithms for biomedical signal processing do not define the
entire diagnostic computer system, but their scope ranges from performing
a simple filtering operation to forming a more substantial part of the clinical
decision-making.

Therapy generally signifies the treatment of disease and often involves
drug therapy or surgery. With regard to biomedical signal processing, ther-
apy may imply a narrower outlook in the sense that an algorithm is used to
directly modify the behavior of a certain physiological process, for example,
as the algorithms of a pacemaker do with respect to cardiac activity. In a
therapeutic context, an algorithm is commonly designed for implementation
in an implantable device like a heart defibrillator, and, therefore, it must,
unlike an algorithm operating in a diagnostic context, strictly comply with
the demands of on-line, real-time analysis. Such demands pose some serious
constraints on algorithmic complexity as well as on the maximal acceptable
time delay before a suitable action needs to be taken. Low power consump-
tion is another critical factor to be considered in connection with devices
that are implanted through a surgical procedure; for example, the battery of
an implantable device is expected to last up to ten years. Hence, algorithms
which involve computationally demanding signal processing techniques are
less suitable for use in a therapeutic context.

Biomedical signal processing algorithms form an important part of real-
time systems for monitoring of patients who suffer from a life-threatening
condition. Such systems are usually designed to detect changes in cardiac
or neurological function and to predict the outcome of a patient admitted
to the intensive care unit (ICU). Since such changes may be reversible with
early intervention, irreversible damage can sometimes be prevented. Similar
to therapeutic contexts, the signal is processed during monitoring in an es-
sentially sequential fashion such that past samples constitute the main basis
for a decision, while just a few seconds of the future samples may also be
considered—a property which usually stands in sharp contrast to signal pro-
cessing for diagnostic purposes, where the signal is acquired in its entirety
prior to analysis. Thus, a noncausal approach to signal analysis can only
be adopted in the diagnostic context which mimics that of a human reader
who interprets a signal by making use of both past and future properties.
Constraints need to be imposed on the algorithmic design in terms of max-
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imal delay time because the occurrence of a life-threatening event must be
notified to the ICU staff within a few seconds. Another important issue to
be considered is the implications of a clinical event that is missed by the
algorithm or the implications of a nonevent that is falsely detected causing
the staff to be notified.

1.2 Basics of Bioelectrical Signals

Although the scope of the present textbook is to present signal processing
techniques useful for the analysis of electrical signals recorded on the body
surface, it may still be well-motivated to consider the genesis of bioelectrical
signals from a cellular perspective. Bioelectrical signals are related to ionic
processes which arise as a result of electrochemical activity of a special group
of cells having the property of excitability. The mechanisms which govern
the activity of such cells are similar, regardless of whether the cells are part
of the brain, the heart, or the muscles. In particular, the electrical force
of attraction has central importance for the processing and transmission of
information in the nervous system, as well as for sustaining the mechanical
work done by the heart and the muscles. Since the origin of these voltages is
only briefly described below, the interested reader is referred to textbooks on
human physiology which offer a much more detailed description of the cellu-
lar aspects [1, 2]. The basic concepts introduced for mathematical modeling
of bioelectrical phenomena are described in [3], while more comprehensive
reading is found in [4–6].

1.2.1 On the Cellular Level

A cell is bounded by a plasma membrane which basically consists of lipid
layers with poor ability to conduct an electrical current. The membrane pos-
sesses permeability properties which allow certain substances to pass from
the inside of the cell to the outside through different channels, defined by
body fluids, while other substances remain blocked. Intracellular and extra-
cellular fluids mainly consist of water, which is electrically neutral; however,
the fluids become electrically conductive since they contain several types of
ions. The dominant ions in a nerve cell (neuron) are sodium (Na+), potas-
sium (K+), and chloride (Cl−). Other ions such as calcium (Ca2+) are also
present but play roles of varying importance depending on where the ex-
citable cell is located; the calcium ion is much more important in the cells
of the heart than in the nerves, for example.

Under resting conditions, the inside of a cell is negatively charged with
respect to the outside, and, therefore, a negative transmembrane potential
results since the outside is assumed to have zero voltage. The difference in
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charge is due to the fact that the concentration of negatively charged ions
inside the cell is higher than on the outside, whereas the opposite relation
applies to the concentration of positive ions. In addition to the difference
in ion concentration, the actual magnitude of the resting transmembrane
potential is also determined by the permeability of the membrane to the
different ions.

A potential arises when membrane channels open so that a certain ion
may diffuse across the membrane. This process can be illustrated by the
simplified situation in which potassium ions are assumed to be inside the
cell and sodium ions outside and when the initial transmembrane potential
is equal to zero. When the potassium channels are opened, an increase in
positive electrical charge outside the cell is created as a result of the diffusion
process; at the same time, the inside of the cell becomes increasingly negative
and a potential arises across the membrane. This electrical potential con-
stitutes the other force which causes ions to move across the membrane. As
the outside of the cell becomes increasingly positive, the resulting potential
will increasingly influence the outbound movement of potassium ions. The
ion movement ceases when the concentration force balances the electrical
force; an equilibrium potential is then said to have been reached. It should
be noted that some other active transport mechanisms, not considered here,
also come into play when a potential is created.

The resting transmembrane potential of a cell is determined by the equi-
librium potentials of the different ions involved and is thus not equal to any
of the equilibrium potentials of an individual type of ion. For the situation
considered above with open potassium channels, the equilibrium potential
for potassium in a nerve cell is found to be about −90 mV, while the equi-
librium potential for sodium—assuming instead open sodium channels—is
about +60 mV. The resting transmembrane potential is within the range of
−60 to −100 mV, depending on the type of cell.

When a cell is stimulated by a current, rapid alterations in membrane ion
permeability take place which give rise to a change in the membrane poten-
tial and generate a signal referred to as an action potential. The propagation
of action potentials is the very mechanism which makes the heart contract
and the nervous system communicate over short and long distances. The
stimulus current must exceed a certain threshold level in order to elicit an
action potential, otherwise the cell will remain at its resting potential. An
excited cell exhibits nonlinear behavior: once a stimulus intensity exceeds
the threshold level the resulting action potential is identical and indepen-
dent of intensity—the all-or-nothing principle. An action potential consists
mainly of two phases: depolarization during which the membrane potential
changes toward zero so that the inside of the cell becomes less negative, and
ultimately reverses to become positive, and repolarization during which the
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potential returns to its resting level so that the inside again becomes more
negative.

The membrane potential remains at its resting level until it is perturbed
by some external stimulus, such as a current propagating from neighbor-
ing cells. Depolarization is then initiated, and the membrane permeability
changes so that sodium channels are opened and the sodium ions can rush
into the cell. At the same time, potassium ions try to exit since these are
concentrated on the inside, but cannot, thereby causing the charge inside the
cell to become increasingly positive, and eventually the membrane potential
reverses polarity. Once the rush of sodium ions into the cell has stopped
and the membrane potential approaches the sodium equilibrium potential,
the peak amplitude of an action potential is reached. During repolarization,
sodium channels close and potassium channels open so that the membrane
potential can return to its resting, negative potential. The activity of a
potassium channel is illustrated in Figure 1.1.

The duration of an action potential varies much more than its amplitude:
the repolarization phase of a cardiac cell is much longer than the depolariza-
tion phase and lasts from 200 to 300 milliseconds, while for a neuron the two
phases combined only last for about one millisecond with both phases having
about the same duration. Figure 1.2 shows the action potentials for cells of
the brain (motor neuron), the skeletal muscle, and the heart. From these
waveforms, it can be observed that the cardiac action potential differs con-
siderably from the others in its lack of an immediate repolarization phase.
Instead, there is a plateau in the action potential because the membrane
channels of the different ions open and close at different speeds.

Once an action potential has been elicited, the membrane cannot imme-
diately respond to a new stimulus but remains in a “refractory” state for
a certain period of time. The refractory period is related to changes that
take place in sodium and potassium permeability of the membrane. Ob-
viously, the refractory period imposes an upper limit on the frequency at
which action potentials can be communicated through the nervous system
or the heart can beat.

The propagation of an action potential exhibits special behavior since
it travels a distance through the triggering of new action potentials rather
than by traveling itself along the membrane. The current created by the
initial membrane depolarization triggers an adjacent membrane so that a
new action potential results, and so on. This process repeats itself until the
membrane ends and delivers an action potential which is identical to the
initial action potential. Due to the refractory period, the action potential
travels away from membranes which recently have been excited and continues
to do so until it reaches a point on the membrane where the voltage is
insufficient for further stimulation.
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Figure 1.1: Cellular activity of potassium channels (which is similar for sodium
but the reverse). (a) Concentration distribution of potassium (K+), sodium (Na+),
and chloride (Cl−) ions inside and outside a cell. (b) The relationship between
chemical gradient and electrical gradient for K+ ions and K+ channels.

1.2.2 On the Body Surface

The ability of excitable cell membranes to generate action potentials causes
a current to flow in the tissue that surrounds the cells. With the tissue
being a conducting medium, commonly referred to as a volume conductor,
the collective electrical activity of many cells can be measured noninvasively
on the body surface [4–6]. The recording of a bioelectrical signal in clinical
practice is done by attaching at least two electrodes to the body surface. In
its simplest form, a signal is recorded by making use of two electrodes: the
“exploring” electrode, placed close to the electrical source, and the “indiffer-
ent” electrode, placed elsewhere on the body surface [7]. Multiple electrode
configurations are commonly used in clinical practice to obtain a spatial de-
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Figure 1.2: Examples of action potentials with shapes that range from the spike-
like waveform of a nerve cell (left) to the much more extended waveform of a cardiac
cell (right). The transmembrane potential difference was measured by placing one
microelectrode inside the cell and another outside. It should be noted that the
timescale differs from waveform to waveform.

scription of the bioelectrical phenomenon. Since the activity of excitable
cells is viewed from a distance by the electrodes, with different tissues in
between, such as blood, skeletal muscles, fat, and bone, it is impossible to
noninvasively determine detailed information about cellular properties and
propagation patterns. Nonetheless, significant empirical knowledge has over
the years been acquired from analyzing the patterns of signals recorded on
the body surface, which have been found crucial for clinical decision-making;
this observation constitutes an important motivation for the writing of the
present textbook.

The problem of characterizing the electrical source by noninvasive mea-
surements has, in spite of the above-mentioned limitations, been the subject
of considerable research due to the far-reaching clinical implications of its
potential solution. In order to arrive at a meaningful solution, it is necessary
to introduce a mathematical model in which the collective electrical cellular
activity is treated as a volume source, i.e., it is defined by a fixed dipole, a
multiple dipole, or some other source model. Furthermore, by introducing
a model for the volume conductor which accounts for essential properties of
the human body, such as geometry and resistivity, the electrical field mea-
sured on the body surface can be modeled. The important inverse problem
consists of determining the electrical source from measurements on the body
surface under the assumption that the geometry and electrical properties of
the volume conductor are known [5].
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1.2.3 Bioelectrical Signals

The present textbook deals with the processing of electrical signals that
describe the activity of the brain, the heart, and the muscles. Some of
these signals reflect spontaneous, ongoing activity, while others only occur
as the result of external stimulation. The properties of these signals call for
widely different processing techniques; an individual waveform can in some
signals be directly linked to a specific clinical diagnosis, while in other signals
the composite of many waveforms must be analyzed before a meaningful
interpretation can be made.

The electroencephalogram (EEG) reflects the electrical activity of the
brain as recorded by placing several electrodes on the scalp, see Figure 1.3(a).
The EEG is widely used for diagnostic evaluation of various brain disorders
such as determining the type and location of the activity observed dur-
ing an epileptic seizure or for studying sleep disorders. The brain activity
may also be recorded during surgery by attaching the electrodes directly to
the uncovered brain surface; the resulting invasive recording is named an
electrocorticogram (ECoG). The background to EEG signals is presented in
Chapter 2 and is then followed by Chapter 3 where different EEG signal
processing techniques are described.

Evoked potentials (EPs) constitute a form of brain activity which
usually is evoked by a sensory stimulus such as one of visual or acoustic
origin. Their clinical use includes the diagnosis of disorders related to the
visual pathways and the brainstem. An EP, also referred to as an event-
related potential, is a transient signal which consists of waves of such tiny
amplitudes that its presence in the “background EEG” is typically invisible
to the human eye, see Figure 1.4(a). Evoked potentials are recorded using
an electrode configuration similar to that of an EEG. Chapter 4 contains an
overview of methods developed for “revealing” EPs and for analyzing the
resulting signal waveform.

The electrocardiogram (ECG) reflects the electrical activity of the
heart and is obtained by placing electrodes on the chest, arms, and legs, see
Figure 1.3(b). With every heartbeat, an impulse travels through the heart
which determines its rhythm and rate and which causes the heart muscle to
contract and pump blood. The ECG represents a standard clinical procedure
for the investigation of heart diseases such as myocardial infarction. The
electrogram (EG) is an intracardiac recording where the electrodes have been
placed directly within the heart; the EG signal is used in implantable devices
such as pacemakers and defibrillators. The background to ECG signals is
presented in Chapter 6, while Chapters 7 and 8 present different ECG signal
processing techniques.
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(a)

(b)

(c)

Figure 1.3: Examples of the three major bioelectrical signals recorded from the
body surface: (a) an electroencephalogram (EEG) containing alpha activity, (b) an
electrocardiogram (ECG) during sinus rhythm, and (c) an electromyogram (EMG)
obtained from the chin in the waking state. All three signals were obtained from
different normal subjects.

The electromyogram (EMG) records the electrical activity of skeletal
muscles which produce an electrical current, usually proportional to the
level of activity, see Figure 1.3(c). The EMG is used to detect abnormal
muscular activity which occurs in many diseases such as muscular dystrophy,
inflammation of muscles, and injury to nerves in arms and legs. Recording
the surface EMG involves placing the electrodes on the skin overlying the
muscle, whereas the intramuscular EMG involves inserting needle electrodes
through the skin into the muscle to be examined. Chapter 5 presents an
overview of EMG signal processing techniques.

Some other types of bioelectrical signals also deserve mentioning although
their related signal analysis will not be further considered in the present
textbook.

The electroneurogram (ENG) results from the stimulation of a periph-
eral nerve with an electric shock such that the response along the nerve can
be measured. The ENG, usually acquired with needle electrodes, is used
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(a)

(b)

(c)

Figure 1.4: Examples of bioelectrical signals resulting from stimulation. (a) An
evoked potential (EP) resulting from auditory stimulation (the brainstem response).
The displayed signal is actually the result of averaging several responses in order
to reduce the high noise level of the original signal; see Section 4.3 for details on
noise reduction. (b) An electroneurogram (ENG) recorded at two electrode loca-
tions, where the delay between the two signals is used to estimate nerve conduction
velocity. (c) An electroretinogram (ERG) obtained during stimulation with a flash
of light.

to determine the conduction velocity of the nerve, thereby assisting in the
diagnosis of nerve injury. By stimulating a nerve at two different sites sep-
arated by a well-defined distance, it is possible to estimate the conduction
velocity from the distance by which the resulting two signal waveforms are
separated, see the example in Figure 1.4(b). The ENG can be measured
both invasively and noninvasively.

An electroretinogram (ERG) is used for studying the electrical poten-
tials generated by the retina of the eye during light stimulation [8, 9], see
Figure 1.4(c). The ERG is recorded by placing the exploring electrode, en-
capsulated in a contact lens, on the cornea. The ERG has been found useful
for assessing the electrical response of the rods and cones, i.e., the visual
cells at the back of the retina. A normal ERG shows appropriate responses
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with increased light intensity, while an abnormal ERG is obtained in condi-
tions such as arteriosclerosis of the retina or detachment of the retina. The
algorithms described in Chapter 4 for signal processing of EPs are, by and
large, also applicable to the analysis of ERGs.

The electrooculogram (EOG) is the recording of the steady corneal–
retinal potential which is proportional to vertical and horizontal movements
of the eye, thus offering an objective way to quantify the direction of the
gaze [5, 10], see Figure 1.5(a). The EOG is of particular interest in pa-
tients who suffer from sleep disorders, where the presence of rapid eye move-
ment (REM) is important for determining certain sleep stages. The EOG is
recorded when studying nystagmus, i.e., a rapid, involuntary oscillation of
the eyeballs, for example, in patients suffering from vertigo and dizziness.
The EOG is also useful in virtual reality environments where a device for
eye-tracking may be needed. The EOG is briefly touched upon in Chapter 3
in connection with EEG signal processing since the electrical activity caused
by eye movements often interferes with the EEG and, therefore, needs to be
cancelled.

The electrogastrogram (EGG) is a recording of the impulses which prop-
agate through the muscles of the stomach and which control their contrac-
tions [11], see Figure 1.5(b). The EGG is studied when the muscles of the
stomach or the nerves controlling the muscles are not working normally, for
example, when the stomach does not empty food normally. The EGG is
recorded by attaching a number of electrodes over the stomach during fast-
ing and subsequent to a meal. In normal individuals a regular “rhythmic”
signal is generated by the muscles of the stomach, having an amplitude which
increases after a meal; the normal frequency of the gastric rhythm is approx-
imately 3 cycles/minute. However, in symptomatic patients the rhythm is
often irregular and sometimes without the increase in amplitude that follows
a meal. A small selection of papers describing technical means of analyzing
the EGG signal can be found in [12–16].

1.3 Signal Acquisition and Analysis

The acquisition of bioelectrical signals is today accomplished by means of
relatively low-cost equipment which appropriately amplifies and digitizes the
signal. As a result, several clinical procedures based on bioelectrical signals
are in widespread use in hospitals around the world. In many situations,
PC-based systems can be utilized as an efficient and cost-effective solution
for signal analysis, especially considering the availability of expansion cards
for data acquisition. Such a system includes one or several sensors, exter-
nal hardware for patient insulation and signal amplification, an acquisition
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(a)

(b)

Figure 1.5: Recordings which exemplify (a) an electrooculogram (EOG) of the
right eye and (b) an electrogastrogram (EGG). Note that the two timescales differ.

card with analog/digital (A/D) conversion, and software for signal analy-
sis (Figure 1.6) [17]. In situations where the analysis is performed in an
implantable device, the system design involves additional considerations,
e.g., those related to the design of application-specific integrated circuitry
and the selection of appropriate battery technology.

In the digitization process, it is usually sufficient to use 12–14 bits for
amplitude quantization in order to cover the dynamic range of a signal;
it is presumed that very slow, large-amplitude drift in the direct current
(DC) level has been removed prior to quantization without modifying the
physiological content of the signal. The amplitude of individual bioelectri-
cal waveforms ranges from 0.1 µV, observed in certain types of EPs once
subjected to noise reduction, to several millivolts, as observed in the ENG,
ECG, and EOG.

Most bioelectrical signals recorded on the body surface have a spectral
content confined to the interval well below 1 kHz, and thus the sampling
rate—chosen to be at least the Nyquist rate—rarely exceeds a few kilohertz.
However, since signals measured on the body surface are subjected to lowpass
filtering caused by the intermediate tissue, invasively recorded signals, such
as those on action potentials, generally exhibit a much higher frequency
content.

In a PC-based system, signal analysis is often done locally by relying ei-
ther on the internal CPU or an expansion digital signal processor (DSP) card.
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Amplifier Digitization Signal
processing

Figure 1.6: Block diagram describing the main steps in biomedical signal analysis.
The signal is often processed at the time of its acquisition, but may also be stored
on a local hard disk or a server on the web for later retrieval and processing.

However, with today’s availability of web-based resources, it is no longer nec-
essary to perform the entire signal analysis locally. It is equally possible to
acquire the signal at one physical location, using the PC-based system, and
then to process it at another location, i.e., relying on a client/server solu-
tion [18]. Since the acquired signal in most cases is stored in a database that
resides on a server, it can be advantageous to also process the signal on the
server since it may offer more computational power.

1.4 Performance Evaluation

Performance evaluation is an important and challenging part of biomedical
signal processing required before any algorithm can be implemented in a
clinical context. Unlike many other engineering applications where the in-
formation in the signal source is known a priori, the message “sent” by a
bioelectrical source is unknown and has to be unmasked in some manual way
in order to render performance evaluation possible. For example, the eval-
uation of an algorithm for detecting heartbeats is relatively straightforward
since it is an easy task for a physician to determine the times of occurrence of
the heartbeats; the performance figures would then be designed to reflect how
well the output of the algorithm agrees with the manually obtained times of
occurrence. The performance evaluation becomes much more complicated
when the goal is to develop an algorithm that computes a parameter set
which accurately discriminates signals obtained from healthy subjects and
patients who suffer from a particular disease. In such cases, an assessment of
the output of the algorithm cannot be carried out simply because the “truth”
cannot be retrieved from the observed signal. Instead, the performance may
be evaluated in terms of its ability to correctly discriminate between the two



Section 1.4. Performance Evaluation 17

Table 1.1: Definitions of the performance measures sensitivity, specificity, positive
predictive value, and negative predictive value.

Performance measure Definition Interpretation

Sensitivity NTP
NTP + NFN

The probability of a positive
result for the diseased subjects

Specificity NTN
NFP + NTN

The probability of a negative
result for the healthy subjects

Positive predictive value NTP
NTP + NFP

The probability of disease when
the result is positive

Negative predictive value NTN
NFN + NTN

The probability of health when
the result is negative

NTP = the number of diseased subjects with a positive result (True Positive)

NTN = the number of healthy subjects with a negative result (True Negative)

NFN = the number of diseased subjects with a negative result (False Negative)

NFP = the number of healthy subjects with a positive result (False Positive)

groups of healthy and diseased subjects. The most commonly used perfor-
mance measures for describing such discrimination are those of sensitivity,
specificity, positive predictive value, and negative predictive value, whose
definitions are given in Table 1.1.

It has been pointed out that “while new analytic technologies seem very
promising when they are first applied, the initial glitter often fades when the
method is systematically evaluated” [19]. This statement not only underlines
the importance of performance evaluation, but also that a great deal of effort
must be devoted to algorithm development before satisfactory performance
can be achieved.

1.4.1 Databases

The availability of signal databases is of vital importance for both develop-
ment and evaluation of signal processing algorithms. The immense diversity
of waveform patterns which exists among subjects necessitates evaluation
of the algorithm on a database of considerable size before its performance
can be judged as satisfactory for use in a clinical setting. Needless to say,
one part of a database must be used for algorithm development, while the
remaining part is kept for performance evaluation in order to assure that no
learning of the evaluation data has taken place.
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The word “database” is here interpreted as a collection of signals that
has been obtained using the same recording protocol from suitably selected
groups of healthy subjects and patients. A database often includes signals
of one particular type, such as EEGs or ECGs, but may just as well in-
clude other types of concurrently recorded signals. Annotations are another
important type of database information which define the time instants at
which certain events occur in the signal, such as the presence of heartbeats
or epileptic seizures. The annotations may also account for more complex
signal properties as well as for nonphysiological information such as the
presence of noise episodes and technical deficiencies due to poorly attached
electrodes (Figure 1.7). The annotations are determined manually by one or
several physicians who must carefully scrutinize the signal with respect to the
properties to be annotated. The inclusion of several annotators generally im-
plies that more reliable annotations are obtained. However, it is inevitable
that discrepancies arise among the annotators which must be resolved by
consensus, thus adding further labor to an already laborious process.

In addition to the signal and its annotation, the database may include
additional information on subjects such as gender, race, age, weight, medi-
cation, and data from other clinical procedures which may be valuable when
evaluating performance.

A substantial number of databases have been collected over the years for
the purpose of addressing various clinical issues. The MIT–BIH arrhythmia
database is the most widely used database for evaluation of methods designed
for detecting abnormalities in cardiac rhythms and is almost certainly also
the most popular database overall in biomedical signal processing [21, 22].
The MIT–BIH arrhythmia database contains ECG signals which have been
recorded during ambulatory conditions such as working and eating. Another
widely used ECG database is the AHA database, which was developed for
evaluation of ventricular arrhythmia detectors [23]. More recent additions to
the list of databases include the European ST–T and LTST databases, which
were collected for the purpose of investigating the occurrence of insufficient
blood supply to the cardiac muscle cells (myocardial ischemia) [20, 24]. An
interesting adjunct to the MIT–BIH arrhythmia database is the MIT–BIH
noise stress test database which contains several recordings of noise typically
encountered in ambulatory conditions: by adding a calibrated amount of
noise to a “clean” ECG signal, the noise immunity of an algorithm can be
tested with this database [25].

Multimodal databases have also been collected and may include signals
that reflect brain activity, heart activity, muscle activity, blood pressure,
respiration, as well as other types of activity, see Figure 1.8. Some examples
are the MIMIC database [26], the IMPROVE database [27], and the IBIS
database [28, 29], which all contain continuously recorded data obtained
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Figure 1.7: Example of a manually annotated, two-channel ECG from a patient
with myocardial ischemia. The sequence of short, vertical bars shows the times of
occurrence of the heartbeats, and the related labels “N” and “V” indicate whether
the beat is of normal or ventricular origin. The three longer bars indicate the onset
of a new rhythm (VT: ventricular tachycardia, N: sinus rhythm, and AST1-300:
maximum ST depression of –300 µV). The signal was taken from the European
ST–T database [20].

from intensive care monitoring, while other databases have been collected
for investigating sleep disorders [30, 31]. Most databases described in the
literature are publicly available, either at no cost or at a charge, while some
remain the private property of those who collected the data. Databases of
biomedical signals have proven to be equally valuable for researchers and
instrument manufacturers.

The increasing availability of databases certainly makes it more conve-
nient and less time-consuming to pursue projects on algorithm development.
Because of the easy access to databases, now available on different sites on
the World Wide Web, it is possible to develop and evaluate signal processing
algorithms without having to deal with the cumbersome and often labor-
intensive task of data collection. The PhysioNet (www.physionet.org) is a
website which constitutes a tremendous leap forward, being a resource where
various types of physiological signals are freely available for download [32].
The PhysioNet maintains different classes of databases, ranging from those
which are carefully scrutinized and thoroughly annotated to those which are
unannotated and sometimes not yet completely acquired.
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Figure 1.8: Concurrently recorded signals from a multimodal database, from
top to bottom: ECG, blood pressure, EEG, nasal respiration, abdominal respi-
ration, EOG, and EMG. This type of recording is used for studying sleep disorders,
see Section 2.4.2. The signals were taken from the MIT–BIH polysomnographic
database [30].

With the easy availability of databases comes also the potential risk of
omitting medical expertise from projects since hospital-based activities are
no longer needed. If the worst comes to the worst, a lack of clinically experi-
enced eyes may lead to the introduction of clinically unacceptable distortion
into the signal via the algorithm, rather than improving its interpretation.
Hence, it is always important for the project’s outcome to establish a vi-
able liaison between engineers and physicians. Another potential risk when
downloading a database is that its original clinical purpose is tweaked into
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answering questions for which the database was never intended. In cases
when no suitable database is available, it is necessary to develop an appro-
priate recording protocol for data collection of one’s own and then, of course,
to perform the actual signal acquisition. Anyone embarking on a project in
biomedical signal processing is, in addition to considering the use of avail-
able databases, strongly encouraged to also deal with the details of collecting
signals.

1.4.2 Simulation

A simulation describes quantitatively some physiological behavior by math-
ematical equations and is used to replicate signals which are generated in
the body. An advantage of simulations is the possibility to investigate con-
ditions which are difficult to deal with experimentally. Another advantage,
of particular relevance for algorithmic performance evaluation, is that the
properties of a simulated signal can be exactly controlled by a set of pa-
rameters. As a result, the agreement between the “true” parameter values
of the simulated signal and those determined by an estimation method can
be quantitatively assessed and expressed in terms of a suitable performance
measure. The exact definition of such a measure depends on the case at
hand and may involve rates of missed events and false events in detection
problems and bias and variance in parameter estimation problems.

Signal modeling and simulation are intimately linked together because a
simulation is based on an existing model. Models producing highly realistic-
looking signals are often associated with high complexity and do not easily
lend themselves to parameter estimation. Simpler models, which can only
account for a partial phenomenon of the signal, are still very useful for
algorithm development and have, in fact, often been considered.

In biomedical signal processing, a model of the physiological, “clean”
signal is often accompanied by a model of the noise sources, and the com-
bination of the two models makes it possible to simulate signals observed
on the body surface. The term “noise” is here used in a wide sense which
includes physiological activities other than the one under study which may
interfere with the desired signal. Simulated signals with different signal-
to-noise ratios (SNRs) can be easily produced using this approach. While
performance evaluation is mostly concerned with accuracy, i.e., the differ-
ence between the true value and the estimated value, it is also important to
study the reproducibility of an algorithm. Reproducibility is the ability of an
algorithm to produce repeated measurements which cohere, obviously under
the assumption that the same signal conditions apply to all measurements.
Although reproducibility is best investigated by sequentially repeating an
experiment on the same patient, simulated signals represent a powerful and
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much more manageable means of evaluating the reproducibility of an algo-
rithm. The performance is then evaluated by using the algorithm to process
a series of simulated signals, each time by adding a different noise realization
to the clean signal.

In addition to simulations based on mathematical models for both signal
and noise, it may in certain cases be appropriate to evaluate the performance
by employing simulated signals to which “real world” noise is instead added.
The reverse situation with “real world” signals and simulated noise may
sometimes also be of interest.

We conclude this section by noting that the simulation approach repre-
sents a useful step in algorithm development, provided of course that the
signal model is adequate. However, databases consisting of collected signals
must constitute the lion’s share of the evaluation work so that the clinical
utility of an algorithm can be thoroughly established.
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Chapter 2

The Electroencephalogram—
A Brief Background

The human brain is the most complex organic matter known to mankind and
has, not surprisingly, been the subject of extended research. Its complexity
has spurred multifaceted research in which brain functionality is explored
from low-level chemical and molecular properties in individual neurons to
high-level aspects such as memory and learning. An early discovery estab-
lished that the brain is associated with the generation of electrical activity.
Richard Caton had demonstrated already in 1875 that electrical signals in
the microvolt range can be recorded on the cerebral cortex of rabbits and
dogs. Several years later, Hans Berger recorded for the first time electri-
cal “brain waves” by attaching electrodes to the human scalp; these waves
displayed a time-varying, oscillating behavior that differed in shape from lo-
cation to location on the scalp [1]. Berger made the interesting observation
that brain waves differed not only between healthy subjects and subjects
with certain neurological pathologies, but that the waves were equally de-
pendent on the general mental state of the subject, e.g., whether the subject
was in a state of attention, relaxation, or sleep.

The experiments conducted by Berger became the foundation of electro-
encephalography, later to become an important noninvasive clinical tool in
better understanding the human brain and for diagnosing various functional
brain disturbances. The clinical interpretation of the EEG has evolved into
a discipline in its own right, where the human reader is challenged to draw
conclusions based on the frequency, amplitude, morphology, and spatial dis-
tribution of the brain waves. So far, no single biological or mathematical
model has been put forward which fully explains the diversity of EEG pat-
terns, and, accordingly, EEG interpretation largely remains a phenomeno-
logical clinical discipline [2].

25
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Visual scrutiny was for many years the sole approach to EEG interpreta-
tion but has today been supplemented by the capabilities offered by modern,
powerful computers. The interpretation is significantly facilitated, although
not even close to being fully automated, by an array of digital signal process-
ing methods designed for a variety of purposes, e.g., improvement of SNR,
quantification of various signal characteristics, and extraction of new infor-
mation not readily available by visual inspection [3–5]. Signal processing
methods can be divided into two general categories: methods developed for
the analysis of spontaneous brain activity (the “background EEG”1) and
brain potentials which are evoked by various sensory and cognitive stimuli
(evoked potentials, EPs). While the former category of methods certainly
has helped to gain a better understanding of the EEG, the analysis of EPs
is critically dependent on the availability of signal processing techniques.

In recent years, the study of brain function has been revolutionized by the
introduction of various imaging modalities: positron emission tomography
(PET), single photon emission computed tomography (SPECT), and mag-
netic resonance imaging (MRI), which can produce two- or three-dimensional
images with good spatial resolution. These modalities extend the informa-
tion inferred from an electrophysiological investigation by providing detailed
information on, e.g., anatomy and blood flow in different regions of the brain.
As a result, the EEG has today lost part of its dominance in clinical routine;
however, it remains a very powerful tool in the diagnosis of many diseases
such as epilepsy, sleep disorders, and dementia. Furthermore, the EEG sig-
nal is important for real-time monitoring in the operating theatre and in
the intensive care unit, e.g., when monitoring the progress of patients in a
coma or with encephalopathies. In monitoring applications, the fraction-of-
a-second temporal resolution of the EEG is unsurpassed compared to the
above-mentioned imaging modalities. Another aspect in favor of the EEG
is that the total cost associated with recording instrumentation, and tech-
nicians required to manage the equipment, is dramatically lower than that
associated with neuroimaging. The technical demands on equipment for
recording EEGs are relatively modest and are, for a basic recording setup,
restricted to a set of electrodes, a signal amplifier, and a PC for data storage,
signal analysis, and graphical presentation.

The magnetoencephalogram (MEG) is yet another noninvasive technique
which quantifies the weak magnetic field of mass neural activity by using an
extremely sensitive magnetic field sensor—the SQUID. The main advantage
of the MEG technique is that the magnetic field is less distorted by the skull
than is the electrical potential. While the MEG originally was believed to

1The term “background EEG” is here used in a wider sense than the clinical convention
and also includes abnormal brain activity such as epilepsy.
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provide information which is independent of the EEG [6], it has recently
been shown that the EEG and MEG signals have strong interdependence [7,
8]. Since these two types of recording technology, as well as the imaging
techniques mentioned above, exhibit both strengths and weaknesses, they
should ultimately be used to complement each other [9, 10].

This chapter first presents a brief description of the nervous system and
the electrical activity of the brain (Section 2.1); for further details, the inter-
ested reader is referred to the multitude of textbooks which contain compre-
hensive descriptions of the human brain. A variety of common EEG patterns
and waveforms are presented in Section 2.2 which are of special interest in
the subsequent chapter on EEG signal processing methods. Section 2.3 de-
scribes the standard technique used for recording an EEG in clinical routine.
Finally, Section 2.4 provides a brief overview of some important EEG appli-
cations.

2.1 The Nervous System

The nervous system gathers, communicates, and processes information from
various parts of the body and assures that both internal and external changes
are handled rapidly and accurately. The nervous system is commonly divided
into the central nervous system (CNS), consisting of the brain and the spinal
cord, and the peripheral nervous system (PNS), connecting the brain and
the spinal cord to the body organs and sensory systems. The two systems
are closely integrated because sensory input from the PNS is processed by
the CNS, and responses are sent by the PNS to the organs of the body. The
nerves transmitting signals to the CNS are called afferent or, alternatively,
sensory nerves. The nerves transmitting signals from the CNS are called
efferent or, alternatively, motor nerves since these signals may elicit muscle
contraction.

Another important division of the nervous system is based on its func-
tionality: the somatic nervous system and the autonomic nervous system.
The somatic system includes those nerves which control muscle activity in
response to conscious commands. This system also relays the physical sensa-
tions. The autonomic nervous system regulates the bodily activities which
are beyond conscious control, e.g., cardiac activity and muscle activity in
internal organs such as the bladder and uterus. The autonomic nervous sys-
tem actually consists of two subsystems which operate against each other:
the sympathetic nervous system, which dominates when physical activity is
called for, and the parasympathetic nervous system, which dominates during
relaxation. Both these subsystems innervate the same organs and act so as to
maintain the correct balance of the internal organ environment. For example,
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during physical exercise or when a subject experiences fear, the sympathetic
system causes the heart rate to increase while the parasympathetic system
decreases the rate. Heart rate variability as a result of the antagonistic effect
between the two subsystems has been the subject of considerable research
in order to better understand the relation between neurological diseases and
dysfunction of the autonomic nervous system. Chapter 8 describes methods
developed for quantification of heart rate variability.

2.1.1 Neurons

The basic functional unit of the nervous system is the nerve cell—the neu-
ron—which communicates information to and from the brain. All nerve
cells are collectively referred to as neurons although their size, shape, and
functionality may differ widely. Neurons can be classified with reference to
morphology or functionality. Using the latter classification scheme, three
types of neurons can be defined: sensory neurons, connected to sensory re-
ceptors, motor neurons, connected to muscles, and interneurons, connected
to other neurons.

The archetypal neuron consists of a cell body, the soma, from which two
types of structures extend: the dendrites and the axon, see Figure 2.1(a).
Dendrites can consist of as many as several thousands of branches, with each
branch receiving a signal from another neuron. The axon is usually a single
branch which transmits the output signal of the neuron to various parts of
the nervous system. The length of an axon ranges from less than 1 mm to
longer than 1 m; the longer axons are those which run from the spinal cord
to the feet. Dendrites are rarely longer than 2 mm.

The transmission of information from one neuron to another takes place
at the synapse, a junction where the terminal part of the axon contacts
another neuron. The signal, initiated in the soma, propagates through the
axon encoded as a short, pulse-shaped waveform, i.e., the action potential.
Although this signal is initially electrical, it is converted in the presynaptic
neuron to a chemical signal (“neurotransmitter”) which diffuses across the
synaptic gap and is subsequently reconverted to an electrical signal in the
postsynaptic neuron, see Figure 2.1(b).

Summation of the many signals received from the synaptic inputs is
performed in the postsynaptic neuron. The amplitude of the summed signal
depends on the total number of input signals and how closely these signals
occur in time; the amplitude decreases when the signals become increasingly
dispersed in time. The amplitude of the summed signal must exceed a certain
threshold in order to make the neuron fire an action potential. Not all
neurons contribute, however, to the excitation of the postsynaptic neuron;
inhibitory effects can also take place due to a particular chemical structure
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Figure 2.1: (a) An archetypal neuron and (b) three interconnected neurons. A
presynaptic neuron transmits the signal toward a synapse, whereas a postsynaptic
neuron transmits the signal away from the synapse.

associated with certain neurons. A postsynaptic neuron thus receives signals
which are both excitatory and inhibitory, and its output depends on how the
input signals are summed together. This input/output operation is said to
represent one neural computation and is performed repeatedly in billions of
neurons.

In contrast to the electrical activity measured on the scalp, electrical
activity propagating along the axon is manifested as a series of action po-
tentials, all waveforms having identical amplitudes. This remarkable feature
is explained by the “on/off” property of the neuron which states that an
action potential is either elicited with a fixed amplitude or does not occur
at all. The intensity of the input signals is instead modulated by the firing
rate of the action potentials. For example, this signal property implies that
a high firing rate in sensory neurons is associated with considerable pain or,
in motor neurons, with a powerful muscle contraction. Furthermore, it is



30 Chapter 2. The Electroencephalogram—A Brief Background

fascinating to realize that this modulation system is particularly well-suited
for transmission of information over long distances and is tolerant to local
failures. The upper bound of the firing rate is related to the refractory period
of the neuron, i.e., the time interval during which the neuron is electrically
insensitive.

Neurons are, of course, not working in splendid isolation, but are in-
terconnected into different circuits (“neural networks”), and each circuit is
tailored to process a specific type of information. A well-known example of
a neural circuit is the knee-jerk reflex. This particular circuit is activated
by muscle receptors which, by a hammer tap, initiate a signal that trav-
els along an afferent pathway. The received sensory information stimulates
motor neurons through synaptic contacts, and a new signal is generated
which travels peripherally back, giving rise to muscle contraction and the
associated knee-jerk response.

2.1.2 The Cerebral Cortex

The cerebral cortex is the most important part of the CNS, and the different
regions of cortex are responsible for processing vital functions such as sen-
sation, learning, voluntary movement, speech, and perception. The cortex
is the outermost layer of the cerebrum and has a thickness of 2–3 mm. The
cortical surface is highly convoluted by ridges and valleys of varying sizes
and thus increases the neuronal area; the total area is as large as 2.5 m2 and
includes more than 10 billion neurons. The cortex consists of two symmet-
rical hemispheres—left and right—which are separated by the deep sagittal
fissure (the central sulcus). Each hemisphere is divided into four different
lobes: the frontal, temporal, parietal, and occipital lobes, see Figure 2.2.

Voluntary movement is primarily controlled by the area of the frontal
lobe just anterior to the central sulcus—the motor cortex. Tasks requiring
considerable muscle control, e.g., speech, certain facial expressions, and fin-
ger movements, are associated with the largest subarea of the motor cortex.
Sensory information is processed in various parts of the lobes: the auditory
cortex is located in the superior part of the temporal lobe, the visual cortex
is located at the posterior part of the occipital lobes, and the somatic sensory
cortex is located just posterior to the central sulcus of the parietal lobe.

The above-mentioned cortical areas are referred to as primary areas since
these neurons are specialized for a particular purpose. The primary areas
are relatively small in size, but are supplemented with larger, surrounding
areas which are essential for the mental abilities that are characteristic of
human beings. The neurons of a secondary area analyze, for example, visual
information in further detail with respect to shape, color, and size of an
object. These neurons also provide associative references to other senses and
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Figure 2.2: The cerebral cortex and the four lobes.

will, ultimately, integrate the present information with earlier experiences
and knowledge.

2.2 The EEG—Electrical Activity Measured on
the Scalp

The collective electrical activity of the cerebral cortex is usually referred to
as a rhythm because the measured signals often exhibit oscillatory, repetitive
behavior. The activity of a single cortical neuron cannot be measured on the
scalp due to thick layers of tissue (fluids, bones, and skin) which attenuate
the electrical signal when it propagates toward the electrode.2 However,
the joint activity of millions of cortical neurons, at a depth down to several
millimeters, produces an electrical field which is sufficiently strong to be
measured on the scalp; this depth depends on the “strength” of the neural
source. The electrical field is mainly generated by currents that flow during
synaptic excitation of the dendrites, the excitatory postsynaptic potentials.

2It is possible to invasively investigate the electrical behavior of only a few neurons by
the use of microelectrodes. The specific properties of signals acquired by such intracerebral
electrodes will, however, not be given further consideration in the present text.
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The diversity of EEG rhythms is enormous and depends, among many
other things, on the mental state of the subject, such as the degree of at-
tentiveness, waking, and sleeping. Figure 2.3 illustrates a number of EEG
rhythms observed during different states. The rhythms are conventionally
characterized by their frequency range and relative amplitude.

The amplitude of the EEG signal is related to the degree of synchrony
with which the cortical neurons interact. Synchronous excitation of a group
of neurons produces a large-amplitude signal on the scalp because the signals
originating from individual neurons will add up in a time-coherent fashion.
Repetition of the synchronous excitation results in a rhythmic EEG signal,
consisting of large-amplitude waveforms occurring at a certain repetition
rate. On the other hand, asynchronous excitation of the neurons results
in an irregular-looking EEG with low-amplitude waveforms. In both cases,
the excitation may very well involve an identical number of neurons, but,
depending on the time dispersion of the neuronal input, different amplitudes
of the EEG result.

The frequency, or the oscillatory rate, of an EEG rhythm is partially
sustained by input activity from the thalamus. This part of the brain consists
of neurons which possess pacemaker properties, i.e., they have the intrinsic
ability to generate a self-sustained, rhythmic firing pattern. Another reason
to the rhythmic behavior is coordinated interactions arising between cortical
neurons themselves in a specific region of the cortex. In the latter case, no
pacemaker function is involved, but the rhythm is rather an expression of a
feedback mechanism that may occur in a neuronal circuit [11].

High-frequency/low-amplitude rhythms reflect an active brain associated
with alertness or dream sleep, while low-frequency/large-amplitude rhythms
are associated with drowsiness and nondreaming sleep states. “This rela-
tionship is logical because when the cortex is most actively engaged in pro-
cessing information, whether generated by sensory input or by some internal
process, the activity level of cortical neurons is relatively high but also rel-
atively unsynchronized. In other words, each neuron, or very small group
of neurons, is vigorously involved in a slightly different aspect of a complex
cognitive task; it fires rapidly, but not quite simultaneously with most of its
neighbors. This leads to low synchrony, so the EEG amplitude is low. By
contrast, during deep sleep, cortical neurons are not engaged in information
processing, and large numbers of them are phasically excited by a common,
rhythmic input. In this case synchrony is high, so the EEG amplitude is
large” [11].

The meaning of different brain rhythms largely remains unexplained,
although several hypotheses have been put forward. Despite this gap in un-
derstanding, quantification of EEG rhythm characteristics has nevertheless



Section 2.2. The EEG—Electrical Activity Measured on the Scalp 33

0 2 4 6
Time (s)

(a)

(b)

(c)

(d)

(e)

Figure 2.3: Electroencephalographic rhythms observed during various states from
wakefulness to sleep: (a) excited, (b) relaxed, (c) drowsy, (d) asleep, and (e) deeply
asleep. This example is classical and was originally presented by the famous EEG
pioneer H.H. Jasper [12].

proved to be an extremely useful clinical approach in studying functional
states of the brain.

2.2.1 EEG Rhythms and Waveforms

The characteristics of the most frequently occurring rhythms and waveforms
will now be briefly summarized. Signals recorded from the scalp have, in
general, amplitudes ranging from a few microvolts to approximately 100 µV
and a frequency content ranging from 0.5 to 30–40 Hz. Electroencephalo-
graphic rhythms, also referred to as background rhythms, are convention-
ally classified into five different frequency bands. The interpretation of these
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bands in terms of “normal” or “abnormal” is relative and depends on the
age and mental state of the subject. For example, the EEG of a newborn
is drastically different from that of an adult and has, in general, a con-
siderably higher frequency content. The frequency bands indicated below
are somewhat coarse, but nevertheless provide a clinically useful categoriza-
tion of different rhythms (the band definitions below follow those presented
in [13]).

Delta rhythm, <4 Hz. The delta rhythm is typically encountered during
deep sleep and has a large amplitude. It is usually not observed in
the awake, normal adult, but is indicative of, e.g., cerebral damage or
brain disease (encephalopathy).

Theta rhythm, 4–7 Hz. The theta rhythm occurs during drowsiness and
in certain stages of sleep.

Alpha rhythm, 8–13 Hz. This rhythm is most prominent in normal sub-
jects who are relaxed and awake with eyes closed; the activity is sup-
pressed when the eyes are open. The amplitude of the alpha rhythm
is largest in the occipital regions.

Beta rhythm, 14–30 Hz. This is a fast rhythm with low amplitude, asso-
ciated with an activated cortex and which can be observed, e.g., during
certain sleep stages. The beta rhythm is mainly observed in the frontal
and central regions of the scalp.

Gamma rhythm, >30 Hz. The gamma rhythm is related to a state of
active information processing of the cortex. Using an electrode lo-
cated over the sensorimotor area and connected to a high-sensitivity
recording technique, the gamma rhythm can be observed during finger
movements [14].

Most of the above rhythms may persist up to several minutes, while
others occur only for a few seconds, such as the gamma rhythm. It is impor-
tant to realize that one rhythm is not present at all times, but an irregular,
“arrhythmic”-looking signal may prevail during long time intervals.

Spikes and sharp waves. Spikes and sharp waves (SSWs) are transient
waveforms that stand out from the background EEG with an irregular, un-
predictable temporal pattern (paroxysmal activity). Their presence indicates
a deviant neuronal behavior often found in patients suffering from epileptic
seizures [15]. Because of their relation to seizures, SSWs are often referred
to as interictal since they occur between ictal events, i.e., epileptic seizures.
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The clinical definition of SSWs is somewhat ambiguous, but both types
of waveforms are generally characterized by a steep initial upstroke. A spike
is differentiated from a sharp wave by its duration: a spike has a duration
in the range 20–70 ms, while a sharp wave is 70–200 ms long. Although
the waveform morphology is essentially monophasic, it is not uncommon
to observe both bi- and triphasic waveforms. The waveform morphology is
naturally dependent on where the electrode is located on the scalp.

Spikes may occur as isolated events or in various types of runs. Such
runs are collectively referred to as spike-wave complexes, and each complex
consists of a spike followed by a slow wave [15]. Spike-wave complexes occur
at repetition rates which range from less than 3 to 6 Hz; the repetition rate
may correlate with different clinical interpretations. An example of spike-
wave complexes is presented in Figure 2.4.

Certain artifacts in a normal EEG can occasionally be mistaken for
SSWs. For example, cardiac activity may interfere with the EEG to such a
degree that a heartbeat (particularly the waves of the QRS complex) mas-
querades as a spike.

Sleep rhythms. The brain has three essential functional states: awake,
sleep without rapid eye movement (REM), and sleep with REM. The two
sleep states, commonly referred to as non-REM and REM sleep, are passed
through several times during one night. Non-REM sleep is an “idle” state
associated with resting of the brain and the bodily functions. Slow, large-
amplitude EEG rhythms during non-REM sleep indicate a high degree of
synchrony of the underlying cortical neurons. This sleep state can be further
subdivided into four distinct stages related to the degree of sleep depth, see
Table 2.1.

A number of transient waveforms usually occur which are characteristic of
the different sleep stages: vertex waves, sleep spindles, and K complexes, see
Table 2.1 and Figure 2.5. Vertex waves occur during the earlier sleep stages
and constitute responses to external stimuli such as sounds. Sleep spindles
are bursts of alpha-like activity with a duration of 0.5–1 s. The K complexes
can be viewed as the fusion of sleeps spindles and vertex waves.

Rapid eye movement sleep corresponds to an active brain, probably oc-
cupied with dreaming. It is therefore not surprising that the EEG closely
resembles that of the waking brain and that beta rhythms are present. A
prominent feature of the REM sleep state is that the eyes, with the lids
closed, move rapidly back and forth in an irregular pattern. These eye
movements produce a sawtooth pattern in the EEG when the electrodes are
attached close to the eyes.
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Figure 2.4: A multichannel EEG with spike-wave complexes occurring at a 3-Hz
repetition rate. Each channel results from two electrodes placed at locations defined
by the codes displayed next to the signal; the definitions of electrode placements
are given in Figure 2.7. (Reprinted from Wong [16] with permission.)

Ictal EEG. During an epileptic seizure the EEG is referred to as an ictal
EEG, manifested by an abnormal rhythm with a sudden increase in ampli-
tude, as illustrated in Figure 2.6. The onset of a seizure is also associated
with a sudden change in frequency content which often evolves into a rhythm
with a spiky wave pattern. The ictal EEG may exhibit considerable vari-
ability from seizure to seizure, making its detection, whether approached
manually or automatically, difficult.

2.2.2 Categorization of EEG Activity

The above-mentioned activities can be roughly categorized into the following
four groups with respect to their degree of nonstationarity. The categoriza-
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Table 2.1: Essential characteristics of the four non-REM sleep stages and REM
sleep [17].

Sleep Sleep depth Waveforms
stage
1 Drowsiness From alpha dropouts to vertex waves
2 Light sleep Vertex waves, spindles, K complexes
3 Deep sleep Much slowing, K complexes, some spindles
4 Very deep sleep Much slowing, some K complexes
REM REM sleep Desynchronization with faster frequencies

tion was originally presented in [18], and the categories were defined with
special reference to their suitability for spectral analysis.

Activity without major temporal changes. Normal, spontaneous wak-
ing activity at rest, e.g., with open or closed eyes; various kinds of
alpha, beta, and theta rhythms.

Slowly time-varying activity. Sleep background activity, postictal back-
ground activity, lengthy seizure discharges.

Intermittent activity. Intermittent, slow rhythm, sleep spindles, i.e., ac-
tivity with stable patterns over intervals of several seconds.

Paroxysmal activity. Spikes, sharp waves, spike-wave complexes, 3-Hz
spike-wave formations, K complexes, and vertex waves observed during
sleep, i.e., different types of transient activity.

2.3 Recording Techniques

The clinical EEG is commonly recorded using the International 10/20 sys-
tem, which is a standardized system for electrode placement [19]. This par-
ticular recording system (electrode montage) employs 21 electrodes attached
to the surface of the scalp at locations defined by certain anatomical reference
points; the numbers 10 and 20 are percentages signifying relative distances
between different electrode locations on the skull perimeter, see Figure 2.7.
Bipolar as well as so-called unipolar electrodes are used in clinical routine,
with the latter type requiring a reference electrode either positioned distantly
or taken as the average of all electrodes.
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Figure 2.5: Electroencephalographic signals recorded during sleep with (a) sleep
spindles and (b) K complexes; note that each K complex is the fusion of a vertex
wave and a sleep spindle. (Reprinted from Wong [16] with permission.)

The spacing of electrodes with the 10/20 system is relatively sparse: the
interelectrode distance is approximately 4.5 cm on a typical adult head. Im-
proved spatial resolution may be required when brain mapping is of interest.
Mapping constitutes a spatial analysis technique in which the EEG activity
is represented as a topographic map projected onto the scalp [20]. Using
too few electrodes may result in aliasing in the spatial domain, and, con-
sequently, the electrical activity will be inaccurately represented. Studies
have indicated that the total number of electrodes used in brain mapping
applications should be 64 or higher in order to provide sufficient detail [21].
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Figure 2.6: A multichannel EEG showing the onset of an epileptic seizure, occur-
ring after the first second. The onset is characterized by an increase in amplitude
and a change in spectral content. The seizure is particularly pronounced in certain
channels. Note that the ECG is displayed at the bottom (the abbreviations EKG
and ECG are synonymous). (Reprinted from Wong [16] with permission.)

The sampling rate for EEG signal acquisition is usually selected to be
at least 200 Hz, when taking the frequency ranges of the rhythmic activities
previously given into account. A more detailed analysis of transient, evoked
waveforms may, however, necessitate a considerably higher sampling rate;
see Chapter 4 which describes the analysis of EPs.

2.4 EEG Applications

This section considers two of the most important clinical applications of the
EEG, namely, the study of epilepsy and sleep disorders. The design of a
brain–computer interface is another EEG application which is considered;
so far, this has primarily been studied from a research-oriented perspective.
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Figure 2.7: The International 10/20 system for recording of clinical EEGs. The
anatomical reference points are defined as the top of the nose (nasion) and the back
of the skull (inion). The letters F, P, C, T, O, and A denote frontal, parietal, central,
temporal, occipital, and auricle, respectively. Note that odd-numbered electrodes
are on the left side, even-numbered electrodes are on the right side, and z (zero) is
along the midline.

While the descriptions by necessity are kept brief, it is nevertheless hoped
that they will help illustrate the importance of signal processing in vari-
ous EEG applications. The interested reader is referred to the specialist
literature for more information on these topics.

2.4.1 Epilepsy

A person with epilepsy suffers from seizures during which sudden bursts of
uncontrolled electrical activity occur in a group of neurons of the cerebral
cortex. Epileptic seizures are manifested in many different ways depending
on where the origin (focus) of the electrical activity is located and how
different areas of the brain become successively recruited during a seizure.
For example, a seizure which begins in the sensory areas of the cortex is
usually manifested by some visual or auditive sensation. The epileptic focus
is defined by a group of neurons whose functionality is impaired, whereas
the other areas involved in a seizure are often normal.

The interplay between excitatory signals, which increase the electrical
activity of the brain by causing nerve cells to fire, and inhibitory signals,
which decrease the activity by preventing nerve cells from firing, is well-
balanced during normal conditions. However, an imbalance between the two
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activities is believed to be an important cause of epilepsy. In particular,
the neurotransmitters that chemically convey the signals in the synapse are
central to causing such an imbalance; if the excitatory neurotransmitters
are too active or the inhibitory ones are not active enough, the likelihood
of a seizure increases. As a result, bursts of uncontrolled electrical activity
will occur. Recently developed antiepileptic drugs are aimed at changing this
impaired balance of the neurotransmitters by either decreasing the excitatory
activity or increasing the inhibitory activity.

Some seizures are difficult to observe and only result in minor mental
confusion, while others cause loss of consciousness, although rarely leading to
permanent injury or death. Seizures are typically recurrent events at a highly
variable rate, ranging from a few seizures during a lifetime to a few dozen
during a single day. The duration of each seizure ranges from a few seconds
to a few minutes. Since the manifestations of epileptic seizures differ widely,
a scheme for classifying seizures into different groups has been established
based on the characteristics of the EEG [22]. The two main groups are
defined by the location at which the seizure starts: partial seizures start
in a restricted (focal) area of the brain, while primary generalized seizures
involve the entire brain from their onset (Figure 2.8). The seizures belonging
to the former group are related to a single epileptic focus, while this does
not apply to the latter group. As a result, certain partial seizures may
be cured by a surgical procedure in which a small part of the cortex is
removed. The procedure must be preceded by a series of extremely thorough
investigations in order to assure that the location of the epileptic focus is
accurately delimited. In some cases, a partial seizure may evolve to other
parts of the brain and is then referred to as a partial seizure with secondary
generalization. Figure 2.9 displays an EEG which was recorded during the
onset of a primary generalized seizure.

Epilepsy is caused by several pathological conditions such as brain injury,
stroke, brain tumors, infections, and genetic factors. The largest group of
epileptic patients has, however, an unknown etiology.

The EEG is the principal test for diagnosing epilepsy and gathering infor-
mation about the type and location of seizures. For subjects with suspected
epilepsy, an EEG is recorded in clinical routine for half an hour in a relatively
dark and quiet room. During this period, the subject is asked to open and
close his/her eyes to study changes in the EEG related to light (recall the
presence or absence of alpha activity mentioned on page 34). At the end of
the investigation, two “activation” methods are commonly used to provoke
waveforms which are associated with epilepsy. In one activation method,
the subject is instructed to breath rapidly and deeply (hyperventilation),
and in the other method to face a strobe light flashing at a rate of 1–25 Hz
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(a) (b)

Figure 2.8: (a) A partial epileptic seizure with focus in the motor cortex. Related
symptoms are muscle twitches in one of the arms, but the subject is fully conscious.
(b) A primary generalized seizure which spreads across the entire brain. Symptoms
are spasms and unconsciousness. In both figures, a vertical cross-section of the
brain is viewed from the front.

(photic stimulation). Sleep deprivation represents another type of activation
method which may also be considered.

Although the EEG obtained in clinical routine is often recorded between
seizures, i.e., the interictal EEG, the signal waveforms may nevertheless
indicate a tendency toward seizures. Examples of interictal waveforms have
already been presented in Figure 2.4. The occurrence of SSWs in a local
area of the brain, such as in the left temporal lobe, suggests that partial
seizures are initiated in that particular area. Spike-wave complexes which
are widespread over both hemispheres of the brain suggest, on the other
hand, the occurrence of primary generalized seizures. Unfortunately, the
absence of interictal waveforms does not rule out the possibility of a seizure.

In order to record an EEG during a seizure, it is often necessary to record
the EEG during prolonged periods. Such recordings are often done while
video filming the patient, allowing the neurologist to correlate EEG findings
to visual findings in order to improve seizure assessment. This type of record-
ing is referred to as “video EEG” and is usually done in the hospital over a
period of several days. Another, more convenient, less expensive method is
to record the EEG during normal, everyday conditions by a small-sized, dig-
ital recording device attached to a belt around the patient’s waist [23]. This
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Figure 2.9: A multichannel EEG showing the onset of a primary generalized
seizure about halfway into the recording. (Reprinted from Wong [16] with permis-
sion.)

type of recording, referred to as “ambulatory EEG”, is done in the home
for a period of 24 hours or more and therefore includes both waking and
sleeping cycles. Similar to video EEG recordings, several electrodes must be
attached to the scalp for long periods of time which sometimes cause itch-
ing. Scratching the head introduces noise into the EEG recording which may
occasionally resemble waveforms of physiological origin. A variety of other
noise types, such as those caused by blinking and frowning, can also appear,
which may make the interpretation of an ambulatory recording difficult.

Whether performed in the hospital or under ambulatory conditions, long-
term EEG monitoring produces large amounts of data which would be very
time-consuming to scrutinize. Automatic spike and seizure detection is
therefore an important means of reducing the amount of data and improving
the efficiency of EEG interpretation. The design of such detection algorithms
involves several signal processing considerations regarding the mathematical
characterization of interictal waves and epileptic seizures [24–26]. Algorithms
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for noise and artifact rejection are another important part of such programs.
An algorithm for seizure prediction/warning may help a patient wearing
an ambulatory recording device take appropriate safety measures prior to a
seizure.

A number of therapeutic devices have been developed for epileptic pa-
tients which trigger an action that prevents a seizure before it begins. Of
these devices, the vagus nerve stimulator is the most well-known and is
programmed to regularly stimulate the vagus nerve3 with a series of inter-
mittent electrical pulses [27]. As the pulses reach the brain, an antiepileptic
effect has been observed in some patients, although the mechanisms behind
this effect so far remain poorly understood. The vagal nerve stimulator
is surgically implanted, similar to a cardiac pacemaker. The stimulating
electrode is wrapped around the vagus nerve in the neck, see Figure 2.10.
Current stimulators operate blindly by eliciting a preset pattern of stimula-
tion pulses; no attempt is made to predict seizures and modify the therapy
accordingly. However, the development of more intelligent vagal stimulators
is underway and will involve signal processing algorithms for the prediction
of seizures [28, 29].

2.4.2 Sleep Disorders

Sleep disorders, which are frequent in our society, may be caused by several
conditions of medical and/or psychological origin. A commonly used scheme
for classification of sleep disorders defines the following four groups [30].

Insomnia. Disorders in initiating or maintaining sleep. Most people have
at some point in their lives suffered from insomnia due to an agonizing
event or approaching examination; this condition is normally transient
and is not treated. Depression is associated with poor sleep and causes
a substantial reduction in deep sleep, i.e., stages 3 and 4, which makes
the patient tired during the daytime. Alcohol and drug abuse are other
factors that cause insomnia.

Hypersomnia. Disorders causing excessive sleep and somnolence. Narco-
lepsy is one example of hypersomnia characterized by uncontrollable
daytime sleep attacks while night-time sleep is still fairly normal. Sleep
apnea is another condition which indirectly causes hypersomnia. Dur-
ing night-time sleep, the patient suffers from frequent, prolonged sus-
pensions of breathing (>10 s) which cause the patient to wake due to

3The vagus nerve is one of the 12 pairs of cranial nerves which emanate from the brain;
it branches out into the chest and abdomen. The name “vagus” means “wandering” since
this nerve is found in many different places. The vagus nerve is also of central importance
for controlling heart rate, see Section 8.
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Figure 2.10: The vagus nerve stimulator can prevent epileptic seizures by electrical
excitation.

snoring. As a result, a patient with sleep apnea has interrupted deep
sleep and is very tired during the daytime (sleep apnea may also be
classified as insomnia).

Circadian rhythm disorders. Disorders in the sleep–wake schedule. The
most well-known example of such disorders results from flying across
several time zones (“jet lag”). Fortunately, the difficulties related with
adapting to the new sleep–wake schedule are typically temporary and
disappear within a week. A more serious condition arises in subjects
whose diurnal rhythm is slightly longer than 24 hours. These subjects
sleep later by up to half an hour every day and progressively move into
daytime sleep and then back into night-time sleep. As a result, it is
difficult to maintain a normal work–rest schedule.

Parasomnia. Deviations in the normal sleep pattern. These sleep disor-
ders are related to deviations from the normal well-being during sleep,
although not necessarily leading to awakening. The nightmare is the
most common type of parasomnia, being a dream which contains a
threatening situation; the nightmare is related to increased autonomic
activity as reflected by a drastic increase in heart rate. Sleep terror is
a more serious condition, unrelated to dreams, which is characterized
by piercing screams or cries; this condition is mostly seen in children
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Figure 2.11: Variations in sleep stages observed during one night’s sleep. Sleep
stages III and IV have been combined. Dream sleep occurs during the REM stage.

and disappears with age. Sleepwalking is another condition, similar to
sleep terror, which occurs during the deep stages of sleep.

Each of the different types of sleep disorder exhibits certain manifesta-
tions in the EEG. To properly diagnose each disorder, it is therefore impor-
tant to quantitatively determine how the pattern of sleep stages changes over
time, see Figure 2.11. This information is commonly acquired by having the
patient stay overnight in a sleep laboratory with electrodes attached to the
scalp. Since the manual effort associated with sleep staging is enormous, it
is highly desirable to develop and implement a system that automatically
performs the sleep staging described in Table 2.1. A fundamental task of
such a system is obviously to detect the individual waves that characterize
the different stages (i.e., vertex waves, sleep spindles, and the K complexes)
and the different rhythms such as delta, theta, alpha, and beta. In order to
mimic the method by which a neurologist interprets an EEG, it is important
to develop a system that considers contextual information on how individual
waves are distributed spatially across channels as well as temporally within
each channel [31, 32].

Sleep analysis is commonly based on a polygraphic recording, i.e., a
recording that involves several types of physiological signals, not only an
EEG; the resulting recording is therefore referred to as polysomnographic.
Such a recording was exemplified in Figure 1.8 in the Introduction where a
number of signals such as the EEG, ECG, EMG, EOG, blood pressure, and
nasal and abdominal respiration were included. Polysomnography may also
include video filming as a record of the patient’s behavior during sleep as ex-
pressed by sounds and body movements, see Figure 2.12. Since a polysomno-
graphic recording contains many signals of different origins, its analysis may
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Figure 2.12: Setup for acquisition of a polysomnographic recording in the sleep
laboratory. Some of the acquired signals are often multichannel. Additional physi-
ological measures such as blood pressure and blood oxygen level may also be mon-
itored.

be quite complicated. Computer-based analysis of such recordings makes it
possible to quantify correlations that may exist between different types of
signals. Similar to systems for automated recognition of epileptic seizures,
noise and artifact rejection are important parts of a system for automated
sleep analysis [33, 34].

2.4.3 Brain–Computer Interface

A brain–computer interface (BCI) enables a subject to communicate with
and control the external world without using the brain’s normal output
through peripheral nerves and muscles [35–37]. Messages are conveyed by
spontaneous or evoked EEG activity rather than by muscle contractions
which are otherwise used for communication through speech and writing.
Subjects with severe neuromuscular disorders, or sometimes those who are
completely paralyzed (the “locked-in” syndrome), benefit greatly from a
BCI which offers them basic communication capabilities through which they
can express themselves, for example, by controlling a spelling program or
operating a neuroprosthesis. Although the BCI was first conceived in the
early 1970s [38], it was not until the 1990s that its development took a great
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leap forward [39, 40], owing to more detailed knowledge of the EEG signal
and the rapid progress in computer technology.

The following two closely interrelated steps are fundamental to the design
and use of a BCI:

• The mental process of the user which encodes commands in the EEG
signal; and

• the BCI which, by employing sophisticated signal processing tech-
niques, translates the EEG signal characteristics into commands which
control a device.

The imagination of different simple hand and feet movements is associ-
ated with different EEG signal characteristics which can be used to encode
a set of commands [35, 40, 41]. The related mental process, usually referred
to as motor imagery, is identical to the process that results in an actual
physical movement, except that the motor (muscle) activity is blocked. In
order for the BCI to learn the meaning of different EEG signal character-
istics, the subject is instructed to imagine one of several actions. For each
imagined action, a set of descriptive parameters (“features”) is extracted
from the EEG signal and submitted to a classifier. By repeating the imag-
ined actions several times, the classifier can be trained to determine which
action the subject is imagining. Subsequent to the learning phase, the BCI
relies on the classifier to translate the subject’s motor imagery into device
commands, such as the selection of a letter in a spelling program. The block
diagram in Figure 2.13 presents the basic components of a BCI. Since BCIs
must operate in real time, it is important that the signal processing does not
introduce unacceptable time delays.

The learning phase of a BCI is unfortunately not a one-off procedure
resulting in a fixed-parameter classifier, but must be repeated on a regular
basis. Since the EEG exhibits considerable variability due to factors such as
time of day, hormonal level, and fatigue, it is necessary to adjust the classifier
in order to maintain an acceptable performance. In addition, the overall
success of the BCI depends on how well the two adaptive “controllers”—
the user’s brain and the BCI system—are able to interact with each other.
The user must develop and maintain good correlation between his/her intent
and the signal features used in the BCI. The BCI system must extract signal
features that the user can control and translate those features into commands
correctly [36].

The most common technique for extracting features from an EEG signal
is to analyze spectral power in different frequency bands [42–46]. Spectral
analysis of a single channel may be useful although multichannel analysis is
preferable since it accounts for spatial variations associated with different
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Figure 2.13: Block diagram of a brain–computer interface.

types of motor imagery; for example, differences between the hemispheres
can be exploited by multichannel analysis [47]. The frequency bands are
selected so that they reflect the EEG rhythms of interest: the mu rhythm4

and the beta rhythm have been found particularly useful in a BCI. These
two rhythms originate from the sensorimotor cortex, i.e., the area which
is primarily responsible for the control of hand and foot movements. The
extraction of spectral features is further considered in Chapter 3 where a
number of spectral estimation techniques that have been implemented in
BCIs are presented.

The performance of a BCI may be measured in terms of information
transfer rate and is defined in bits per minute. The performance depends
on the accuracy with which the different imaginative states are classified.
At present, a sophisticated BCI is not able to decipher more than 10–25

4The mu rhythm has a spectral content similar to the alpha rhythm. While the alpha
rhythm is related to idling activity in the visual cortex, the mu rhythm is related to idling
activity in the motor cortex.
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bits/minute—an information transfer rate which would enable a completely
paralyzed subject to write approximately two words per minute. However,
these rates are much too slow for the control of complex movements or the
interaction with a neuroprosthesis. The information rate can be increased
through surgical implantation of microelectrodes which record the activity
of more localized populations of neurons.

The above-mentioned approach to BCI design is based on analysis of the
spontaneous EEG. However, a BCI can also be based on the use of EPs
which result from sensory stimulation [36, 38, 48–50].
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Chapter 3

EEG Signal Processing

The various waveforms of the EEG signal convey clinically valuable infor-
mation. A waveform may represent an isolated event, or several waveforms
may constitute a composite signal pattern. In both cases, it is important
to develop methods for the detection and objective quantification of signal
characteristics to facilitate visual interpretation. The extraction of relevant
signal features is particularly crucial when the aim is to design a system for
EEG classification. The cancellation of noise and artifacts is another impor-
tant issue in EEG signal processing and a prerequisite for the subsequent
signal analysis to be reliable.

This chapter begins by presenting an overview of signal models which, to
various extents, have been adopted in EEG signal processing (Section 3.1).
The models, being primarily statistical in nature, serve as a starting point for
a more detailed description of analysis methods in later sections. Section 3.2
describes the characteristics of the most frequently occurring EEG artifacts
and reviews methods for their reduction or cancellation. The flourishing
number of approaches to spectral analysis of stationary and nonstationary
signals are considered in Sections 3.3–3.4 and 3.6, respectively. Section 3.5
presents methods with which nonstationary signals can be decomposed into
a series of consecutive segments having “quasistationary” properties.

3.1 Modeling the EEG Signal

3.1.1 Deterministic and Stochastic Signal Properties

A fundamental question is whether the EEG should be viewed as a deter-
ministic or stochastic signal. Attempts to answer this question may provide
some insight into the mechanisms of EEG generation, but may also have
implications on the methods considered suitable for signal analysis.
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In general, one cannot predict the exact characteristics of the EEG signal
in terms of amplitude, duration, or morphology of the individual waves, and,
therefore, it seems quite natural to view the EEG signal as a realization of a
stochastic process. This view gains further strength if one makes the obser-
vation that a “pure” EEG signal which reflects only cerebral activity cannot
be acquired. In fact, there is always corrupting random noise, introduced,
for example, by internal noise in the amplifier equipment or the digitization
process, which, even if the “pure” EEG had had deterministic properties, in
the end makes it reasonable to consider the EEG as a stochastic process [1].

While we will primarily adopt a stochastic approach to signal analysis
in the remaining part of this chapter, it is important to be aware that the
deterministic/stochastic issue is far from being settled in current research
literature. Considerable effort has recently been directed toward finding a
quantitative answer to the deterministic/stochastic issue, most notably by
hypothesizing that the EEG is generated by a nonlinear dynamic system.
The output of such a nonlinear system is characterized by a deterministic
process which may exhibit “chaotic” behavior, resembling that of a stochastic
process.1

No strong evidence has been presented showing that the EEG is better
modeled as a chaotic deterministic process, except under certain conditions
such as before and during an epileptic seizure [2]. In order to achieve accurate
signal modeling, the characteristics of the deterministic process have to be
so complex that it cannot be easily distinguished from a stochastic process,
thus implying that a stochastic description may be equally suitable [3]. Since
it is beyond the scope of this book to describe techniques developed for
characterizing chaotic behavior in the EEG, the interested reader may wish
to consult the review papers in [4, 5].

3.1.2 Stochastic Properties

When using a stochastic signal description as the primary approach to EEG
modeling and analysis, one of the first questions that arises is which type of
probability density function (PDF) will provide adequate statistical charac-
terization of the signal. Assuming that the samples x(0), x(1), . . . , x(N − 1)
representing the EEG signal are modeled as a real-valued stochastic process,
it is of interest to determine the joint PDF that completely characterizes

1Briefly, methods of distinguishing deterministic from stochastic processes rely on the
fact that a deterministic system always evolves in the same way from a given starting
point. A signal can be tested for determinism by selecting a “test” state, searching the
signal for a nearby state, and comparing their time evolution. A deterministic system
has an error that either remains small or increases exponentially with time (the chaotic
system), while a stochastic system has a randomly distributed error; the error is taken as
the difference between the time evolution of the test state and the nearby state.
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this process,

p(x;θ) = p(x(0), x(1), . . . , x(N − 1);θ), (3.1)

where the column vector x contains the EEG samples in the observation
interval [0, N − 1],

x =

⎡⎢⎢⎢⎣
x(0)
x(1)

...
x(N − 1)

⎤⎥⎥⎥⎦ . (3.2)

The probability density function p(x;θ) in (3.1) embraces a parameter vec-
tor θ whose elements define the specific shape of the function; the elements
are assumed to be deterministic but their values are unknown. Ultimately,
this parameter vector provides us with quantitative information on vari-
ous signal properties. For example, assuming that p(x;θ) is uniformly dis-
tributed, the vector θ contains the definition of the amplitude intervals over
which the samples in x are uniform. Another example is the Gaussian PDF
where θ includes the mean value and the correlation properties of x, thus
defining the location and spread of the N -dimensional, bell-shaped Gaussian
PDF.

A nonparametric approach to determine p(x;θ) is to first compute the
amplitude histogram of the observed EEG samples and then to hypothesize
about the particular structure of p(x;θ). Another approach is to assume
that the structure of the PDF is known a priori, i.e., based on certain neuro-
physiological insight, and instead focus on how to estimate the parameter
vector θ. Irrespective of the approach that we decide to pursue, the PDF
issue has no straightforward answer: the ever-changing properties of the
EEG require a highly complex PDF structure in order to accurately model
signals corresponding to various brain states.

From an engineering point of view it may be inviting to assume that
the EEG signal is characterized by a multivariate Gaussian PDF. This as-
sumption is quite plausible, considering that the EEG, as recorded on the
scalp, can be viewed as the summation of signals from a very large number
of individual neural generators (“oscillators”). The well-known central limit
theorem states that the sum of independent random variables in the limit
has a Gaussian PDF as the number of summed variables increases; each
random variable is not required to be Gaussian for this theorem to hold [6].
The assumption that individual neural generators act independently of one
another can, however, be questioned, considering that neural oscillators are
organized in groups with substantial internal dependence (the group organi-
zation is required to produce the synchronous activity that is visible in the
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EEG). On the other hand, groups of neural generators may still be inde-
pendent of one another, thus suggesting that the requirements of the central
limit theorem may still be valid [7].

In the early days of EEG signal analysis, several experimental studies
were performed for the purpose of establishing how accurately the amplitude
of the EEG samples could be described by a Gaussian PDF, see, e.g., [8–11].
The EEG was investigated under a variety of conditions, and results ranged
from the EEG being considered as a Gaussian process to the EEG being
considered as a highly non-Gaussian process. For example, the EEG was
found to exhibit Gaussian behavior during synchronized activity, such as
during the presence of alpha rhythm, whereas it was found to deviate from
a Gaussian distribution during REM sleep [8]. In another study, the resting
EEG was found to be Gaussian during 66% of the time, while the percentage
dropped to 32% when the patients were asked to perform a mental arithmetic
task [10]. In general, the amplitude distribution became increasingly non-
Gaussian as the measurement interval was increased. In one study it was
found that more than 90% of all 1-s intervals could be considered Gaussian,
whereas less than 50% were Gaussian when the interval length was increased
to 8 s [12]. It should be pointed out that the statistical procedure used
for testing Gaussianity is, in itself, rather difficult to apply since one must
assume certain properties of the samples to be tested, for example, that the
samples constitute a set of statistically independent random variables.

Despite the mixed opinions on the role of Gaussianity in EEG signals, we
will still often consider the PDF to be Gaussian since spectral analysis—one
of the most popular tools in EEG signal analysis—has a natural connection
to this particular distribution. In its most general form, the multivariate
Gaussian PDF of a stochastic process x(n) is completely characterized by
its mean value

mx(n) = E [x(n)] (3.3)

and the correlation function (also called the autocorrelation function)

rx(n1, n2) = E [x(n1)x(n2)] , (3.4)

which reflects the dependence between the two samples x(n1) and x(n2).
It should be noted that the correlation function rx(n1, n2) is a symmetric
function, i.e., rx(n1, n2) = rx(n2, n1). In general, the process x(n) is non-
stationary since the moments defined by (3.3) and (3.4) are time-dependent
functions and therefore can differ from sample to sample.

Using vector and matrix notations, the mean vector and the correlation
matrix can be compactly defined by

mx = E [x] , (3.5)
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and

Rx = E
[
xxT

]
=

⎡⎢⎢⎢⎣
rx(0, 0) rx(0, 1) · · · rx(0, N − 1)
rx(1, 0) rx(1, 1) · · · rx(1, N − 1)

...
...

...
rx(N − 1, 0) rx(N − 1, 1) · · · rx(N − 1, N − 1)

⎤⎥⎥⎥⎦ , (3.6)

respectively. These two quantities characterize the multivariate Gaussian
PDF

p(x) =
1

(2π)
N
2 |Cx|

1
2

exp
[
−1

2
(x − mx)TC−1

x (x − mx)
]

, (3.7)

where the matrix Cx describes the covariance and is related to the correlation
matrix Rx in the following way,

Cx = E
[
(x − mx)(x − mx)T

]
= Rx − mxmT

x . (3.8)

It is immediately obvious from this relation that Cx and Rx are identical
when x(n) is a zero-mean process, i.e., when mx = 0.2

For the Gaussian model above, the essential information on signal prop-
erties is contained in the correlation matrix Rx, and, accordingly, Rx plays
an important role in the analysis of EEG signals. Ultimately, it is our expec-
tation that Rx will convey useful physiological information on, for example,
a particular brain state. Unfortunately, the matrix Rx, given in its most
general form in (3.6), is difficult to reliably estimate from a single realiza-
tion of data because the estimation of each entry rx(n1, n2) is based on only
two samples, i.e., x(n1) and x(n2). Thus, the resulting estimate will have
an unacceptably large variance; the variance can, of course, be reduced if
several realizations are available which can be used for ensemble averaging.
In many situations, however, it is reasonable to assume that the EEG sig-
nal possesses certain “restrictive” properties, for example, by viewing the
signal as a stationary process, as a process with slowly changing correlation
properties, or as the output of a linear, time-invariant system driven by ran-
dom noise. The introduction of such restrictions implies not only that Rx

becomes more structured, and thus easier to estimate, but, perhaps more
importantly, that the information contained in Rx can be given an intuitive
interpretation.

2The matrices Cx and Rx are sometimes referred to as the sample covariance and
sample correlation matrix, respectively. These matrices are of particular interest when
repetitive signals are studied and are further discussed in Chapter 4 on the analysis of
evoked potentials.
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Stationarity. An important restriction of a stochastic process is when its
statistical properties are assumed to be time-invariant; such a process is said
to be stationary. Of particular interest are processes which are wide-sense
stationary, since then we are only required to consider the first two moments
of the process, i.e., those which define the Gaussian PDF in (3.7). A process
x(n) is said to be wide-sense stationary if its mean function mx(n) is equal
to a constant mx for all time instants n,

mx(n) = mx, (3.9)

and its correlation function rx(n1, n2) is a function only of the time lag
k = n1 −n2 between the samples x(n1) and x(n2), i.e., rx(n, n− k) = rx(k).
The lag-dependent correlation function is denoted

rx(k) = E [x(n)x(n − k)] . (3.10)

The corresponding correlation matrix is defined by

Rx =

⎡⎢⎢⎢⎢⎢⎣
rx(0) rx(−1) rx(−2) · · · rx(−N + 1)
rx(1) rx(0) rx(−1) · · · rx(−N + 2)
rx(2) rx(1) rx(0) · · · rx(−N + 3)

...
...

...
. . .

...
rx(N − 1) rx(N − 2) rx(N − 3) · · · rx(0)

⎤⎥⎥⎥⎥⎥⎦ . (3.11)

Apart from being symmetric—recall that rx(k) = rx(−k) for a real-valued
process—the correlation matrix in (3.11) is Toeplitz since all elements in
a given diagonal are identical, and equal to the correlation function at a
certain time lag. It should be pointed out that the Toeplitz property applies
to the correlation matrix of any stationary process; this matrix structure is of
central importance in the development of computationally efficient methods
for spectral estimation. In the following, the term “stationary” is used to
signify that the process is wide-sense stationary.

Stationarity is particularly attractive when considering that the proper-
ties of the stochastic process can be interpreted in spectral terms. This
aspect is valuable since it provides us with a more intuitive characteriza-
tion of the signal than does the correlation function (although correlation
analysis was popular in EEG signal processing at one point in time [13]).
Spectral analysis is intimately related to the Gaussian distribution since the
power spectral density or, more briefly, the power spectrum is defined as the
discrete-time Fourier transform (DTFT) of the correlation function rx(k),

Sx(ejω) =
∞∑

k=−∞
rx(k)e−jωk. (3.12)
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The inverse relation is

rx(k) =
1
2π

∫ π

−π
Sx(ejω)ejωkdω. (3.13)

In EEG analysis, the validity of the stationarity assumption is, of course,
dependent on the type of signal to be analyzed. Normal spontaneous activ-
ity (category 1, page 37) is essentially stationary and is therefore commonly
subjected to power spectral analysis. However, similar to our earlier consid-
erations on Gaussianity and its behavior at increasing interval length, normal
spontaneous activity is reasonably well-modeled by a stationary process only
over relatively short intervals.

Fourier-based, nonparametric techniques for estimating the power spec-
trum Sx(ejω) in (3.12) are described in Section 3.3, and some of the inherent
limitations associated with these techniques are discussed. The extraction
of features characterizing different spectral components is another topic con-
sidered in that section.

Nonstationarity. When considering long time periods, several factors
make it necessary to treat the EEG signal as a nonstationary, stochastic pro-
cess, i.e., a process whose mean, correlation function, and higher-order mo-
ments are time-varying. For example, the degree of wakefulness of the sub-
ject may vary slowly over time, causing the properties of the alpha rhythm
to change slowly. Another contributing factor is due to the opening and
closing of the eyes which cause an abrupt change in rhythmic activity. Yet
another factor is the intermittent occurrence of transient waveforms such as
epileptic spikes or pulse-shaped artifacts.

The above-mentioned three factors serve as good examples of major EEG
nonstationarities. Specific algorithmic approaches have been presented to
process each of these types.

• Slowly time-varying signal properties can be tracked by repeatedly ap-
plying the analysis of a method, originally developed for stationary
signals, to consecutive, overlapping intervals. The short-time Fourier
transform is a well-known technique which performs a “sliding” spec-
tral analysis of the signal [14], see Section 3.6.1. Another approach is to
design a time–frequency method which is inherently capable of charac-
terizing time-varying spectral properties; the Wigner–Ville distribution
is one such method which, together with some of its “relatives”, will
be described in Sections 3.6.2–3.6.4.

Yet another approach is to develop a parametric model of the EEG sig-
nal and to estimate its parameter values recursively using an adaptive
algorithm (Section 3.6.5). In any of these approaches, the output is
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made up of consecutive spectra reflecting slow changes in the rhythmic
behavior.

• Abruptly changing activity, possibly suggesting transitions occurring
between different behavioral states, can be analyzed by first decom-
posing the EEG signal into a series of variable-length, quasistationary
segments [15]. Each individual segment can then be characterized by
means of its power spectrum and related spectral parameters. The
segmentation approach requires an algorithm which can determine the
appropriate interval boundaries; the design details of such boundary
detectors are presented in Section 3.5.

• Transient activity in the form of spikes and sharp waves represents
one type of nonstationarity which calls for event detection [16–28].
The detector output provides the basis for grouping together transient
waveforms with similar shapes and for characterizing their temporal
occurrence pattern. In contrast to the above types of nonstationari-
ties, transient waveforms do not lend themselves to spectral analysis,
but are better described by various waveform parameters, such as am-
plitude and duration. Wavelet analysis is a powerful technique for
extracting such parameters and will be described in the context of
EPs in Section 4.7.

Since transient waveforms are superimposed on the background EEG,
the output of the event detector can instead be used to help exclude
segments clearly unsuitable for spectral analysis.

Non-Gaussian signals. It may be necessary to develop analysis methods
of the EEG which go beyond second-order moment analysis and which take
non-Gaussian properties into account [29]. The first step in the development
of such methods has been to study higher-order moments of the univariate
amplitude distribution of the EEG, i.e., to obtain an estimate of

E
[
(x(n) − mx)k

]
, k = 3, 4, . . . . (3.14)

The third-order moment is proportional to the skewness which describes the
degree of deviation from the symmetry of a Gaussian PDF, whereas the
fourth-order moment is, apart from a constant, proportional to the kurtosis
which describes the peakedness of the PDF around the mean value mx [30].

The method of moments is simple to use when applied to univariate
distributions, but does not produce any information on temporal relation-
ships. The extension of the method to the multivariate case is, in general,
too complicated to be considered from a technical, as well as from a con-
ceptual, point of view. However, one of the most widespread techniques for
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studying non-Gaussian properties of the EEG takes its starting point in the
third-order cumulant κx(k1, k2) which, assuming that x(n) is a zero-mean,
stationary process, reflects the joint variation of three samples separated by
lags defined by k1 and k2,

κx(k1, k2) = E [x(n)x(n − k1)x(n − k2)] . (3.15)

Similar to the Fourier transform, which relates the correlation function rx(k)
to the power spectrum Sx(ejω), the two-dimensional Fourier transform re-
lates κx(k1, k2) to the bispectrum [31]. The bispectrum displays the spectral
power as a function of two frequencies and is therefore useful for detecting
relations between different frequencies. The bispectrum may be valuable
in indicating the degree to which a signal follows a Gaussian distribution;
the bispectrum is zero if the signal is purely Gaussian. Further information
on bispectral analysis and its application to EEG signals can be found in a
number of studies [32–36].

3.1.3 Linear, Stochastic Models

We will now give a brief overview of the most popular signal models in EEG
analysis—the linear stochastic models. This class of mathematical models
is entirely phenomenological in nature since they do not incorporate any
specific anatomical or physiological information. Instead, the models are
designed to account for certain landmark features of the observed signal,
for example, that the signal is composed of different narrowband compo-
nents. The common aim of these models is to derive clinically useful model
parameters, rather than to develop a model that explains the underlying
mechanisms of EEG generation.

The EEG signal is modeled as the output of a linear system driven by
stationary, white noise3 which is usually assumed to be Gaussian, see Fig-
ure 3.1. The parameter values defining the system are estimated by fitting
the linear model to the EEG signal using a suitable error criterion, frequently
taken as the mean-square error criterion. Section 3.4 describes a number of
such parameter estimation methods in further detail. Several important
reasons can be listed for pursuing the model-based approach [37, 38].

• It can produce a power spectrum which is more accurate than that
obtained by Fourier-based analysis, especially when short-duration sig-
nals are being analyzed. Needless to say, high accuracy can only be
achieved as long as the observed signal is in good agreement with those
produced by the model.

3White noise consists of a sequence of zero-mean, uncorrelated random variables char-
acterized by a suitable PDF.
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v(n)

V (z)

σ2
v

� H(z) �
x(n)

X(z) = H(z)V (z)

Sx(z) = H(z)H(z−1)σ2
v

Figure 3.1: Modeling of the EEG by linear filtering of white noise v(n) with the
variance σ2

v . The linear filter H(z), which is characterized by a set of parameters,
spectrally shapes the noise and produces the output signal x(n). The complex
power spectrum of the output signal x(n) is denoted Sx(z).

• The parametric spectral description consists of a compact set of fea-
tures which may be useful for the detection and classification of various
EEG rhythms.

• The development of other, nonspectral algorithms is facilitated. For
example, detection of epileptiform activity and certain types of nonsta-
tionary events can be based on the deviation between a model signal
and the observed signal.

• The estimated parameter values can serve as a basis for designing an
EEG simulator, primarily useful for algorithmic testing and perfor-
mance evaluation.

In addition, it should be pointed out that the popularity of linear models is
partially explained by the existence of computationally attractive methods
for parameter estimation.

The autoregressive, moving average (ARMA) model represents a general
form of the linear, stochastic models, defined by the following difference
equation [39, 40]

x(n) = −a1x(n − 1) − · · · − apx(n − p) + b0v(n) + · · · + bqv(n − q), (3.16)

where the model parameters a1, . . . , ap, b0, . . . , bq are fixed, and the input
v(n) is white noise with the variance given by

E
[
v2(n)

]
= σ2

v . (3.17)

Hence, the output sample x(n) is modeled as a linear combination of the
p past output samples x(n − 1), . . . , x(n − p), the q past input samples
v(n − 1), . . . , v(n − q), and the present input sample v(n).
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Using the z-transform, the ARMA model can be equally well-described
by the rational transfer function H(z),

H(z) =
B(z)
A(z)

=
b0 + b1z

−1 + · · · + bqz
−q

1 + a1z−1 + · · · + apz−p
. (3.18)

Having estimated the model parameters b0, . . . , bp, a1, . . . , aq, and σ2
v from

the observed signal, the complex power spectrum of the ARMA model can
be calculated from

Sx(z) = H(z)H(z−1)σ2
v , (3.19)

or the power spectrum can be calculated by evaluating z on the unit circle,
i.e., z = ejω,

Sx(ejω) = |H(ejω)|2σ2
v , (3.20)

see Figure 3.1. The ARMA power spectrum is then obtained from

Sx(ejω) =
∣∣∣∣b0 + b1e

−jω + · · · + bqe
−jωq

1 + a1e−jω + · · · + ape−jωp

∣∣∣∣2 σ2
v . (3.21)

The main characteristics of the power spectrum Sx(ejω) in (3.21) are deter-
mined by the locations of the roots of the polynomials B(z) and A(z). The
zeros, given by B(z), are associated with spectral valleys, and the poles,
given by A(z), are associated with spectral peaks.

AR modeling. In the autoregressive (AR) model, i.e., for q = 0 and b0 = 1
in (3.16), the number of parameters is restricted so the present sample x(n)
is assumed to be a regression of the p past output samples and the input
noise v(n),

x(n) = −a1x(n − 1) − · · · − apx(n − p) + v(n). (3.22)

This model has come into widespread use in EEG signal processing be-
cause it provides a compact parametric description of many different EEG
rhythms [39, 41–43]. The AR model parameters contain essential spectral in-
formation on a rhythm and can be used to derive information on the spectral
power and dominant frequency of the rhythm (Section 3.4.5). The number
of peaks that can be present in the AR power spectrum is determined by the
model order p; each additional spectral peak requires an increase in order
by two.

Figure 3.2 exemplifies AR modeling by presenting a measured EEG with
a strong alpha rhythm and a simulated signal. The simulated signal is ob-
tained by filtering white noise with an all-pole filter whose parameters have
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(a)

(b)

Figure 3.2: (a) An EEG signal with a prominent alpha rhythm, and (b) a simulated
signal produced by an AR model whose parameters were estimated from the signal
displayed in (a).

first been estimated from the EEG signal. Thus, the AR power spectra of
the two signals in Figure 3.2 are identical.

As we will see in Section 3.4, the estimation of AR parameters is typically
synonymous with the solution of a linear matrix equation. By exploiting
the special structure of the involved correlation matrix, the AR parameter
estimates can be determined in a very efficient way. This property stands in
contrast to estimation procedures associated with the other two commonly
used linear models, the ARMA and the moving average (MA) models, which
require significantly more computations in order to determine the model
parameters.

Time-varying AR modeling. The issue of nonstationarity, which we
touched upon earlier, may be handled within the context of AR modeling
by replacing the fixed model parameters a1, . . . , ap in (3.22) with their time-
varying counterparts, i.e.,

x(n) = −a1(n)x(n − 1) − · · · − ap(n)x(n − p) + v(n). (3.23)

In general, the usefulness of this model extension is limited since the ex-
act temporal behavior of ai(n) is unknown. However, in situations where
slowly changing spectral properties are expected, it is possible to follow such
parameter changes by making use of an adaptive estimation algorithm, see
Section 3.6.5. Another approach is to constrain the temporal evolution of
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the model parameters so that it is characterized by a linear combination of
a set of smooth basis functions [44–46].

Multivariate AR modeling. Another generalization of the linear model
is the multivariate model which opens up the possibility to study the spatial
interaction between different regions of the brain. For the AR model in
(3.22), we have the following multivariate difference equation,

x(n) = −A1x(n − 1) − · · · − Apx(n − p) + v(n), (3.24)

where x(n) is an M -dimensional column vector that contains the samples at
time n of the M channels, and A1, . . . ,Ap are M×M matrices that together
describe temporal as well as spatial correlation properties across the scalp.
The off-diagonal elements in the matrices Ai reflect the degree to which
different electrode sites are correlated on the scalp. The statistical properties
of the M -dimensional input noise vector v(n) are usually assumed to be
zero-mean and with variances σ2

v1
, σ2

v2
, . . . , σ2

vM
which differ from channel to

channel.
The multivariate AR model has been considered in a large number of

EEG studies [47–51]. More recently, multivariate AR parameters have been
used as classification features in a brain–computer interface (Section 2.4.3)
to help a disabled person unable to communicate with physical methods but
with full mental control [52]. The basic idea is to detect EEG patterns which
are specific to different mental tasks so that a “task alphabet” can be defined
with which, for example, a paralyzed person can control the operation of a
wheelchair.

AR modeling with impulse input. As a final example of linear model-
ing, it may be of interest to point out that the input to the linear system H(z)
does not necessarily have to be defined by white noise only, but the white
noise can be mixed with a train of isolated impulses at random occurrence
times. Such an approach has been suggested for the modeling of transient
events, e.g., K complexes and vertex waves, observed in sleep recordings [53];
the output of such a signal model is illustrated in Figure 3.3.

3.1.4 Nonlinear Modeling of the EEG

Although the above linear, filtered-noise models, with either time-invariant
or time-varying parameters, have been successfully used in many EEG ap-
plications, these models are far from adequate in representing all types of
signal patterns, nor do they provide deeper insight into the mechanisms of
EEG generation. As a result, nonlinear simulation models have been devel-
oped in order to better understand the underlying generation process. Such
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Figure 3.3: Simulation of a “sleep EEG” which contains transient events. The
signal is generated by a linear system driven by both white noise, representing the
background activity, and randomly occurring impulses (indicated by bars), account-
ing for the presence of vertex waves and K complexes. (Reprinted from da Rosa et
al. [53] with permission.)

models are based on certain neurophysiological facts and may reflect how
different neuron populations interact with one another as described by a
set of nonlinear differential equations [2]. The usefulness of nonlinear EEG
models for the design of signal processing methods has, however, yet to be
demonstrated.

A nonlinear model of one cortical neuron population was originally pro-
posed in the early 1970s for the study of rhythmic EEG activities and, in
particular, the alpha rhythm [54, 55]. This model was later extended to
account for multiple coupled neuron populations for the purpose of simulat-
ing signals before and during epileptic seizures [56–58]. Another important
extension of the nonlinear model deals with the mechanisms behind the gen-
eration of EPs in the visual cortex [59, 60]. Below, a brief description is
given of the basic model for one neuron population; the interested reader is
referred to the original papers for details on the more advanced models and
their mathematical analysis.

In simplified terms, the neuron population may be modeled as two in-
teracting subpopulations of neurons—the main (pyramidal) cells and the
interneurons—which are connected to each other through positive or neg-
ative feedback, see Figure 3.4 (an interneuron is any neuron that is not a
sensory or motor neuron). The first subpopulation is composed of pyramidal
cells which receive excitatory and inhibitory feedback from the interneurons
(cf. page 29) as well as excitatory input from neighboring and distant pop-
ulations. The second subpopulation is composed of interneurons and only
receives excitatory input from the pyramidal cells.

The first subpopulation is modeled by two different blocks: a linear,
time-invariant system (dynamic) and a nonlinear transformation (static).
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Figure 3.4: A model of a cortical neuron population consisting of main cells and
interneurons. The linear systems he(t) and hi(t) describe the excitatory and in-
hibitory postsynaptic potentials, respectively, of the main cells, while the interneu-
rons are described by he(t) alone. The parameters C1, C2, C3, and C4 account for
interactions between the two subpopulations.

By means of a filtering operation, the first block converts the average pulse
density of action potentials arriving at the subpopulation into an average
postsynaptic potential which is either excitatory or inhibitory. The word
“average” here denotes the overall behavior of the neurons within the spe-
cific subpopulation. The first block is composed of two linear, time-invariant
systems, defined by the impulse responses he(t) and hi(t), which model the
shapes of realistic excitatory and inhibitory postsynaptic potentials, respec-
tively. From experimental studies, it has been found that a realistic choice
of impulse responses is given by the following two expressions:4

he(t) = Aate−atu(t), (3.25)

and

hi(t) = Bbte−btu(t), (3.26)

4A continuous-time model representation is adopted here since this is the one commonly
employed in the literature.
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Figure 3.5: (a) The impulse response he(t) that describes the shape of an excita-
tory postsynaptic potential (A = 20, a = 0.1). The impulse response hi(t) has the
same shape as he(t), but the amplitude and timescale differ. (b) The sigmoid func-
tion f(v) that transforms the average postsynaptic potential into a pulse density of
action potentials (r = 0.75, e0 = 2.5, v0 = 5).

where u(t) denotes the unit step function. An example of the impulse re-
sponse is presented in Figure 3.5(a). The parameters A and B determine
the maximum amplitude of the postsynaptic potentials, and a and b re-
flect various properties associated with the dendrites, such as their average
time delay.5 The cell somas of the first subpopulation are modeled by a
summation unit where excitatory and inhibitory postsynaptic potentials are
summed with positive and negative signs.

The second block transforms the average postsynaptic potential of a
population into a pulse density of action potentials fired by the neurons.
The voltage-to-pulse transformation is accomplished by a “threshold func-
tion” f(v) which essentially has two different levels: the output firing rate is
equal to zero for low input potentials, whereas it is equal to a fixed, nonzero
value once a certain threshold value is exceeded (cf. the on/off property of
neuronal communication mentioned on page 29). A function which exhibits
such a characteristic is the sigmoid function, defined by

f(v) =
2e0

1 + er(v0−v)
. (3.27)

With this particular function, a postsynaptic potential of v = v0 corresponds
to a firing rate of e0. The parameter r defines the steepness of the function

5A model including a parameter that represents a number of different physiological
characteristics is referred to as a lumped-parameter model.
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between the two levels, see Figure 3.5(b). The maximum firing rate is equal
to 2e0.

The influence from neighboring or distant neuron populations is modeled
by the excitatory input pulse density p(t) which is fed to the first subpop-
ulation. This input may be defined by a stochastic process such as white
noise and characterized by a certain type of PDF, for example, Gaussian or
uniform. Furthermore, the first subpopulation of neurons receives excitatory
and inhibitory feedback from the second subpopulation.

The second subpopulation is modeled in the same way as the first sub-
population but only involves one linear, time-invariant system he(t) since
the input to interneurons is primarily excitatory.

Interactions between the two subpopulations are described by four con-
nectivity parameters C1, C2, C3, and C4, which account for the average num-
ber of synaptic contacts established between the subpopulations. Depending
on the values of these four parameters, signals can be generated which resem-
ble alpha rhythms and certain waveforms observed during epileptic states;
the latter type of waveforms is obtained with values of C1, C2, C3, and C4

that cause the model to operate close to instability [55].
To generate EEG signals, the output of the model is normally taken after

summation of the excitatory and inhibitory postsynaptic potentials. The
electrical field generated at this point is considered to be the main source of
activity observed on the scalp.

Figure 3.6 presents a number of examples obtained with a model based
on multiple coupled neuron populations of the type presented in Figure 3.4
(details on the simulation can be found in [57]). The simulated signals in
Figures 3.6(a)–(d) are paired with real signals in Figures 3.6(e)–(h), which
were recorded before and during an epileptic seizure. In this particular
case, the signals were recorded with intracerebral electrodes which reflect
the spontaneous electrical activity much closer to the neurons than surface
EEG electrodes. It is evident from Figure 3.6 that nonstationary signals
can be generated with the model which exhibit good overall agreement with
recorded signals.

3.2 Artifacts in the EEG

One of the crucial aspects in biomedical signal processing is to acquire knowl-
edge about noise and artifacts which are present in the signal so that their
influence can be minimized. Artifact processing therefore constitutes one
of the cornerstones in computer-based analysis of biomedical signals and is
equally important whether the signals originate from the brain, the heart, or
from any other electrical source in the human body. In EEG recordings, a
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Figure 3.6: (a)–(d) Simulated EEG signals produced by a model which involves
multiple, coupled neuron population models such as the one described in the block
diagram in Figure 3.4. The resulting signals display a progression from (a) “normal”
to (d) a rhythmic discharge of spikes as observed during an epileptic seizure. (e)–
(h) Real signals recorded by intracerebral electrodes (e), (f) before and (g), (h) dur-
ing an epileptic seizure. (Reprinted from Wendling et al. [57] with permission.)
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wide variety of artifacts can occur, some of which can be easily identified by
a simple algorithm, while others may closely mimic the brain activity and
are, as a result, exceedingly difficult to distinguish, even with the eye of a
well-trained electroencephalographer.

One useful categorization of artifacts is based on their origin, i.e., those
of physiological or technical origin. This categorization is also applicable to
other bioelectrical signals; a description of artifacts that may occur in the
ECG signal can be found on page 487. While the influence of artifacts of
technical origin can be reduced to a large degree by paying extra attention
to the attachment of electrodes to the body surface, it is impossible to avoid
the influence of artifacts of physiological origin. Accordingly, a majority
of algorithms developed for EEG artifact processing are intended for the
reduction of physiological artifacts.

Below, we first review the most common types of artifacts and then de-
scribe the signal processing aspects involved with various methods of artifact
reduction.

3.2.1 Artifact Characteristics

The first three types of noncerebral artifacts which we will describe are of
physiological origin (eye movement and blinks, cardiac activity, and muscle
activity), while the fourth type (electrodes and equipment) is of technical
origin. It should be emphasized that multiple types of artifacts can, of course,
be present in the EEG at the same time. Moreover, certain types of artifacts
are more frequently encountered in certain recording situations, for example,
during sleep. The interested reader is referred to [61–63] where additional
details can be found on various EEG artifacts; these references also contain
descriptions of other, less common artifacts related to respiration, tongue
movements, tremor, and skin potentials.

Eye movement and blinks. Eye movement produces electrical activity—
the electrooculogram (EOG)—which is strong enough to be clearly visible in
the EEG. The EOG reflects the potential difference between the cornea and
the retina which changes during eye movement. The measured voltage is
almost proportional to the angle of gaze [64]. The strength of the interfering
EOG signal depends primarily on the proximity of the electrode to the eye
and the direction in which the eye is moving, i.e., whether a horizontal or
vertical eye movement takes place. The waveforms produced by repeated eye
movement are exemplified in Figure 3.7(a). Although the resulting artifact
can be easily discerned in this figure due to its repetitive character, the EOG
artifact can sometimes be confused with slow EEG activity, e.g., theta and
delta activities. Eye movement is not only present during the waking state,
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(a) (b)

Figure 3.7: Artifacts in the EEG caused by (a) eye movement and (b) repetitive,
voluntary blinking. The signal at the top of each column shows the horizontal and
vertical EOG, respectively. (Reprinted from Barlow [63] with permission.)

but may also interfere when rapid movements occur during sleep (REM
sleep).

Another common artifact is caused by eyelid movement (“blinks”) which
also influences the corneal–retinal potential difference. The blinking artifact
usually produces a more abruptly changing waveform than eye movement,
and, accordingly, the blinking artifact contains more high-frequency compo-
nents. This particular signal characteristic is exemplified in Figure 3.7(b),
where the waveform produced by repetitive blinking resembles a square wave.
From Figure 3.7(b) it can be observed that the amplitude of blinking artifacts
in the frontal electrodes is substantially larger than that of the background
EEG.

From an artifact processing viewpoint, it is highly practical if a “pure”
EOG signal can be acquired by means of two reference electrodes positioned
near the eye, cf. the upper traces in Figure 3.7 which do not contain any
EEG activity. The availability of such reference signals is valuable since
these are correlated with the EOG in the EEG and, accordingly, are useful
for artifact cancellation purposes (see below).

Muscle activity. Another common artifact is caused by electrical activity
of contracting muscles, measured on the body surface by the EMG [65].
This type of artifact is primarily encountered when the patient is awake and
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Figure 3.8: A 5-s, multichannel EEG recording contaminated with intermittent
episodes of electromyographic artifacts. (Reprinted from Wong [66] with permis-
sion.)

occurs during swallowing, grimacing, frowning, chewing, talking, sucking,
and hiccupping [63]. The overall shape of the EMG signal depends on the
degree of muscle contraction: a weak contraction produces a train of low-
amplitude spikes, while an increase in contraction strength decreases the
interspike distance so that the EMG more closely exhibits the properties of
a continuously varying signal (“colored noise”), see Figure 3.8. The muscle
artifact is considerably reduced during relaxation and sleep.

In terms of artifact processing, the spectral properties of the EMG are
much less favorable than those associated with eye movement, because they
considerably overlap with beta activity in the 15–30 Hz range. Unfortu-
nately, this disadvantage is further exacerbated by the fact that it is impos-
sible to acquire a reference signal containing only EMG activity which would
be useful for artifact cancellation.

Cardiac activity. The electrical activity of the heart, as reflected by the
ECG, can interfere with the EEG. Although the amplitude of the cardiac
activity is usually low on the scalp in comparison to the EEG amplitude (1–2
and 20–100 µV, respectively), it can hamper the EEG considerably at certain
electrode positions and for certain body shapes, e.g., short, stout subjects
with short, thick necks [62]. The repetitive, regularly occurring waveform
pattern which characterizes the normal heartbeats fortunately helps to re-
veal the presence of this artifact. However, the spike-shaped ECG waveforms
can sometimes be mistaken for epileptiform activity when the ECG is barely
visible in the EEG. This situation may be further complicated during the
presence of certain cardiac arrhythmias, which can exhibit considerable vari-
ability in the interbeat interval.
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Similar to the eye-related artifacts mentioned above, the ECG can be
acquired independently by one or several electrodes for use in canceling the
ECG activity that may be superimposed on the EEG.

Electrodes and equipment. Movement of electrodes causes changes in
the DC contact potential at the electrode–skin interface which produce an
artifact commonly referred to as the “electrode-pop” artifact. This type of
technical artifact is not unique to the EEG signal, but may occur in any
bioelectric signal measured on the body surface [67, 68]. The electrode-
pop artifact is usually manifested as an abrupt change in the baseline level,
followed by a slow, gradual return to the original baseline level. On occasion,
the electrode-pop artifact can be misinterpreted as spikes or sharp waves.

The electrode wire which connects the electrode to the acquisition equip-
ment is another possible source of artifact. Insufficient shielding of the elec-
trode wire makes it susceptible to electromagnetic fields caused by currents
flowing in nearby powerlines or electrical devices. As a result, 50/60 Hz
powerline interference is picked up by the electrodes and contaminates the
EEG signal.

Finally, equipment-related artifacts include those produced by internal
amplifier noise and amplitude clipping caused by an analog-to-digital con-
verter with too narrow a dynamic range.

3.2.2 Artifact Processing

The scope of artifact processing ranges from artifact rejection, in which a
simple marker is created to identify the artifact, to complete cancellation of
the artifact from the EEG signal. Artifact rejection is the crudest approach
since its goal is to simply reject segments of poor quality from further anal-
ysis [69–71]. Although rejection is today the main alternative in handling
segments which contain excessive EMG interference, it is, as a rule, desirable
to retain the data as much as possible; this is especially important when only
short segments of data are available for analysis.

The demands on artifact cancellation depend on the context in which
the algorithm is to be used. Artifact cancellation in EEGs for visual reading
and interpretation requires that extreme measures be taken to assure that no
clinical information is lost and that no new artifacts are introduced as a by-
product of the cancellation procedure. These demands can be relaxed when
artifact cancellation constitutes an intermediate processing step, e.g., for the
purpose of designing an epileptic spike detector. In any case, it is essential
that the development of algorithms for artifact cancellation is accompanied
by visual assessment to assure that the performance is acceptable.
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In this section, artifact processing is synonymous with a preprocessing
stage which conditions the EEG signal for subsequent analysis. It should be
noted, however, that artifact processing can also be part of one of the later
stages in the analysis. For example, a method for spectral estimation of the
EEG can be made more robust to the presence of impulsive noise. Another
example is the method of weighted averaging which is employed for noise
reduction of evoked potentials (see Chapter 4).

The common approach to artifact processing is to first estimate the noise
v(n), either from a signal measured on the scalp or from available reference
signals, and then to subtract the estimate from the observed signal x(n).
This approach assumes implicitly that x(n) can be divided into a sum of
cerebral activity s(n) and noise v(n),

x(n) = s(n) + v(n). (3.28)

Once such an assumption has been acknowledged, it obviously makes sense
to estimate s(n) by subtracting a noise estimate v̂(n) from x(n). This type of
model is associated not only with subtraction methods, but it also underlies
noise reduction achieved through linear filtering of x(n).

The great popularity of the additive model in (3.28) is explained by its
simplicity and the wide range of methods developed for optimal estimation
of s(n). Nevertheless, it should be pointed out that this type of model
is not necessarily the most appropriate, but another type of model may be
preferred which assumes that the signal and noise interact in a multiplicative
way,

x(n) = s(n)v(n). (3.29)

Although techniques for separating multiplicative noise from s(n) were de-
veloped in the 1960s (“homomorphic signal processing”, [72, 73]), these tech-
niques have only received marginal attention in the area of EEG signal pro-
cessing [74, 75].

3.2.3 Artifact Reduction Using Linear Filtering

Linear, time-invariant filtering has been considered for the reduction of EMG
artifacts and 50/60 Hz powerline interference. This technique mitigates the
influence of such artifacts by spectrally shaping the observed signal. Unfor-
tunately, its applicability is limited because the spectra of the EEG and the
artifacts overlap each other considerably.

Lowpass filtering is useful in reducing the influence of EMG activity
when the analysis of slower EEG rhythms is of particular interest [76, 77].
However, lowpass filtering must be used with caution since waveforms of
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cerebral origin with sharp edges become distorted. Also, bursts of EMG
spikes can be smoothed to such a degree that they mimic alpha or beta
rhythms [63]. Various nonlinear filter structures have been suggested to
overcome these performance limitations, but such filters have not come into
widespread use [77–79]. While the reduction of EMG artifacts largely re-
mains an unsolved problem in EEG signal processing [80], it is nevertheless
important to detect episodes of EMG activity and to account for such infor-
mation when interpreting the EEG [81].

Removal of 50/60 Hz powerline interference can be done with a linear,
time-invariant notch filter. A poorly designed notch filter can, however,
introduce spurious activity, resembling the beta rhythm, due to the ringing
which is associated with narrowband filtering, and can influence the shape of
epileptiform spikes. These problems are particularly pronounced for filters
with nonlinear phase characteristics, since different frequency components
will be delayed differently. Different notch filtering techniques for cancel-
lation of powerline interference in ECG signals are considered in detail in
Section 7.2.

3.2.4 Artifact Cancellation Using Linearly Combined
Reference Signals

Since artifacts due to eye movement and blinks are very common, most
efforts have been directed toward developing cancellation methods for those
artifacts. We will describe the most popular approach in which an estimate of
the EOG artifact is first computed, based on one or several reference signals
(“EOG-only” signals), and then subtracted from the EEG signal measured
on the scalp [82–87]. The electrodes used to record the EOG are positioned
around the eye so that horizontal and vertical movements are well-reflected,
see Figure 3.9.

We assume that the EEG signal is composed of cerebral activity s(n)
which is additively disturbed by the EOG artifact v0(n),

x(n) = s(n) + v0(n). (3.30)

Another assumption in this approach is that the EOG reference signals
v1(n), . . . , vM (n) are linearly transferred into the EEG signal. Hence, it
seems reasonable to produce an artifact-cancelled signal ŝ(n) by subtracting
a linear combination of the reference signals from the EEG, using the weights
w1, . . . , wM ,

ŝ(n) = x(n) −
M∑
i=1

wivi(n) = s(n) +
(
v0(n) − wTv(n)

)
, (3.31)
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Fp1Fp2

I1I2

F8 F7

Figure 3.9: Electrode positions for the recording of EOG signals which reflect
horizontal (F7 − F8) and vertical (Fp2 − I2 or Fp1 − I1) eye movement. Note that
two other electrodes, I1 and I2, are used in addition to the electrodes of the 10/20
system shown in Figure 2.7.

where the vectors are defined as

v(n) =

⎡⎢⎢⎢⎣
v1(n)
v2(n)

...
vM (n)

⎤⎥⎥⎥⎦ (3.32)

and

w =

⎡⎢⎢⎢⎣
w1

w2
...

wM

⎤⎥⎥⎥⎦ . (3.33)

The estimate of the EOG artifact is thus obtained by v̂0(n) = wTv(n).
In the following, it is assumed that all signals are random in nature, with
zero-mean, and that s(n) is uncorrelated with the EOG signals v(n) at each
time n,

E[s(n)vi(n)] = 0, i = 0, . . . , M. (3.34)

The method is summarized by the block diagram in Figure 3.10.
Before the cancellation method can be used, it is necessary to determine

the values of the different weights. One way is to minimize the mean-square
error (MSE) Ew between x(n) and the linearly combined reference signals
with respect to w [85],

Ew = E
[(

x(n) − wTv(n)
)2

]
. (3.35)
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EEG

EOG
channels

x(n) = s(n) + v0(n)

v1(n)

v2(n)

vM (n)

w1

w2

wM

v̂0(n)

ŝ(n)

Figure 3.10: Cancellation of eye movement artifacts based on a linear combination
of EOG signals, using a fixed set of weights w1, . . . , wM . The EOG signal estimate
is denoted v̂0(n).

Since s(n) is assumed to be uncorrelated with the EOG artifacts vi(n), the
MSE Ew can alternatively be expressed as

Ew = E
[
s2(n)

]
+ E

[(
v0(n) − wTv(n)

)2
]
, (3.36)

which makes it clear that the weights w should be chosen such that the error
between v0(n) and wTv(n) is minimized. The term E

[
s2(n)

]
is independent

of w and does not affect the outcome of the minimization.
Differentiation of Ew in (3.35) with respect to the coefficient vector w

yields

∇wEw = ∇w

(
E

[
x2(n)

]
+ wTRv(n)w − 2wT rxv(n)

)
= 2Rv(n)w − 2rxv(n). (3.37)

The correlation matrix Rv(n) of the reference signals describes the spatial
correlation between the different channels at each time n and is defined by

Rv(n) = E
[
v(n)vT (n)

]
=

⎡⎢⎢⎢⎣
rv1v1(n) rv1v2(n) · · · rv1vM (n)
rv2v1(n) rv2v2(n) · · · rv2vM (n)

...
...

...
rvMv1(n) rvMv2(n) · · · rvMvM (n)

⎤⎥⎥⎥⎦ , (3.38)
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where

rvivj (n) = E [vi(n)vj(n)] . (3.39)

The cross-correlation vector rxv(n) between x(n) and v(n) is defined by

rxv(n) = E [x(n)v(n)] =

⎡⎢⎢⎢⎣
rxv1(n)
rxv2(n)

...
rxvM (n)

⎤⎥⎥⎥⎦ , (3.40)

where

rxvi(n) = E [x(n)vi(n)] . (3.41)

Although the correlation quantities Rv(n) and rxv(n) change over time,
we will for now assume that these quantities remain fixed over the observa-
tion interval of interest,

Rv(n) ≡ Rv, (3.42)
rxv(n) ≡ rxv, (3.43)

for n = 0, 1, . . . , N − 1. It should be noted that Rv is not, in general, a
Toeplitz matrix since, for example, the signal power rvivi typically varies
from channel to channel.

Setting the gradient ∇wEw in (3.37) equal to zero, we obtain the following
system of linear equations,

Rvwo = rxv, (3.44)

whose solution yields the optimal weight vector wo. The corresponding
minimum MSE is easily found by insertion of (3.44) in (3.35),

Emin = E
[
x2(n)

]
− (wo)TRvwo. (3.45)

In practice, the spatial correlations rvivj need to be estimated from the
measured EOG signals prior to computation of w. Since Rv is considered
to be fixed in time, it is estimated by simply replacing E [vi(n)vj(n)] by the
corresponding time average,

r̂vivj =
1
N

N−1∑
n=0

vi(n)vj(n). (3.46)

The cross-correlation vector rxv can be estimated in the same way. The
procedure to find the values of the optimal weight vector wo is then repeated
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Figure 3.11: An example of ocular artifact cancellation in EEG signals. Elec-
trooculographic signals measured for (a) the right and (b) the left eye; EEG signals
from two different electrodes (c), (d) before and (e), (f) after artifact cancellation
has taken place. Cancellation was based on a linear combination of the EOG signals
displayed in (a) and (b); for further details, see [88–90]. (Reprinted from Ifeachor
et al. [90] with permission.)

for each of the available EEG channels in order to produce channel-specific
weights. The performance of the EOG cancellation method is illustrated in
Figure 3.11, where artifact cancellation is based on two reference signals,
i.e., M = 2.

Certain issues related to the use of the above cancellation method need
to be addressed. Determination of w is usually accomplished by asking the
subject to perform horizontal and vertical eye movements as well as blinking
at the onset of the investigation. The weight vector estimate that results
from such a learning phase is then applied in subsequent signal analysis.

Another design issue is the number of reference signals, M , required for
adequate EOG cancellation. In the literature, this number ranges from only
one [84] up to several signals. However, in order to account for horizontal
as well as vertical eye movements, at least four reference signals should be
included [85].

A major concern associated with this approach is ensuring that only
EOG activity is cancelled while cerebral activity remains unaltered. Al-
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though minimization of the MSE criterion in (3.35) aims to ensure this,
spurious activity may occasionally be introduced into the artifact-cancelled
EEG through the EOG. For example, the EOG electrodes may pick up large-
amplitude, slow activity originating from a frontal lobe focus near the EOG
electrodes [63].

We conclude this subsection by mentioning that cancellation of ECG
artifacts in the EEG can be performed in a way similar to the above EOG
technique [85, 91–94]. Electrocardiographic cancellation, in contrast to EOG
cancellation, offers the additional possibility of exploiting the fact that heart-
beats are recurrent. Since the amplitude and morphology of normal heart-
beats are relatively stable over time, a representative, noise-reduced beat can
be obtained from time-synchronized ensemble averaging of several successive
beats; Section 4.3.1 provides further details on how to compute averaged
signals. The resulting averaged beats, preferably obtained from several elec-
trode locations, are linearly combined into one signal used for subtraction
in (3.31).

3.2.5 Adaptive Artifact Cancellation Using Linearly
Combined Reference Signals

Electrooculographic cancellation based on a fixed set of linear weights is less
appropriate when time-varying changes occur in the way the EOG inter-
feres with the EEG. To handle such situations, it is desirable to modify the
previously described algorithm for artifact cancellation so that it can track
slow changes in EOG influence [95, 96]. Below, we will briefly present an
adaptive algorithm—the least mean-square (LMS) algorithm—which makes
use of linearly combined reference signals for artifact cancellation. Although
this algorithm is the most commonly used, it is only one of many algorithms
developed for the purpose of adaptive filtering and noise cancellation; an
in-depth presentation of various adaptive algorithms and their performance
in terms of stability and convergence can be found in [97, 98].

The estimate of the EOG artifact v0(n) in (3.31), as produced by wTv(n),
will now be modified so that the weight vector w becomes a function of time,

wTv(n) → wT (n)v(n).

Consequently, the mean-square error criterion becomes

Ew(n) = E
[(

x(n) − wT (n)v(n)
)2

]
(3.47)

and should be minimized with respect to w(n). We found earlier that the
error Ew in (3.35) has a unique minimum since it is a quadratic function of w.
Figure 3.12 exemplifies the bowl-like shape of Ew(n) when it is plotted as a
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Figure 3.12: The quadratic error surface Ew(n) plotted as a function of the weights
w1 and w2. The optimal weights wo

1 and wo
2 correspond to the minimum error Emin.

function of two different weights w1 and w2. For time-varying characteristics
of v(n), however, the optimal solution of Ew(n) changes with time, and,
accordingly, the bottom of the bowl must be searched for at every new
sample n.

A common approach to the minimization of Ew(n) is to search for the
optimum values using the method of steepest descent—a classical, iterative
procedure for finding extrema of nonlinear functions. The underlying idea
of this method is to update the current weight estimate w(n) by an additive
correction term which brings the next estimate w(n+1) closer to the desired
solution. The correction of w(n) is achieved by taking a step in the direction
of the steepest descent of the quadratic error surface. This direction is given
by the negative error gradient vector, i.e., the vector of partial derivatives of
Ew(n) with respect to the weights wi(n), see (A.46) in Appendix A. Thus,
w(n) is updated by the following equation,

w(n + 1) = w(n) − 1
2
µ∇wEw(n), (3.48)

where the step size µ is a positive-valued scalar which determines the speed
of adaptation. Large values of µ yield faster convergence to the optimal
solution, but at the expense of a noisier estimate of w(n). Too large a
value of µ will cause the algorithm to become unstable since the algorithm
constitutes a feedback system. On the other hand, when µ is small, the
algorithm will approach the optimum solution more slowly, but will provide
a less noisy estimate of w(n).
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Calculating the gradient vector of the error Ew(n) with respect to w, we
obtain

∇wE(n) = −2E[e(n)v(n)], (3.49)

where the error e(n) is

e(n) = x(n) − wT (n)v(n). (3.50)

The weight update equation becomes

w(n + 1) = w(n) + µE[e(n)v(n)]. (3.51)

The expected value E[e(n)v(n)] is generally unknown and must therefore
be replaced by an estimate before the algorithm can be used in practice.
In the LMS algorithm, the expected value is replaced by simply taking its
instantaneous estimate at time n,

E[e(n)v(n)] ≈ e(n)v(n), (3.52)

and thus

w(n + 1) = w(n) + µe(n)v(n). (3.53)

Typically, the LMS algorithm is initialized by setting all weights equal to
zero, i.e.,

w(0) = 0, (3.54)

where 0 denotes a column vector whose entries are zero. The block dia-
gram in Figure 3.13 illustrates the LMS-based artifact cancellation technique
which makes use of a linear combination of reference signals v1(n), . . . , vM (n).

While the derivation of the LMS algorithm is straightforward, the related
performance analysis in terms of convergence properties and filter stability is
relatively complicated and is therefore not considered here. Instead, we will
restrict ourselves to summarizing some important results which are valid for
stationary signals, see [98]. For the steady-state situation, the LMS algorithm
converges in the mean to the optimal solution previously given in (3.44),

lim
n→∞

E [w(n)] = wo = R−1
v rxv, (3.55)

provided that

0 < µ <
2

λmax
, (3.56)
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Figure 3.13: Cancellation of eye movement artifacts based on a linear combination
of EOG signals, using an adaptively updated set of weights w1(n), . . . , wM (n).

where λmax denotes the largest eigenvalue of Rv. A tighter upper bound
in (3.56) can be obtained by making use of the fact that tr(Rv) ≥ λmax

so µ < 2/tr(Rv), where the trace of Rv equals the total power of the M
different reference signals (cf. (A.39) in Appendix A). This bound is used
more often since the signal power is much more easily estimated than is Rv.
Another quantity of interest is the time τ taken for the LMS algorithm to
approach the MSE solution. An approximate expression is given by

τ ≈ 1
2µλmin

, (3.57)

where τ is expressed as the number of samples and λmin denotes the smallest
eigenvalue of Rv.

Although the weight vector w(n) produced by the LMS algorithm will
converge in the mean for steady-state conditions, each weight will fluctuate
around its optimum value because the correction is based on the noisy gra-
dient vector given in (3.52). Therefore, we can express the weight vector
w(n) in terms of the optimal solution wo and a time-varying weight error
vector ∆w(n),

w(n) = wo + ∆w(n). (3.58)
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The fluctuations reflected by ∆w(n) cause the minimum MSE Emin in (3.45)
to increase by an amount commonly referred to as the excess mean-square
error,

E(n) = Emin + Eex(n). (3.59)

It is, in general, difficult to derive an exact expression for Eex(n); however,
by assuming that the input signal x(n) and the weights w(n) are statistically
independent, it can be shown that once the adaptation has been completed,
i.e., for n = ∞, Eex(n) is given by [98]

Eex(∞) = Emin

M∑
i=1

µλi

2 − µλi

1 −
M∑
i=1

µλi

2 − µλi

, (3.60)

where λ1, . . . , λM are the eigenvalues of Rv.

3.2.6 Artifact Cancellation Using Filtered Reference Signals

An important generalization of the above cancellation method is motivated
by the interesting observation that EOG potentials exhibit frequency-depen-
dent behavior when transferred through the intervening tissues to the EEG
electrode locations on the scalp [99–101]. It has also been found that eye
movement and blinks exhibit different spectral properties when transferred
to the EEG. Eye movement is transferred at lower frequencies, extending
up to 6 or 7 Hz, while blinks are generally transferred at higher frequencies
ranging up to the alpha band (8–13 Hz) [100].

Improved artifact cancellation can therefore be expected when each of
the weights wi in (3.31) is replaced by a transfer function—here represented
by the impulse response hi(n) of a linear, time-invariant system—which
models the frequency-dependent transmission of the EOG activity into the
EEG [102], see Figure 3.14. Thus, the improved estimate of the EOG activity
is based on both spatial and temporal information.

In terms of modeling, it is again assumed that the observed signal is com-
posed of cerebral activity s(n) which is additively disturbed by stationary
noise v0(n). An estimate of v0(n) can be derived from the EOG reference
signals v1(n), . . . , vM (n) since all are assumed to be correlated with v0(n)
and, accordingly, contribute to improving the estimate of v0(n). However,
since each of the reference signals has been modified spectrally when prop-
agating from the EOG electrode to the EEG electrode, the estimate v̂0(n)
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is obtained by filtering each vi(n) with hi(n), followed by summation of the
M filter outputs,

v̂0(n) =
L−1∑
l=0

h1(l)v1(n − l) + · · · +
L−1∑
l=0

hM (l)vM (n − l). (3.61)

Each filter is defined by a finite impulse response (FIR) with length L (the
special case when the filter lengths depend on electrode site is not con-
sidered). In the following, it is convenient to use the more concise vector
notation in order to express the “filtered reference signal” estimator,

v̂0(n) =
M∑
i=1

hT
i ṽi(n), (3.62)

where ṽi(n) indicates that the samples contained in vi(n) have been reversed
in time,

vi(n) =

⎡⎢⎢⎢⎣
vi(n − L + 1)

...
vi(n − 1)

vi(n)

⎤⎥⎥⎥⎦ , ṽi(n) =

⎡⎢⎢⎢⎣
vi(n)

vi(n − 1)
...

vi(n − L + 1)

⎤⎥⎥⎥⎦ . (3.63)

The impulse response hi is defined as

hi =

⎡⎢⎢⎢⎣
hi(0)
hi(1)

...
hi(L − 1)

⎤⎥⎥⎥⎦ . (3.64)

It should be pointed out that the time-indexed vector notations in (3.63) and
(3.32) are identical but with different meanings: the former vector contains
several samples of one channel, whereas the latter contains the samples of
several channels at one particular instant in time. It should be obvious from
the context which one of the two notations is intended.

We will again consider the MSE criterion which was introduced in (3.35)
to find the optimal FIR filters hi. The MSE is now defined by

Eh = E

⎡⎣(
x(n) −

M∑
i=1

hT
i ṽi(n)

)2
⎤⎦ . (3.65)

The minimization of Eh is, however, more complicated than in the case of
linearly combined reference signals in (3.35). In order to proceed we assume
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ŝ(n)

Figure 3.14: Cancellation of eye movement artifacts using an estimate based on
linear FIR filtering of M different EOG channels; the impulse response of each filter
is denoted hi.

that the EOG reference signals are modeled as stationary processes with
known second-order characteristics (or which at least can be estimated).
The cross-correlation between two reference signals is defined by

rvivj (k, n) = E [vi(n)vj(n − k)] , i, j = 1, . . . , M, (3.66)

which in the general case is a function of both lag k and time n. The cross-
correlation between the EOG-contaminated signal x(n) and the reference
signal vi(n) is defined by

rxvi(k, n) = E [x(n)vi(n − k)] , i = 1, . . . , M. (3.67)

Similar to the previous method, which made use of linearly combined refer-
ence signals, we assume that the correlation information remains fixed over
time in all channels,

rvivj (k, n) ≡ rvivj (k), (3.68)
rxvi(k;n) ≡ rxvi(k). (3.69)

The EEG and the M reference signals are, somewhat idealized, assumed to
be uncorrelated with each other,

E [s(n)vi(n)] = 0, i = 1, . . . , M. (3.70)
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The optimal filter impulse responses are derived by differentiation of the
error Eh, i.e.,

∇hj
Eh = 0, j = 1, . . . , M, (3.71)

which results in

E

[
ṽj(n)

(
x(n) −

M∑
i=1

hT
i ṽi(n)

)]
= 0, j = 1, . . . , M. (3.72)

Making use of the fact that

M∑
i=1

hT
i ṽi(n) =

M∑
i=1

ṽT
i (n)hi,

and evaluating the expected value in (3.72), the following block matrix equa-
tion results:⎡⎢⎢⎢⎣

Rv1v1 Rv1v2 · · · Rv1vM

Rv2v1 Rv2v2 · · · Rv2vM

...
...

...
RvMv1 RvMv2 · · · RvMvM

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

h1

h2
...

hM

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
rxv1

rxv2

...
rxvM

⎤⎥⎥⎥⎦ , (3.73)

where

Rvivj = E
[
ṽiṽj

T
]

=

⎡⎢⎢⎢⎣
rvivj (0) rvivj (1) · · · rvivj (L − 1)
rvivj (1) rvivj (0) · · · rvivj (L − 2)

...
...

. . .
...

rvivj (L − 1) rvivj (L − 2) · · · rvivj (0)

⎤⎥⎥⎥⎦
(3.74)

and

rxvi =

⎡⎢⎢⎢⎣
rxv1(0)
rxv1(1)

...
rxv1(L − 1)

⎤⎥⎥⎥⎦ . (3.75)

Since the reference signals vi(n) are assumed to be stationary processes,
then Rvivj = Rvjvi . The matrix equation in (3.73), defining the impulse
responses of the cancellation filters, is well-known from the area of noise
cancellation based on Wiener filtering [103].

A potential limitation of the MSE criterion in (3.65) is that it does not
accommodate any prior information that may be available on the properties
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of the impulse responses hi. For example, it can for various reasons be
important to assure that hi is reasonably close to an a priori known impulse
response hi representative of a certain group of subjects [102]. A modified
MSE can be introduced to account for such information, defined by

E ′
h = Eh + ν

M∑
i=1

(hi − hi)T (hi − hi). (3.76)

In this definition, the second term “biases” the solution of (3.65) by also
considering the squared error between hi and hi in the minimization process;
the parameter ν determines how much overall weight should be assigned to
the prior knowledge. The minimization of E ′

h with respect to hi results in a
matrix equation given by⎛⎜⎝

⎡⎢⎣ Rv1v1 · · · Rv1vM

...
...

RvMv1 · · · RvMvM

⎤⎥⎦ − 2νI

⎞⎟⎠
⎡⎢⎣ h1

...
hM

⎤⎥⎦ =

⎡⎢⎣ rxv1 − 2νh1
...

rxvM − 2νhM

⎤⎥⎦ , (3.77)

where the dimension of the identity matrix I matches that of the block
correlation matrix on the left-hand side in (3.77).

Finally, it should be mentioned that an adaptive version of the filtered ref-
erence signal method has been developed for on-line EOG cancellation [102].
Such an algorithm is able to track slow changes in the properties of the
eye-to-electrode transfer function. The a priori impulse response hi was
computed from a calibration stage carried out just before the actual EEG
recording and during which the subject was instructed to make predefined
eye movements.

3.3 Nonparametric Spectral Analysis

Spectral analysis is a powerful technique for characterization of a wide range
of biomedical signals. This technique was introduced at an early stage to pro-
vide a more detailed characterization of EEG background activity than that
which could be achieved by simple analysis techniques such as those relying
on one-dimensional histograms of the samples. Considering the oscillatory
behavior of many EEG rhythms, signal decomposition in terms of sine and
cosine functions was found useful as well as feasible from a computational
point of view. Spectral analysis based on the Fourier transform essentially
correlates the signal with sines and cosines of various frequencies and pro-
duces a set of coefficients that defines the power spectrum. The power of a
particular frequency band is readily obtained from the spectrum and can,
among many other things, be used to determine whether an alpha rhythm
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is present or not. Fourier-based spectral analysis is commonly referred to as
nonparametric spectral analysis since no parametric modeling assumptions
regarding the signal are incorporated [104].

It was pointed out in Section 3.1.2 that the power spectrum Sx(ejω)
is a natural quantity for characterizing a stationary, Gaussian signal since
Sx(ejω) is defined as the Fourier transform of rx(k). The power spectrum
can also be a useful measure for stationary, non-Gaussian signals, although
it no longer provides complete characterization. Statistical procedures have
been suggested to test whether a signal is stationary or not [12]; however,
such procedures are rarely used in practice. Instead, spectral analysis is,
in general, considered applicable to signals recorded during normal, sponta-
neous waking activity at rest (i.e., part of the first category, “EEG activity
without major temporal changes”, listed on page 37), having relatively short
durations of about 10 s, and which are free of artifacts [105]. Further details
on the EEG stationarity issue can be found in [12, 106–109].

From a historical perspective, it may be interesting to mention that
Fourier-based spectral analysis of the EEG was investigated long before the
advent of digital computers and the revolutionary Fast Fourier Transform
(FFT), which was developed in the 1960s. Already in the early 1930s, the
coefficients of the Fourier series were calculated manually for different EEG
recordings [110, 111]. An alternative approach to the decomposition of the
EEG into different frequency components was explored by designing a bank
of analog bandpass filters—at that time implemented by analog electronics.
The filter bank quantified rhythmic activities by using bandpass filters with
suitably selected center and cut-off frequencies [112]. The bandpass filter-
ing technique and Fourier-based spectral analysis are, however, intimately
related to each other since the latter technique can be interpreted as a bank
of narrowband filters where the output of each filter provides a measure of
the power of each frequency [103].

3.3.1 Fourier-based Power Spectrum Analysis

In this section, the key points of nonparametric power spectrum estimation
based on the discrete-time Fourier transform are summarized. We recall
from Section 3.1 that the power spectrum of the stationary signal x(n) is
defined by

Sx(ejω) =
∞∑

k=−∞
rx(k)e−jωk,

where rx(k) denotes the correlation function that characterizes the samples
x(0), . . . , x(N − 1). Before Sx(ejω) can be calculated, rx(k) has to be esti-
mated from x(n) since it is unknown in practice. Assuming that the observed
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signal is correlation ergodic (see Appendix A on page 645), the estimation
is commonly accomplished by use of the following time average estimator,

r̂x(k) =
1
N

N−1−k∑
n=0

x(n + k)x(n), k = 0, . . . , N − 1, (3.78)

where negative lags are obtained from the symmetry property, i.e., r̂x(k) =
r̂x(−k). Combining the power spectrum definition with the correlation func-
tion estimate in (3.78), an estimate of the power spectrum can be obtained,

Ŝx(ejω) =
N−1∑

k=−N+1

r̂x(k)e−jωk, (3.79)

also known as the periodogram.
While the signal x(n) only appears implicitly in (3.79), it is straightfor-

ward to derive an expression which explicitly shows how Ŝx(ejω) is related
to x(n). This is done by first noting that r̂x(k) in (3.78) can be expressed
as a convolution of x(n) and its time-reversed counterpart,

r̂x(k) =
1
N

x(k) ∗ x(−k), (3.80)

where x(n) is assumed to be zero outside the interval [0, N − 1], and r̂x(k)
is symmetric, i.e., r̂x(k) = r̂x(−k). Taking the Fourier transform of the
convolution, we have

Ŝx(ejω) =
1
N

|X(ejω)|2 =
1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e−jωn

∣∣∣∣∣
2

. (3.81)

Thus, the power spectrum is estimated by simply computing the squared
magnitude of the N -point DTFT of x(n) and efficiently implemented by the
FFT algorithm.

In order to better understand the properties of the periodogram, it is
instructive to study estimator performance in terms of its mean and vari-
ance. It can be shown that the mean of the periodogram is equal to (see
Problem 3.3),

E
[
Ŝx(ejω)

]
=

N−1∑
k=−N+1

E [r̂x(k)] e−jωk

=
N−1∑

k=−N+1

rx(k)wB(k)e−jωk, (3.82)
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where

wB(k) =

⎧⎨⎩ 1 − |k|
N

, −N ≤ k ≤ N ;

0, |k| > N

(3.83)

is a triangular window, also known as the Bartlett window. Alternatively,
the product of rx(k) and wB(k) in (3.82) can be expressed in the frequency
domain as a convolution of their respective Fourier transforms,

E
[
Ŝx(ejω)

]
=

1
2π

∫ π

−π
Sx(ejθ)WB(ej(ω−θ))dθ

=
1
2π

Sx(ejω) ∗ WB(ejω), (3.84)

where WB(ejω) is given by

WB(ejω) =
1
N

sin2(ωN/2)
sin2(ω/2)

. (3.85)

Figure 3.15 displays the magnitude function 10 · log(WB(ejω)) for N = 16
and 64 and illustrates the principal features of WB(ejω), namely, the presence
of a main lobe at ω = 0 and several sidelobes. It is obvious from (3.84)
that the periodogram is a biased estimator since the mean E[Ŝx(ejω)] is
not equal to Sx(ejω) but rather to a version modified by WB(ejω) through
convolution. The main lobe acts as a smearer of the estimated spectrum and
sets a limit on the degree to which the details of the spectrum can be resolved:
frequencies closer than f = 1/N cannot be separated in the periodogram.
The sidelobes are associated with an undesirable effect since these lobes leak
power from the main frequency band into bands with less power or even
without power. The effects related to the main lobe and the sidelobes are
commonly referred to as smearing and leakage, respectively. Although the
periodogram is asymptotically unbiased because WB(ejω) approaches a Dirac
impulse as N approaches infinity, this property is of less interest in practice
when the number of samples is limited for various reasons.

The leakage effect is particularly pronounced for narrowband signals and
causes measurements on spectral power at a fixed frequency to be less re-
liable. Within the context of EEG signal analysis, this effect implies that
a highly synchronized brain rhythm is likely to be better described by the
power contained in a frequency band rather than by measuring the power at
its spectral peak.

The variance of the periodogram is another interesting quantity which
unfortunately is not as easily derived as its mean value in (3.84). However,
under the assumption that the observed signal x(n) is modeled by a Gaussian
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Figure 3.15: The Fourier transform of the Bartlett window wB(k) for N = 16
and 64. The width of the main lobe and the magnitude of the sidelobes both
decrease as the total number of samples N increases.
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stochastic process, it can be shown that the variance of Ŝx(ejω) is given
by [113],

V
[
Ŝx(ejω)

]
≈ S2

x(ejω)

[
1 +

(
sinωN

N sinω

)2
]

, (3.86)

which at large values of N is proportional to the square of Sx(ejω). The
significance of this result is that the variance of the periodogram does not
approach zero as the number of samples increases, i.e., the periodogram
does not produce a consistent estimate of the power spectrum. This disap-
pointing result has, in combination with the effects of leakage and smearing,
spurred the development of several approaches to improving the performance
of the periodogram. The most important modifications of the periodogram
revolve around the use of windowing and averaging [114] techniques. These
two techniques aim at reducing the leakage effect and the variance of the
periodogram and can be used separately as well as in combination.

Windowing is an operation which is implicitly performed when comput-
ing Ŝx(ejω) in (3.81): a rectangular window w(n) is in a sense applied to
extract the segment x(0), . . . , x(N − 1) from a signal that may extend over
a longer interval. It may be advantageous to replace the rectangular win-
dow with another which has smaller sidelobes. Several windows have been
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designed with the common purpose of reducing the amplitude of the side-
lobes; Hanning, Hamming, and Blackman windows are perhaps the most
well-known [103]. Windowing achieves the reduction of sidelobes at the ex-
pense of a wider main lobe. Thus, windowing provides a trade-off between
leakage and spectral resolution of the power spectrum estimate. The variance
of the periodogram remains unaffected by windowing. In the time domain,
windowing reduces the influence of abrupt discontinuities at the interval end
points since most windows deemphasize end point samples.

Variance reduction relies on first partitioning x(n) into K nonoverlapping
segments of length L (N = KL),

xi(n) = x(n + iL), n = 0, . . . , L − 1; i = 0, . . . , K − 1, (3.87)

and then averaging the periodograms Ŝxi(e
jω) resulting from each of the

segments xi(n). Assuming that the segments are uncorrelated, averaging
produces a consistent power spectrum estimate because the variance tends
toward zero as K approaches infinity,

V
[
Ŝx(ejω)

]
=

1
K

V
[
Ŝxi(e

jω)
]

≈ 1
K

S2
x(ejω)

[
1 +

(
sinωL

L sinω

)2
]

. (3.88)

Averaging of periodograms reduces the signal length from N to L samples,
and, as a result, the spectral resolution is reduced by a factor K. Again,
we have to deal with a trade-off between different properties of the power
spectrum estimate, this time between variance and spectral resolution.

We conclude the section on nonparametric spectrum estimation by pre-
senting an estimator which combines the above-mentioned techniques of win-
dowing and averaging,

Ŝx(ejω) =
1

KLU

K−1∑
i=0

∣∣∣∣∣
L−1∑
n=0

xi(n)w(n)e−jωn

∣∣∣∣∣
2

. (3.89)

Here, U is a normalization factor related to the characteristics of the win-
dow w(n),

U =
1
L

L−1∑
n=0

w2(n). (3.90)

A variation of the method expressed in (3.89) is to let consecutive signal
segments overlap to a certain degree, often a 50% overlap. This variation is
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Figure 3.16: Spectral analysis of an EEG with alpha rhythm. (a) The power
spectrum obtained without segmentation (N = 1024) and (b) with segmentation
using N = 256 and a segment overlap of 128 samples. The spectral peak related to
the alpha rhythm is more easily discerned in (b). The narrow peaks above 10 Hz
in (a) more or less disappear when segmentation is introduced. The analyzed EEG
signal is the one displayed in Figure 3.2(a).

known as Welch’s method and has the property of reducing the variance of
Ŝx(ejω) in (3.89) [103]. The performance of Welch’s method can be further
improved by instead using the multiple window method in which special
attention is paid to the design of windows in order to obtain a lower vari-
ance [115–117].

Figure 3.16 illustrates the Fourier-based spectral analysis of an EEG sig-
nal containing a strong alpha rhythm. Using Bartlett windowing, the power
spectrum is computed either without segment averaging or with averaging of
overlapping segments. Although the power spectrum in Figure 3.16(a) has
a larger variance than that in Figure 3.16(b), its better spectral resolution
is sometimes preferable when the aim is to resolve closely spaced peaks; this
is not possible with the power spectrum obtained from averaging. Obvi-
ously, none of the two power spectral estimates can be singled out as being
superior.

3.3.2 Spectral Parameters

Nonparametric spectrum analysis is the backbone of many systems for EEG
analysis. The resulting power spectrum is, however, not readily interpreted,
but must often be condensed into a compact set of representative parameters
more suitable for quantitative investigations, such as classification and sta-



98 Chapter 3. EEG Signal Processing

tistical postprocessing. The feature extraction process becomes even more
important when considering the large amount of data contained in a mul-
tichannel EEG recording. This process produces a set of parameters which
describe prominent features of the spectrum, such as peak amplitudes and
their respective frequencies. The most frequently used spectral parameters
are presented below.

Spectral parameters have been used in many different EEG applications,
including the development of normative data for healthy subjects; analysis
of data from patients suffering from sleep disorders, cerebral ischemia, renal
failure; and for real-time monitoring purposes during surgery, see, e.g., [118,
119].

The first step in the development of a spectral parameter is to assess
the properties of the estimated power spectrum using a suitable graphical
presentation format. Although this step may seem self-evident, it is nev-
ertheless important to stress the fact that visual assessment is extremely
valuable in judging how representative a parameter is in describing a certain
spectral property. Such assessment is also useful in understanding the way
in which artifacts distort the power spectrum.

A basic decision is whether the spectral power should be presented and
analyzed on a linear or logarithmic scale. In general, this decision is guided
by the scope of the analysis: a logarithmic scale may be preferable when
unsynchronized EEG rhythms with low amplitude are of primary interest.
Figure 3.17 illustrates the use of both linear and logarithmic scales for graph-
ical presentation; in fact, the spectral parameters presented below make use
of both scales.

Power in frequency bands. The absolute power can be computed in
frequency bands whose limits are determined either by clinical convention
(i.e., the frequency bands of the alpha, beta, delta, and theta rhythms,
described on page 34) or by a statistical technique that indicates the most
important bands.

Alternatively, it may be more appropriate to compute relative power,
defined as the ratio of the power in a single frequency band to either the
total power rx(0) or the power contained in certain bands, see Figure 3.17(a).
Power ratios of different frequency bands may be designed to reflect the
relation between slow and fast EEG activity in order to characterize the
degree of EEG abnormality [120]. In addition, relative power measurements
may be preferable since absolute power is influenced by nonphysiological
factors such as skull thickness.

A disadvantage of power measurements in fixed frequency bands is that
these measurements become less representative when a peak is located at a
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Figure 3.17: The power spectrum of an EEG and related parameters: (a) relative
power (percentages) in four frequency bands reflecting delta, theta, and alpha ac-
tivity (split into two bands); (b) the Hjorth parameters mobility H1 and complexity
H2; and (c) the spectral slope estimated from the logarithmic power spectrum. The
EEG was recorded from a child with a brainstem tumor and is dominated by slow
rhythmic activity as reflected by the value of H1 of 3.1 Hz. (Adapted from Matthis
et al. [121]).

boundary. This problem can be alleviated by instead identifying the peaks
of the spectrum.

Peak frequency. Power spectral feature extraction can be accomplished
by identifying the most prominent peaks. Each spectral peak is then char-
acterized by certain parameters such as its frequency, amplitude, and width.
Peak identification typically involves ad hoc criteria for judging if a maxi-
mum in the spectrum is sufficiently distinguished from its surroundings to be
considered as a peak rather than belonging to the background signal [122].
Since the variance of the periodogram is large, it may be necessary to find a
more robust estimate of the peak frequency than simply using the location of
the maximum; the mean or median frequency of each individual peak com-
ponent may be used as such estimates. The mean frequency of a spectrum
is considered below in connection with the so-called Hjorth descriptors and
time–frequency analysis.

Spectral slope. Based on experimental observations, it has been sug-
gested that the power spectrum of spontaneous EEG activity is roughly
composed of two components,

Sx(ejω) = Sr
x(ejω)Sa

x(ejω), (3.91)
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where Sr
x(ejω) represents rhythmic activity and Sa

x(ejω) represents unstruc-
tured, irregular-looking activity [123]. Since the irregular EEG component
has often been found to decay exponentially as the frequency increases, the
logarithm of the power spectrum Sx(ejω) can be approximated by the fol-
lowing simple model [3],

log Sx(ejω) ≈ log Sr
x(ejω) + b|ω|, (3.92)

where b is a negative-valued parameter. One approach to estimate the spec-
tral slope parameter b is to find the particular value of b that minimizes the
least-square error J (b) between log Sx(ejω) and the slope b|ω|,

J (b) =
∫ π

−π
(log Sx(ejω) − b|ω|)2 dω. (3.93)

The calculation of this integral is in practice based on the discrete Fourier
transform in which the frequency variable ω has been quantized; integration
is replaced by summation over the discrete frequencies.

The resulting parameter estimate b̂ has been suggested as a clinical pa-
rameter for quantifying irregular EEG activity and the decay rate of high-
frequency components, see Figure 3.17(c) [121]. The spectral slope has also
been suggested as a means of preconditioning Sx(ejω) [123], where an esti-
mate of the rhythmic power spectrum is obtained after subtraction of the
slope from Sx(ejω),

Ŝr
x(ejω) = 10(log Sx(ejω)−b̂|ω|). (3.94)

Hjorth descriptors. Another approach to spectral feature extraction is
to calculate the moments of the power spectrum Sx(ejω), originally suggested
by Hjorth [124, 125]. The nth-order spectral moment ωn is defined by the
following integral,

ωn =
∫ π

−π
ωnSx(ejω)dω. (3.95)

The odd-numbered moments are all identical to zero because the power
spectrum is a symmetric function, i.e., Sx(ejω) = Sx(e−jω). The Hjorth
descriptors are closely related to the even-numbered spectral moments. The
first descriptor is defined by the total signal power,

H0 = ω0 = 2πrx(0), (3.96)

also referred to as activity. The second descriptor, called mobility, reflects
the dominant frequency of x(n) and is defined by the square root of the
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normalized second-order moment,

H1 =
√

ω2

ω0
. (3.97)

Finally, the fourth-order moment ω4 is used to define a measure related to
the bandwidth of x(n) which is termed complexity,

H2 =
√

ω4

ω2
− ω2

ω0
. (3.98)

The descriptors H1 and H2 produce estimates of the dominant frequency
and half the bandwidth, respectively, as long as the rhythm is characterized
by a unimodal power spectrum, i.e., with only one dominant peak. For
multimodal spectra the dominant frequency can, of course, still be computed,
but it no longer has an intuitive relationship to spectral landmarks.

An attractive property of the above three descriptors is that they can
be efficiently computed in the time domain without having to compute the
Fourier transform Sx(ejω) and the moment integral in (3.95) [124, 126]. This
property is rather easily shown by assuming that the sampled signal x(n)
results from sampling of a continuous-time signal xc(t) using the sampling
period Ts,

x(n) = xc(nTs), n = 0, 1, . . . , N − 1. (3.99)

The spectral zero-, second-, and fourth-order moments can then be expressed
in terms of the mean power of xc(t), and its first and second derivatives,
respectively,

ω0 = 2πE
[
x2

c(t)
]
, (3.100)

ω2 = 2πT 2
s E

[(
dxc(t)

dt

)2
]

, (3.101)

ω4 = 2πT 4
s E

[(
d2xc(t)

dt2

)2
]

. (3.102)

For a sampled signal, the first and second derivatives can be approxi-
mated by the following two difference equations, respectively,

x(1)(n) = x(n) − x(n − 1),

x(2)(n) = x(n + 1) − 2x(n) + x(n − 1),

where

dixc(t)
dti

≈ x(i)(n)
T i

s

. (3.103)
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We have tacitly assumed that the two samples x(−1) and x(N) outside
the observation interval [0, N − 1] are available. Accordingly, estimates of
the spectral moments can be determined using the following time domain
average,

ω̂i ≈
2π

N

N−1∑
n=0

(
x(i/2)(n)

)2
, i = 0, 2, 4. (3.104)

Since the Hjorth descriptors were originally developed for on-line EEG
analysis, these were implemented as averages successively updated in time—
“running averages”. For example, the activity parameter H0 becomes a
function of time, i.e., H0(n), by using the samples in a sliding window of
length L,

H0(n) = ω0(n) =
2π

L

n∑
k=n−L+1

x2(k). (3.105)

It is well-known that the computation of the derivatives in (3.101) and
(3.102) is sensitive to noise, and, therefore, it is advisable to limit the band-
width of the signal prior to this computation. Despite this disadvantage, the
Hjorth descriptors have been found to be useful in various EEG applications,
for example, in sleep staging. The descriptors serve as an example of the un-
derstanding that a clinically useful technique is not necessarily synonymous
with a technique requiring very complex calculations.

A one-sided spectral moment definition which includes an integration
interval that ranges from zero to half the sampling rate has also been con-
sidered for the purpose of deriving spectral parameters [127], see also Sec-
tion 5.3. The calculation of the one-sided moment was found to be more
robust than that associated with (3.101) and (3.102); however, both types
of moment definitions provide similar information.

Spectral purity index. The spectral purity index (SPI) is a heuristic
parameter pursued by Barlow in the study of certain EEG signals [3, 128].
The parameter is designed to reflect signal bandwidth and is related to the
Hjorth complexity descriptor in (3.98). It is defined as the ratio between
the squared, running second-order moment and the running total power and
fourth-order moment,

ΓSPI(n) =
ω2

2(n)
ω0(n)ω4(n)

. (3.106)

The term “purity” refers to how well the analyzed signal is described by a
single frequency: the SPI is equal to unity for a noise-free, sinusoidal signal
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Figure 3.18: An EEG showing an alpha rhythm. The signal is characterized
by three different trends obtained as running averages of the activity H0(n), the
mobility H1(n), and the spectral purity index ΓSPI(n). (Reprinted from Goncharova
and Barlow [128] with permission.)

and decreases to zero as the bandwidth of the signal increases. The SPI is
illustrated by the example in Figure 3.18.

The noise susceptibility aspect of the three Hjorth descriptors is equally
valid for the SPI and is related to the fact that both approaches are based
on signal derivatives. The SPI is actually more susceptible to noise since its
definition involves the ratio between the first and the second derivatives.

3.4 Model-based Spectral Analysis

Linear stochastic modeling has frequently been considered in EEG signal
analysis, especially in obtaining a parametric description of the spectral
properties. As pointed out in Section 3.1, autoregressive modeling has, by
far, received the most attention of the linear models, and, therefore, we
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v(n) � Hp(z) =
1

Ap(z)
�x(n)

(a)

x(n) � Ap(z) �ep(n)
(b)

Figure 3.19: (a) Autoregressive modeling and (b) the related linear prediction
error filter.

will limit our presentation to a number of methods of estimating the AR
parameters a1, . . . , ap in

x(n) = −a1x(n − 1) − · · · − apx(n − p) + v(n) (3.107)

and the variance σ2
v of the input noise v(n).6 In the AR model, the output

signal is generated by feeding the noise to a filter of order p with the transfer
function

Hp(z) =
1

Ap(z)
=

1
1 + a1z−1 + · · · + apz−p

, (3.108)

see Figure 3.19(a). Apart from zeros located at z = 0, H(z) is completely
defined by its poles, and, consequently, the AR model is also referred to as
an all-pole model.

Autoregressive modeling is closely related to the linear prediction prob-
lem in which the current sample x(n) is predicted from the p previous samples
x(n − 1), . . . , x(n − p) using an FIR filter structure of the predictor. This
relation becomes plausible when noting that the AR model in (3.107) implies
a technique with which x(n) can be predicted from a linear combination of
the p preceding samples,

x̂p(n) = −a1x(n − 1) − · · · − apx(n − p). (3.109)

The input noise v(n) of the AR model can be omitted from the FIR predictor
since the noise is assumed to be stationary and white, and, accordingly, it
does not contribute to improving the prediction of x(n). The prediction

6The literature on linear modeling and spectral analysis is immense, and the interested
reader is referred to the excellent textbooks by Therrien [129] and Kay [130] for an in-depth
description of AR, as well as ARMA and MA modeling.
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error ep(n) is defined as

ep(n) = x(n) − x̂p(n)

= x(n) +
p∑

k=1

akx(n − k), (3.110)

which, after insertion of the AR modeling equation in (3.107), becomes

ep(n) = −
p∑

k=1

akx(n − k) + v(n) +
p∑

k=1

akx(n − k) = v(n) (3.111)

and thus establishes the close relationship between AR modeling and linear
prediction.

The prediction error ep(n) in (3.110) can be viewed as the output of
a linear, time-invariant FIR filter which is completely characterized by its
transfer function

Ap(z) = 1 + a1z
−1 + · · · + apz

−p, (3.112)

where the parameter a0 is equal to one. The filter Ap(z) is commonly referred
to as a prediction error filter . When minimizing the prediction error variance

σ2
e = E

[
e2
p(n)

]
, (3.113)

estimates of the model parameters a1, . . . , ap can be determined.
Based on the observation that the transfer function of the AR model

equals the inverse of the transfer function of prediction error filter, see Fig-
ure 3.19, the idea is to first solve the linear prediction problem and then
to substitute the resulting parameter estimates into the AR model. In the
same way, the variance of the input noise σ2

v is estimated as the variance of
the prediction errors:

σ2
v = σ2

e . (3.114)

It is essential to bear in mind that the AR parameter estimates correspond
to the parameters of the prediction error filter only as long as the orders
of the AR model and the predictor are identical (or, possibly, when the
predictor order is higher). Based on the resulting parameter estimates, the
AR power spectrum Sx(ejω) can be computed by evaluating Ap(z) in (3.112)
for z = ejω, giving

Sx(ejω) =
σ2

v

|Ap(ejω)|2
=

σ2
v∣∣∣∣∣1 +

p∑
k=1

ake
−jωk

∣∣∣∣∣
2 . (3.115)
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We will now address the question of how to find estimates of the model
parameters. Among the many methods that have been presented for this
purpose, we will consider the following three in more detail.7

• The autocorrelation/covariance methods result from straightforward
minimization of the prediction error variance in (3.113) (Section 3.4.1).
These two methods will later be modified to handle signals with slowly
time-varying spectral properties by making use of the adaptive LMS
algorithm (Section 3.6.5).

• The modified covariance method extends the autocorrelation/covari-
ance methods by considering both forward and backward prediction
errors in the error criterion (Section 3.4.2).

• Burg’s method is based on the same criterion as the modified covariance
method but assumes that the FIR predictor has been replaced by an
FIR lattice structure (Section 3.4.3). Burg’s method can be extended
to the slowly time-varying case, resulting in the gradient adaptive lat-
tice algorithm (Section 3.6.5).

The choice of various parameters, such as model order and sampling rate, is
discussed in Section 3.4.4, and the problem of extracting features from an
AR power spectrum is treated in Section 3.4.5.

3.4.1 The Autocorrelation/Covariance Methods

We will now consider the minimization of the error variance E
[
e2
p(n)

]
in

(3.113). This is an operation which can be performed by straightforward
differentiation of E

[
e2
p(n)

]
with respect to ak, thereby resulting in a system

of linear equations with p unknown variables. Instead of working out the
details of such an equation system, we will start our derivation by introducing
certain useful vector notations. From (3.110) we know that the prediction
error is given by

ep(n) =
p∑

k=0

akx(n − k)

= aT
p x̃p(n), (3.116)

7Autoregressive modeling is here treated within a statistical framework. It is interesting
to note, however, that a deterministic approach to AR parameter estimation based on
minimization of the least-squares error criterion

ε2 =
∑

n

e2
p(n)

leads to a method identical to that resulting from the statistical criterion in (3.113) [129].
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where the observed signal is contained in the time-reversed vector

x̃p(n) =

⎡⎢⎢⎢⎣
x(n)

x(n − 1)
...

x(n − p)

⎤⎥⎥⎥⎦ , (3.117)

and the parameters of the prediction error filter in the vector

ap =

⎡⎢⎢⎢⎣
1
a1
...

ap

⎤⎥⎥⎥⎦ . (3.118)

Using the above notations, the error variance can be expressed as

σ2
e = E

[
e2
p(n)

]
= E

[
aT

p x̃p(n)x̃T
p (n)ap

]
= aT

p R̃xap, (3.119)

where R̃x denotes the reversal of the correlation matrix for x(n), defined
above in (3.11). Before minimizing σ2

e , it is necessary to introduce a con-
straint which assures that the first element of ap in (3.118) is identical to
one,

aT
p i = 1, (3.120)

where

i =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ . (3.121)

The use of Lagrange multipliers is very powerful in optimization problems
including one or several linear constraints (see Appendix A); in our problem
the following Lagrangian L is to be minimized with respect to ap,

L =
1
2
aT

p R̃xap + λ(1 − aT
p i), (3.122)

where λ is the Lagrange multiplier (the factor 1
2 is included for convenience

and does not affect the end result of the minimization). The gradient of L
is given by

∇apL = R̃xap − λi = 0, (3.123)



108 Chapter 3. EEG Signal Processing

which, after multiplication by aT
p , yields

aT
p R̃xap − λ = 0, (3.124)

or, using (3.119),

λ = aT
p R̃xap = σ2

e . (3.125)

By combining (3.123) and (3.125), we obtain a matrix equation whose solu-
tion yields the desired parameter values,

R̃xap = σ2
e i. (3.126)

This particular type of matrix equation is commonly referred to as the nor-
mal equations of linear prediction. For a stationary stochastic process, the
correlation matrix is a symmetric, Toeplitz matrix so R̃x = Rx.8

In order to indicate more clearly how the model parameters a1, . . . , ap

and σ2
e are computed, it may be instructive to rewrite (3.126) as a two-step

computation. The first step produces estimates of a1, . . . , ap from⎡⎢⎢⎢⎣
a1

a2
...

ap

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
rx(0) rx(1) · · · rx(p − 1)
rx(1) rx(0) · · · rx(p − 2)

...
...

. . .
...

rx(p − 1) rx(p − 2) · · · rx(0)

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

−rx(1)
−rx(2)

...
−rx(p)

⎤⎥⎥⎥⎦ , (3.127)

followed by the second step, which yields the variance σ2
e ,

σ2
e = rx(0) +

p∑
i=1

airx(i). (3.128)

The solution of the normal equations in (3.126) turns out to be compu-
tationally rather demanding. The Levinson–Durbin recursion is a fast and
efficient method which solves these equations by exploiting the symmetry
and Toeplitz properties of the correlation matrix Rx. This recursion avoids
not only the matrix inversion in (3.127), but, equally important, it provides
a new, fresh perspective on linear prediction by introducing the lattice filter
in a natural way; the lattice structure forms part of the AR parameter esti-
mation presented in Section 3.4.3. The Levinson–Durbin recursion is defined

8These normal equations are equivalent to the well-known Yule–Walker equations of
an AR model (not described here) and establish the identity between the linear prediction
problem and AR modeling.
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by [129, p. 422ff.]

γj =
rT
j−1ãj−1

σ2
ej−1

, (3.129)

aj =
[
aj−1

0

]
− γj

[
0

ãj−1

]
, (3.130)

σ2
ej

= (1 − γ2
j )σ2

ej−1
, (3.131)

for j = 1, . . . , p, where

rj =

⎡⎢⎢⎢⎣
rx(1)
rx(2)

...
rx(j + 1)

⎤⎥⎥⎥⎦ . (3.132)

The recursion is initialized by

a0 = 1, (3.133)
r0 = rx(1), (3.134)

σ2
e0

= rx(0). (3.135)

The index j has been attached to the error variance σ2
e to indicate model

order. It should be noted that the recursion yields the desired parameter
vector ap as well as all parameter vectors aj of lower order (j < p). This
“order-recursive” property, being highly attractive in many situations, has
no parallel in the computationally much more demanding direct solution of
the normal equations in (3.126).

The correlation matrix R̃x has, so far, been considered to be known
a priori; however, in practice we have to estimate R̃x from the observed
signal. The problem of estimating rx(k) has already been touched upon for
the purpose of nonparametric spectral analysis, cf. the estimator in (3.78).
However, instead of first estimating rx(k) and then constructing R̃x, the
estimation may be based on a data matrix Xp.

In the literature, the covariance method9 is synonymous with that of a
data matrix defined by

Xp =

⎡⎢⎢⎢⎢⎢⎣
x(p) x(p − 1) · · · x(0)

x(p + 1) x(p) · · · x(1)
...

...
...

x(N − 2) x(N − 3) · · · x(N − p − 2)
x(N − 1) x(N − 2) · · · x(N − p − 1)

⎤⎥⎥⎥⎥⎥⎦ (3.136)

9The name “covariance method” is actually a misnomer since there is no relationship to
the statistical term; however, the name has today become well-established in the literature.
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which is used to estimate the reversed correlation matrix,

ˆ̃Rx =
1

N − p
X̃T

p X̃p, (3.137)

where

X̃p =

⎡⎢⎢⎢⎢⎢⎣
x(N − p − 1) · · · x(N − 2) x(N − 1)
x(N − p − 2) · · · x(N − 3) x(N − 2)

...
...

...
x(1) · · · x(p) x(p + 1)
x(0) · · · x(p − 1) x(p)

⎤⎥⎥⎥⎥⎥⎦ . (3.138)

Although the correlation matrix estimate in (3.137) is not Toeplitz, it is
nonetheless frequently used since only measured data is included and no
zero-padding is required to take into account nonexistent samples [129]. Note
that the Levinson–Durbin recursion does not apply to this correlation matrix
estimate.

The autocorrelation method is defined by using another definition of the
data matrix Xp where the beginning and end of the signal are padded with
zeros,

Xp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0) 0 · · · 0
x(1) x(0) · · · 0

...
...

...
x(p) x(p − 1) · · · x(0)

x(p + 1) x(p) · · · x(1)
...

...
...

x(N − 1) x(N − 2) · · · x(N − p − 1)
0 x(N − 1) · · · x(N − p − 2)
...

...
...

0 0 · · · x(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.139)

3.4.2 The Modified Covariance Method

Solving the linear prediction problem is the key to finding the AR model
parameter estimates. While it is natural to formulate this problem in terms
of minimizing the forward prediction errors, improved parameter estimates
can actually be obtained by also taking the backward prediction errors into
account. In backward prediction, the aim is to “predict” x(n − p) from the
p following samples x(n − p + 1), . . . , x(n), again using an FIR predictor
structure. The data set used for producing backward prediction errors is
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identical to that used for producing forward prediction errors. Below, the AR
parameter estimation is based on a criterion which combines both forward
and backward prediction error variances,

σ2
e = E

[
|e+

p (n)|2
]
+ E

[
|e−p (n)|2

]
. (3.140)

The forward prediction errors, earlier defined in (3.116), are now denoted

e+
p (n) ≡ ep(n) (3.141)

in order to distinguish these errors from the backward prediction errors which
are defined as

e−p (n) = x(n − p) − x̂(n − p). (3.142)

It should be observed that this definition denotes the error at n−p with the
index n. The backward prediction x̂(n−p) results from a linear combination
of the p most recent observations,

x̂(n − p) = −b1x(n − p + 1) − · · · − bpx(n). (3.143)

The introduction of another set of predictor parameters b1, . . . , bp may
initially appear troublesome since it is not obvious how these are related to
a1, . . . , ap. Before dealing with the error criterion in (3.140), we therefore
briefly consider the “isolated” backward prediction problem based on the
criterion

σ2
e− = E

[
|e−p (n)|2

]
, (3.144)

which helps us in establishing a relationship between the parameters of the
forward and backward predictors. Repeating the minimization procedure of
the preceding subsection on forward prediction, the following normal equa-
tions result,

Rxbp = σ2
e−i. (3.145)

Since R̃x = Rx, a comparison of (3.145) with the normal equations of the
forward prediction problem in (3.126) implies that

bp = ap, (3.146)
σ2

e− = σ2
e . (3.147)

The result that the parameters of the forward and backward predictors are
identical is not entirely surprising since the analyzed signal is assumed to be
a stationary process.
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Using the results in (3.146), the backward prediction errors can be ob-
tained from

e−p (n) =
p∑

k=0

bkx(n − p + k)

= aT
p xp(n), (3.148)

which allows us to rewrite (3.140) as

σ2
e = E

[
aT

p x̃p(n)x̃T
p (n)ap

]
+ E

[
aT

p xp(n)xT
p (n)ap

]
= aT

p (R̃x + Rx)ap. (3.149)

The minimization of (3.149), which again is based on a Lagrangian,

L = aT
p (R̃x + Rx)ap + λ

(
1 − aT

p i
)
, (3.150)

leads to the following set of normal equations,

(R̃x + Rx)ap = σ2
e i. (3.151)

At first glance, this result appears to be a major setback since Rx + R̃x =
2Rx, and, consequently, the parameter estimates of (3.151) are identical to
those associated with the forward prediction criterion in (3.113). However,
using the correlation matrix estimate based on the data matrix in (3.136), the
left-hand side of (3.151) becomes a sum of two symmetric but non-Toeplitz
matrices which, in general, differ from each other. Hence, the modified
covariance method is defined by the following set of equations,

1
N − p

(X̃T
p X̃p + XT

p Xp)ap = σ2
e i. (3.152)

The modified covariance method has been found to exhibit better perfor-
mance than the covariance method [131].

3.4.3 Burg’s Method

The third, and final, method considered for estimation of the AR parameters
is also based on joint minimization of the forward and backward prediction
error variances. In contrast to the modified covariance method, however,
we will now explicitly make use of the Levinson–Durbin recursion in the
minimization process in order to arrive at an efficient estimation method.
The resulting method, named after its inventor John Burg, estimates the
parameters of a prediction error filter with lattice structure. The parameters
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are then transformed into the desired, direct form FIR predictor parameters
so that the power spectrum can be calculated.

We start our derivation by recalling the definitions of the forward and
backward prediction errors,

e+
p (n) = aT

p x̃p(n),

e−p (n) = aT
p xp(n).

Combining these two relations with the Levinson–Durbin recursion given in
(3.130), i.e.,

ap =
[
ap−1

0

]
− γp

[
0

ãp−1

]
,

it is possible to derive recursions for e+
p (n) and e−p (n). With appropriate par-

titioning of x̃p(n), the forward prediction error can be computed recursively
using

e+
p (n) =

[
aT

p−1 0
] [

x̃p−1(n)
x(n − p)

]
− γp

[
0 ãT

p−1

] [
x(n)

x̃p−1(n − 1)

]
= e+

p−1(n) − γpe
−
p−1(n − 1). (3.153)

In the same way, a recursion can be established for the backward prediction
error,

e−p (n) =
[
aT

p−1 0
] [

xp−1(n − 1)
x(n)

]
− γp

[
0 ãT

p−1

] [
x(n − p)
xp−1(n)

]
= e−p−1(n − 1) − γpe

+
p−1(n). (3.154)

Both recursions are initialized by the input signal x(n),

e+
0 (n) = e−0 (n) = x(n). (3.155)

A remarkable property of the recursive equations of e+
p (n) and e−p (n) is that

they together define one stage in a lattice filter; the entire prediction error
filter is formed by cascading p different lattice stages, see Figure 3.20. The
lattice realization of the prediction error filter is completely defined by the
parameters γ1, . . . , γp, which were initially introduced as “help variables”
in the Levinson–Durbin recursion, but which can now be interpreted as the
parameters of a lattice filter or, as they are more commonly called, reflection
coefficients.

Subject to the constraint that the prediction errors are generated by the
above lattice equations, we minimize the error

σ2
e = E

[
|e+

p (n)|2
]
+ E

[
|e−p (n)|2

]
(3.156)
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x(n) −γ1

−γ1

−γ2

−γ2

e+
1 (n)

e−1 (n)

e+
2 (n)

e−2 (n)z−1 z−1

Figure 3.20: A second-order prediction error filter with FIR lattice structure
(p = 2). The forward and backward prediction errors are available at the output of
the upper and lower branch, respectively.

with respect to γp. This error can, after substitution of the lattice recursions
in (3.153) and (3.154), be written as

σ2
e =

(
1 + γ2

p

) (
E

[
|e+

p−1(n)|2
]

+ E
[
|e−p−1(n − 1)|2

])
− 4γpE

[
e+
p−1(n)e−p−1(n − 1)

]
, (3.157)

which is minimized by choosing γp such that

∂σ2
e

∂γp
=2γp

(
E

[
|e+

p−1(n)|2
]

+ E
[
|e−p−1(n − 1)|2

])
− 4E

[
e+
p−1(n)e−p−1(n − 1)

]
= 0. (3.158)

The optimal pth reflection coefficient is given by

γp =
2E

[
e+
p−1(n)e−p−1(n − 1)

]
E

[
|e+

p−1(n)|2
]

+ E
[
|e−p−1(n − 1)|2

]
)
. (3.159)

While the reflection coefficients are essential for computing the prediction
errors, our primary interest is in determining the FIR predictor parame-
ters a1, . . . , ap for use in spectral analysis. These parameters can be easily
computed by inserting γp into the Levinson–Durbin recursion in (3.130).10

10The reflection coefficients possess several interesting properties, perhaps most no-
tably that the corresponding AR model is assured to be stable when |γj | < 1 for
j = 1, . . . , p [129].
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The reflection coefficient γj is estimated by replacing the expected values
in (3.159) with their corresponding time averages

γ̂p =

2
N−1∑
n=p

e+
p−1(n)e−p−1(n − 1)

N−1∑
n=p

(|e+
p−1(n)|2 + |e−p−1(n − 1)|2)

, (3.160)

where both sums start at n = p in order to assure that only existing samples
are used in the computation.

From a conceptual point of view, Burg’s method is more involved than
the two other estimation methods presented above. It may therefore be
instructive to summarize the steps required in computing estimates of the
reflection coefficients γ1, γ2, . . . , γp.

1. The procedure is initialized by setting the “zero-order” forward and
backward prediction errors equal to x(n) for n = 0, . . . , N−1, cf. (3.155).
Thus, an estimate of the first reflection coefficient γ1 is obtained from

γ̂1 =

2
N−1∑
n=1

x(n)x(n − 1)

N−1∑
n=1

(
x2(n) + x2(n − 1)

) . (3.161)

2. The “first-order” forward and backward prediction errors are generated
as the output of the lattice predictor defined by γ̂1,

e+
1 (n) = x(n) − γ̂1x(n − 1), (3.162)
e−1 (n) = x(n − 1) − γ̂1x(n), (3.163)

for n = 1, . . . , N − 1.

3. The reflection coefficient γ2 of the second stage in the lattice predictor
is given by

γ̂2 =

2
N−1∑
n=2

e+
1 (n)e−1 (n − 1)

N−1∑
n=2

(
(e+

1 (n))2 + (e−1 (n − 1))2
) . (3.164)
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4. The “second-order” forward and backward prediction errors are gener-
ated by filtering e+

1 (n) and e−1 (n) with the second lattice stage defined
by γ̂2,

e+
2 (n) = e+

1 (n) − γ̂2e
−
1 (n − 1), (3.165)

e−2 (n) = e−1 (n − 1) − γ̂2e
+
1 (n), (3.166)

for n = 2, . . . , N − 1.

5. The computations are repeated by incrementing p by one until the
desired model order is reached.

3.4.4 Performance and Design Parameters

At this point, it seems appropriate to consider which of the above methods
of AR parameter estimation is preferred for EEG spectral analysis. It is
also important to address the problem of selecting the model order p, which,
so far, has been considered to be known a priori. The sampling rate is yet
another design parameter that is briefly discussed.

Choosing method. The performance of model-based methods for spec-
tral estimation can be assessed using simulated signals as generated by the
AR model in (3.107). With this approach, one can compare the parame-
ter estimates to the true values, either directly or in power spectral terms.
Based on such simulations, the covariance method, the modified covariance
method, and Burg’s method have been found to yield more accurate spec-
tral estimates than does the autocorrelation method [103]. Ranking of these
three methods is difficult, although the two methods based on minimization
of forward and backward prediction error variances may be preferred over
the covariance method.

In contrast to Burg’s method, the modified covariance method does not
guarantee that the parameter estimates correspond to a stable AR model,
i.e., all poles lie inside the unit circle [129]. The stability issue has fortunately
no significance in spectral analysis since identical power spectra will result
from a model with a pair of complex-conjugated poles at z1,2 = re±jφ and
another model with a pair at z1,2 = 1

re±jφ exhibiting inverse symmetry with
respect to the unit circle (the radius and the angle are such that 0 < r < 1
and −π < φ < π, respectively). This property can be illustrated by the
following two second-order AR models:

HI
2 (z) =

1
1 − z−1 + 0.5z−2

(3.167)
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Figure 3.21: Two different second-order AR models with identical power spectra.
Each AR model is defined by a pair of complex-conjugated poles, located either
inside (“x”) or outside (“+”) the unit circle.

and

HII
2 (z) =

1
1 − 2z−1 + 2z−2

, (3.168)

whose poles are defined by zI
1,2 = 1√

2
e±j0.25π and zII

1,2 =
√

2e±j0.25π, re-
spectively. Figure 3.21 shows the locations of the two pole pairs and the
corresponding power spectra which are identical.

The stability issue must, however, be taken into account when designing
an EEG simulator that relies on AR modeling [132, 133] or when designing
an EEG classifier which uses the model parameters a1, . . . , ap for making
decisions. When using the modified covariance method, one must assure
that poles located outside the unit circle are mirrored to the inside. Such
mirroring requires additional calculations since the roots of the polynomial
Ap(z) must first be determined. Using Burg’s method, it is guaranteed that
all poles will be located inside the unit circle.

While simulation results provide valuable insight on method performance,
it is absolutely essential to assess the performance in clinical terms before a
method can be finally used. As an example, the performance of the autocor-
relation method and Burg’s method was studied in terms of classifying short
EEG intervals with respect to their spectral characteristics [134]. A set of
EEGs was divided into consecutive, 1-s intervals after which an electroen-
cephalographer assigned each interval to one of the following seven classes:
1. artifactual, 2. artifactual, low-voltage, 3. low-voltage, 4. slow, 5. slow,
low-voltage, 6. normal alpha, and 7. normal alpha, low-voltage. Classifi-
cation schemes were then developed, either based directly on the AR pa-



118 Chapter 3. EEG Signal Processing

rameters or on certain features derived from the power spectrum, such as
peak frequency. For both type of schemes, the AR parameter estimates of
Burg’s method were found to yield much better agreement with the manual
classification than did those of the autocorrelation method. In that study,
classification performance was also investigated for parameters derived from
nonparametric spectral analysis, and the results were found to be approx-
imately the same as those obtained with Burg’s method. Small shifts in
peak frequency were more easily observed in the AR power spectrum than
in the nonparametric spectrum; however, this property had no significant
effect on classification performance. It should be noted that Burg’s method
has recently been considered in many other EEG-related studies [135–137].

Model order. The model order p must be estimated before the AR power
spectrum can be computed. The model order significantly influences the
shape of the estimated power spectrum: too low a value of p results in an
overly smooth spectrum with insufficient resolution, whereas too large an
order introduces spurious spectral peaks.

Several criteria have been developed for estimating the model order p. A
common idea to the criteria is to design a function M(p) that incorporates
the prediction error variance σ2

ep
, which is a decreasing function of p, and a

penalty function, which avoids overparametrization of the AR model. The
appropriate model order is given by the value of p that minimizes M(p). The
Akaike information criterion (AIC) [129, 138] and the minimum description
length (MDL) [129, 139] are two well-known criteria for choosing AR model
order, defined by

MAIC(p) = N lnσ2
ep

+ 2p, (3.169)

and

MMDL(p) = N lnσ2
ep

+ p log N. (3.170)

Both these criteria are related to the prediction error σ2
ep

but have different
expressions for the penalty: the MDL increases the penalty as more samples
become available, whereas the penalty of AIC is independent of the number
of samples N .

Various criteria for selecting model order have been used with varying
degrees of success in EEG signal processing [52, 134], which is probably
explained by the fact that an AR model is fitted to non-AR data. For
example, the AIC was found to estimate too low a model order, causing the
power spectrum to lack certain spectral peaks which were clearly discernible
in the periodogram [140]. Instead, the overwhelming majority of studies
have assumed a fixed model order, where the actual order is dependent on the
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purpose of the analysis. Lower model orders provide sufficient spectral detail
for classification of EEG spectra and assure a certain robustness against noise
and artifacts [141]; a fifth- or sixth-order AR model has been successfully
used in several studies [49, 52, 134, 142–144]. A higher model order should
be considered when a more detailed representation of the power spectrum is
required.

In deciding the model order, it is valuable to know how many spectral
peaks are of interest since this number offers a lower limit of p (each ad-
ditional spectral peak increases the model order by two). An upper limit
of the model order is provided by the rule of thumb that p < N/3 [131],
although the selected order is typically much lower than N/3.

Sampling rate. The sampling rate is a design parameter which influences
the AR parameter estimates and the model order [145]. This influence be-
comes obvious when considering how rx(k) changes with sampling rate. It
is obvious that an increased sampling rate results in a higher resolution of
rx(k), since additional lags can be computed. In order to maintain the in-
formation contained in rx(k), it is necessary to use all lags of the upsampled
correlation function. Thus, doubling the sampling rate means that the model
order must be increased by a factor two in order to assure that all correlation
lags of the original rx(k) are included when solving the normal equations.
However, it is usually advisable to choose a sampling rate that is relatively
close to the Nyquist rate in order to make sure that the degrees of freedom
of the model are spent on describing relevant signal components rather than
modeling noise that may be present in the high-frequency band.

The effect on the power spectrum when an EEG signal is analyzed at
different sampling rates (128 and 128/3 Hz) with a fixed model order is
illustrated in Figure 3.22. Some of the spectral details are lost when the
signal with the higher sampling rate is analyzed since the same number
of poles has to account for information in a much larger spectral interval
(ranging to 128/2 Hz instead of 128/6 Hz), see Figure 3.22(b). Using the
lower sampling rate, two spectral peaks can be discerned in the interval
between 10 and 12 Hz, which are also discernible in the nonparametric power
spectrum, see Figure 3.22(c).

3.4.5 Spectral Parameters

The extraction of spectral features is, of course, not only relevant to non-
parametric spectral analysis, as described in Section 3.3.2, but to parametric
(AR-based) analysis as well. As a rule, spectral parameters employed in the
nonparametric case cannot be directly applied to a parametric power spec-
trum. For example, it may be tempting to use the amplitude of a spectral
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Figure 3.22: (a) A 4-s EEG signal acquired at a sampling rate of 128 Hz. Assuming
a model order of p = 10, the parameters of the corresponding AR power spectrum
are estimated by Burg’s method from (b) the original signal and (c) the signal
that results from three times decimation, i.e., a sampling rate of 128/3 Hz. For
comparison, the power spectrum obtained by Welch’s method is displayed (dotted
line).

peak as a power measure of a certain EEG rhythm. While such a mea-
sure is meaningful for a nonparametric power spectrum, it is inaccurate in
characterizing a parametric spectrum [131].11 Another important reason for
developing spectral parameters is that properties inherent to AR modeling
can be exploited.

For an AR model, the definition of spectral parameters has its starting
point in the complex power spectrum Sx(z) for the stochastic process x(n)
given by

Sx(z) =
σ2

v

A(z)A(z−1)
. (3.171)

11It can be shown that the peak value is proportional to the square of the power when
the modeled signal is sinusoidal, whereas the area under the peak component is linearly
proportional to the power of the sinusoidal [131, p. 202].
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This expression follows from the fact that the noise-shaping filter is
H(z) = 1/A(z) and that the power spectrum of the output signal is given
by Sx(z) = σ2

vH(z)H(z−1), cf. (3.19). Since A(z) is a rational function of z,
Sx(z) can be expressed in terms of its poles dj as follows:

Sx(z) =
σ2

v
p∏

j=1

(1 − djz
−1)(1 − d∗jz)

. (3.172)

The polynomial A(z) includes the poles dj located inside the unit circle,
i.e., with |dj | < 1 for all j, assuring stability of the filter H(z), and A(z−1)
includes those which are outside. In order to assure that a power spectrum
is an even function, the poles of Sx(z) must exhibit symmetry with respect
to the real axis of the z-plane: a pole at rejφ is always paired with its
complex-conjugate at re−jφ, where 0 ≤ r ≤ 1 and −π ≤ φ ≤ π [129]. We
restrict ourselves to only considering models with even-valued orders p and
with distinct poles, i.e., they are all of order one.12 Consequently, the poles
are always complex-conjugated pairs,

d2i = d∗2i−1, i = 1, . . . , p/2. (3.173)

One approach to characterize the power spectrum Sx(z) in terms of its
“intrinsic” spectral components is to obtain the partial fraction expansion of
H(z) with which H(z) can be expressed as a sum of first-order terms [113],

H(z) =
1

A(z)
=

p∑
j=1

cj

1 − djz−1
. (3.174)

The coefficients cj are found from

cj = (1 − djz
−1)H(z)

∣∣
z=dj

, j = 1, . . . , p. (3.175)

Considering that the AR model is defined by complex-conjugated pole pairs,
we can alternatively express the partial fraction expansion as a sum of
second-order transfer functions Hi(z),

H(z) =
p/2∑
i=1

Hi(z). (3.176)

12The special case of an odd-valued model order p is not considered here, but can be
easily handled if necessary, see [113, p. 191]; the same applies to the presence of multiple-
order (indistinct) poles.
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Each Hi(z) defines a second-order ARMA model since the numerator of
Hi(z) will include a zero:

Hi(z) =
c2i−1

1 − d2i−1z−1
+

c2i

1 − d2iz−1

=
(c2i−1 + c2i) − (c2i−1d2i + c2id2i−1)z−1

(1 − d2i−1z−1)(1 − d2iz−1)

=
2
(c2i) − 2
(c2id

∗
2i)z

−1

(1 − d2i−1z−1)(1 − d2iz−1)
, (3.177)

where i = 1, . . . , p/2. The last expression in (3.177) results from the fact that
complex-conjugate poles, such as those in (3.173), always result in complex-
conjugate coefficients in the partial fraction expansion, i.e., c2i = c∗2i−1. Since
the first-order numerator polynomial of Hi(z) has real-valued coefficients, its
zero is located on the real axis.

In the following, we will assume that the second-order transfer functions
Hi(z) of the partial fraction expansion that characterize Sx(z) are essentially
nonoverlapping,

Hi(z)Hj(z−1) ≈ 0, i �= j. (3.178)

From a practical viewpoint, this assumption is not very restrictive since our
interest is in characterizing different EEG rhythms that are spectrally well-
separated from each other. If the components exhibit considerable overlap,
it no longer makes sense to determine spectral parameters such as peak fre-
quency and bandwidth since these are ill-defined. Using (3.178), the complex
power spectrum can be expressed as

Sx(z) = H(z)H(z−1)σ2
v

= σ2
v

p/2∑
i=1

p/2∑
j=1

Hi(z)Hj(z−1)

≈ σ2
v

p/2∑
i=1

Hi(z)Hi(z−1) =
p/2∑
i=1

Sxi(z). (3.179)

Figure 3.23 illustrates the decomposition of a two-component power spec-
trum using the above partial fraction expansion approach; each component is
characterized by a second-order transfer function Hi(z). From Figure 3.23(a)
it is evident that the difference between the original power spectrum Sx(ejω)
and the power spectrum that results from summation of the two components,

Sx1(e
jω) + Sx2(e

jω) = |H1(ejω)|2σ2
v + |H2(ejω)|2σ2

v ,
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Figure 3.23: Decomposition of an AR power spectrum using partial fraction
expansion. (a) The AR model and the corresponding power spectrum Sx(ejω)
(solid line). The spectrum has two dominant frequencies defined by two pairs of
complex-conjugate poles. (b) Decomposition of the model into two second-order
systems connected in parallel and their corresponding power spectra. For compari-
son, the power spectrum that results from summation of the two components, i.e.,
|H1(ejω)|2σ2

v + |H2(ejω)|2σ2
v , has been included in the diagram of (a) as a dotted

line.

is negligible. Thus, the spectral error arising from the assumption of nonover-
lapping components can be neglected.

We will now present the calculation of the parameters that describe the
power, the peak frequency, and the bandwidth for each of the spectral com-
ponents,

Sxi(z) = Hi(z)Hi(z−1)σ2
v , i = 1, . . . , p/2, (3.180)

related to the expansion in (3.179). The power rxi(0) can be calculated by
the z-transform integral inversion formula which relates rxi(k) to Sxi(z) [129,
p. 162],

rxi(k) =
1

2πj

∮
C

Sxi(z)zk−1dz, (3.181)
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where the contour of integration C is assumed to be within the region of
convergence (here taken as the unit circle). Hence, the power is obtained
from

rxi(0) =
1

2πj

∮
C

Sxi(z)z−1dz

=
1∑

l=0

Res
[
Sxi(z)z−1, d2i−l

]
. (3.182)

The term Res
[
Sxi(z)z−1, d2i−l

]
denotes the residue of Sxi(z)z−1 at z = d2i−l

and is determined by

Res
[
Sxi(z)z−1, d2i−l

]
= lim

z→d2i−l

(z − d2i−l)Sxi(z)z−1. (3.183)

Evaluating (3.182) for the poles of Sxi(z) that are located within the unit
circle, it can be shown that the power Pi is given by (see Problem 3.13)

Pi = rxi(0)

=
8σ2

v

1 − |d2i|2
[



(
2(c2i) + 
2(c2id
∗
2i) −
(c2i)
(c2id

∗
2i)(d2i + d−1

2i )
1 + |d2i|2 − d2

2i − d∗2id
−1
2i

)]
.

(3.184)

In certain situations, it may be more appropriate to use a normalized power
measure,

P
′
i =

Pi

rx(0)
, (3.185)

where rx(0) denotes the total power of Sx(z).
The peak frequency can be determined in a number of ways, of which per-

haps the most straightforward is to search for the peak location of Sxi(e
jω).

A disadvantage of this approach is that Sxi(e
jω) must be computed at a

sufficiently fine resolution before a meaningful peak search can be carried
out. A simpler approach is to estimate the peak frequency by calculating
the phase angle of the pole at di,

ωi = arctan
(�(di)

(di)

)
. (3.186)

This is a useful estimate as long as the pole is relatively close to the unit
circle.

In order to find the exact location of the peak frequency, however, it is
necessary to determine the particular ωi that maximizes the expression

Sxi(e
jω) =

∣∣∣∣ 2
(c2i) − 2
(c2irie
−jφi)e−jω

(1 − rie−jφie−jω)(1 − riejφie−jω)

∣∣∣∣2 σ2
v . (3.187)
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Since the zero is real-valued and the pole pair of interest is close to the unit
circle, it can be shown that this expression has its maximum at the minimum
of its denominator, which is

ωi = arccos
(

1 + r2
i

2ri
cos φi

)
, (3.188)

see Problem 3.14. It is obvious that ωi in (3.188) approaches φi as ri ap-
proaches one. The frequency ωi is undefined for poles located at the origin,
i.e., for ri = 0, because it corresponds to a flat spectrum; a case which is
highly unlikely to occur in practice.

Finally, the 3-dB bandwidth ∆ωi of Sxi(e
jω) can, for values of ri close to

one, be approximated by the following simple expression [113, p. 342],

∆ωi ≈ 2(1 − ri). (3.189)

Spectral decomposition based on partial fraction expansion of Sx(z) was
originally developed for EEG analysis by Zetterberg and coworkers [39, 40,
146] and later used by others [137, 147]; this technique is often referred
to as spectral parameter analysis (SPA). The SPA technique is exemplified
here by findings from an animal study in which the EEG activity was mon-
itored during brain injury, caused by progressively reduced oxygenation of
the blood (hypoxia), leading to complete lack of oxygen (asphyxia) [137].
Figure 3.24(a) shows the AR power spectrum obtained from a 3.3-s inter-
val prior to the induction of hypoxia. Figure 3.24(b) presents the trends
of the three most dominant frequencies during the first minute of asphyxia,
whereas Figure 3.24(c) presents their individual power relative to the value
estimated prior to oxygen reduction. It is evident from these trends that
the initial phase of asphyxia is accompanied by a considerable increase in
relative power of the two upper frequency components of the EEG. At about
50 s, the relative power in all three spectral components decrease to zero as
one would expect at asphyxia.

3.5 EEG Segmentation

Spectral analysis of EEG signals, using any of the earlier described tech-
niques, is normally preceded by manual intervention in order to assure that
only segments without “nonstationary events” are analyzed. This procedure
is not really feasible for the analysis of long recordings since these frequently
contain several different types of activities. It would therefore be helpful to
develop a technique that can divide the EEG into segments in such a way
that segments with similar spectral characteristics can be grouped together.
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Figure 3.24: Spectral parameter analysis (SPA) during induced brain injury in
piglets. (a) The AR power spectrum (heavy line) is computed by Burg’s method,
and the periodogram is computed by using a Hanning window. (b) Trends displaying
the peak frequencies of the three most dominant spectral components during the
first minute of asphyxia, and (c) trends displaying the power relative to the value
before oxygen reduction. (Reprinted from Goel et al. [137] with permission.)
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The output of the method would provide a quantitative and compact de-
scription of the whole recording and would serve as a basis for subsequent
EEG assessment by the neurophysiologist. In particular, segmentation may
facilitate the discovery of brief, diagnostically significant episodes in long-
term EEG recordings, which otherwise may have been overlooked during
visual scrutiny.

A popular approach to solving the segmentation problem is based on the
assumption that the EEG is composed of a series of consecutive, variable-
length segments, each with stationary signal properties. This assumption
suggests that methods of detecting changes in the EEG should exploit the
second-order statistics (i.e., spectral properties) of the signal, either in terms
of a nonparametric or model-based description. The detection of changes
requires that two time windows be defined: the reference window and the test
window. An estimate of the signal statistics is obtained from the reference
window and compared to the statistics of the sliding test window by means
of a dissimilarity measure, here denoted ∆(n). The reference window can
either be of fixed length or of a length that increases as long as no change
is detected, whereas the sliding test window typically has a fixed length, see
Figure 3.25. The measure ∆(n) reflects changes in signal statistics between
the reference and the test window and is designed so that it essentially
remains at a constant level until a change occurs, after which ∆(n) rapidly
increases. A segment boundary is detected at a time n = n1 when ∆(n)
exceeds the threshold level η,

∆(n1) > η. (3.190)

Once a boundary has been detected, the segmentation procedure is re-
started by redefining the test window as the reference window, and a new test
window is defined after the reference window. The criterion in (3.190) is often
combined with another test in which ∆(n) is required to exceed the threshold
η for a certain duration before a boundary is declared as detected [148].

In designing an algorithm for detecting changes in EEG signal properties,
several aspects should be considered.

• The activity should remain stationary for at least a second in order to
allow for accurate parameter estimation. Transient waveforms occur-
ring in the test window should be eliminated before such estimation
can take place.

• A change should be sufficiently abrupt in order to be detected. Even so,
the change is detected with a certain time delay; therefore, a correction,
for example, implemented as a “backtracking” procedure in ∆(n), may
be required to find the exact time at which the change occurred.
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Figure 3.25: Principles for EEG segmentation based on (a) fixed-size reference and
test windows and (b) a growing-size reference window and fixed-sized test window.
A difference in spectral properties of the two windows constitutes the basis for
change detection. (Reprinted from Appel and van Brandt [149] with permission.)

• Detector performance should be studied in theoretical terms as well
as by means of simulated signals. However, the ultimate performance
evaluation must be related to answering the following questions. How
well does the method agree with the neurophysiologist’s interpretation?
Does the segmentation approach make sense from a clinical point of
view? Unfortunately, these two issues are not easily integrated into
the development of signal processing methodology.

Below we will present two methods for EEG segmentation which in-
volve tests on spectral changes. Further insight into the problem of de-
tecting abrupt signal changes can be obtained from the book by Basseville
and Nikiforov which provides a theoretical basis to the signal segmentation
problem [150], see also [151]. From a historical viewpoint, it is interesting to
remember that EEG analysis was one of the very first applications dealing
with signal segmentation, prompting subsequent theoretical development.

3.5.1 Spectral Error Measure—The Periodogram Approach

The definition of the periodogram given earlier in (3.79) is now slightly
modified to include a running time index n, which indicates the interval
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during which the spectrum is estimated. The running periodogram,

Sx(ejω, n) =
∞∑

k=−∞
rx(k, n)e−jωk, (3.191)

is based on samples contained in the interval [n, n + N − 1] used to estimate
the autocorrelation function by

r̂x(k, n) =

⎧⎪⎨⎪⎩
1
N

N−1−k∑
l=0

x(l + n + k)x(l + n), k = 0, . . . , N − 1;

0, k = N, N + 1, . . . .

(3.192)

The spectrum of the reference window is denoted Sx(ejω, 0) and the spectrum
of the sliding test window is denoted Sx(ejω, n), i.e, the running periodogram
in (3.191). The parameters Nr and Nt denote the length of the reference
and test window, respectively. It is assumed that the reference window has
a fixed length, although it is simple to modify the method to use a reference
window with increasing length. The running periodogram in (3.191) can
be viewed as a precursor of the methods for joint time–frequency analysis
described in Section 3.6.

The mainstream engineering approach to defining a dissimilarity measure
∆(n) would probably be to study a spectral error measure defined as the
integral of the squared error between the difference of the spectra of the test
and reference windows,

1
2π

∫ π

−π
(Sx(ejω, n) − Sx(ejω, 0))2 dω.

A major disadvantage of such a measure, however, is its asymmetry with
respect to the detection of signals having either increasing or decreasing
power. This property can be illustrated by an example where the change
in signal power is proportionally the same while the shape of the power
spectrum is held fixed,

Sx(ejω, n) = αSx(ejω, 0)

and

Sx(ejω, n) =
1
α

Sx(ejω, 0),

where α is a positive-valued constant. Inserting these two spectra into the
error measure above, it becomes immediately evident that an increase in
power is rewarded more than a decrease and is consequently easier to detect.
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A simple way to remedy this deficiency is to normalize the spectral error
measure with respect to the signal power of both the test and the reference
windows such that

∆1(n) =

1
2π

∫ π

−π
(Sx(ejω, n) − Sx(ejω, 0))2dω

1
4π2

∫ π

−π
Sx(ejω, n)dω

∫ π

−π
Sx(ejω, 0)dω

. (3.193)

It is easily verified that the normalized definition of the spectral error mea-
sure in (3.193) handles the above example with changing signal power in a
symmetric way.

In EEG analysis, the implementation of (3.193) has been based on its
time domain counterpart [152],

∆1(n) =

∞∑
k=−∞

(rx(k, n) − rx(k, 0))2

rx(0, n)rx(0, 0)
, (3.194)

replacing the autocorrelation function estimate in (3.192) with rx(k). The
numerator of (3.194) is obtained using Parseval’s theorem, which states that

∞∑
n=−∞

x2(n) =
1
2π

∫ π

−π
|X(ejω)|2dω. (3.195)

The expression in (3.194) lends itself more easily to an efficient, recursive
update of the test window statistics rx(k, n) than does Sx(ejω, n). Recalling
from (3.78) that rx(k, n) is estimated through (although now modified by
the running time n)

r̂x(k, n) =
1
Nt

Nt−1−k∑
l=0

x(l + n + k)x(l + n), k = 0, . . . , Nt − 1, (3.196)

it is easily shown that r̂x(k, n) can be computed from r̂x(k, n − 1) by cor-
recting for the contributions of the oldest and the most recent samples,

r̂x(k, n) = r̂x(k, n − 1)

+
1
Nt

(x(n − 1 + Nt)x(n − 1 + Nt − k) − x(n − 1 + k)x(n − 1)).

(3.197)

A corresponding recursive relationship between Sx(ejω, n) and Sx(ejω, n−1)
is, on the other hand, not readily available. The computation of ∆1(n) can be
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Figure 3.26: Segmentation of the EEG based on the spectral error measure ∆1(n).
(a) ∆1(n), the detection threshold η (dashed line), and the detected segment bound-
aries (vertical lines), which in this example is three. The heavy bars below ∆1(n)
indicate the location of the reference windows immediately following the detected
boundaries. (b) The EEG signal containing a paroxysmal event. (Reprinted from
Bodenstein et al. [152] with permission.)

further simplified by truncating the sum in (3.194) so as to include only the
N

′
shortest—and the most reliably estimated—correlation lags (N

′
< N).

Equally important, truncation makes sense from a clinical viewpoint since in-
clusion of too many correlation lags has been found to “increase the sensitiv-
ity to insignificant signal fluctuations and lead to hypersegmentation” [152].
Correlation-based segmentation was first introduced in [153] using a dissim-
ilarity measure closely related to that in (3.194), see also [154].

Electroencephalographic segmentation resulting from the use of ∆1(n)
is demonstrated by the example in Figure 3.26. In this case, a boundary is
detected whenever ∆1(n) exceeds the threshold η for at least 400 ms. The
definitive position of the segment boundary is determined empirically by
searching backwards from the threshold crossing time for the onset of the
slope in ∆1(n). Of the three detected boundaries, the last one was judged
to be incorrect.

3.5.2 Spectral Error Measure—The Whitening Approach

In the previous section, segmentation was based on nonparametric estima-
tion of the signal statistics. However, it can also be based on parametric
estimation in which AR power spectra are inserted into the spectral error
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v(n)
� 1
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��
EEG model

x(n)
� Ap(z)

��
whitening filter
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� SEM �
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��
segmentation

Figure 3.27: Segmentation of the EEG based on AR modeling and linear predic-
tion. The parameters of Ap(z) are estimated from x(n) and are used for whitening
of x(n). The segmentation is based on the spectral error measure (SEM) ∆2(n)
which tests the whiteness of the prediction errors e(n).

measure in (3.193). Such a straightforward approach to model-based seg-
mentation has rarely been considered, but the validity of an AR model,
estimated from the reference window, is rather tested by linear prediction
in the sliding test window; the intimate relationship between AR modeling
and linear prediction has already been pointed out in Section 3.4. This tech-
nique relies on the fact that a pth-order linear prediction error filter Ap(z)
decorrelates (“whitens”) the observed signal x(n) as long as it is described
by the pth-order AR model for which the predictor was designed. Once
a spectral change occurs in x(n), the output of the linear prediction error
filter no longer remains a white process, see Figure 3.27. From this obser-
vation, it seems well-motivated to develop a segmentation method based on
a dissimilarity measure that reflects deviations from the whiteness of the
prediction errors e(n). In fact, several such methods have been presented
in the literature, and below we will describe the method first developed for
EEG segmentation [15].

Assuming that a suitable model order p has been chosen to describe
the signal in the reference window, the prediction error variance σ2

e can be
estimated by any of the AR methods presented in Section 3.4. The power
spectrum of e(n) is flat with a height given by σ2

e ,

Se(ejω, 0) = re(0, 0) = σ2
e . (3.198)

Thus, this spectrum serves as a reference for subsequent spectra Se(ejω, n)
determined from the output of the prediction error filter Ap(z). In analogy
with the definition of the spectral error measure ∆1(n) in (3.193), we define
a quadratic spectral error measure ∆2(n) in order to quantify deviations
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between Se(ejω, n) and Se(ejω, 0) [15, 155, 156],

∆2(n) =

1
2π

∫ π

−π

(
Se(ejω, n) − σ2

e

)2
dω[

1
2π

∫ π

−π
Se(ejω, n)dω

]2 . (3.199)

Note that the normalization factor in (3.199) differs from that of ∆1(n)
but represents the factor suggested in the original work [15]. Again, it is
advantageous to develop a time domain expression for ∆2(n) which is better
suited for implementation. In order to arrive at such an expression, we
make use of the fact that any power spectrum, being an even function, can
be expressed as a sum of cosine functions,

Se(ejω, n) =
∞∑

k=−∞
re(k, n)e−jωk

= re(0, n) + 2
∞∑

k=1

re(k, n) cos(ωk). (3.200)

The integral for symmetric functions over one period is equal to zero and
thus ∫ π

−π
re(k, n) cos(ωk)dω = 0. (3.201)

Furthermore, since the cosine functions constitute an orthogonal set of func-
tions,

1
2π

∫ π

−π
cos(ωk) cos(ωl)dω =

⎧⎨⎩
1
2
, k = l;

0, k �= l,

(3.202)

we can express ∆2(n) in terms of re(k, n),

∆2(n) =
(

re(0, 0)
re(0, n)

− 1
)2

+
2

r2
e(0, n)

∞∑
k=1

r2
e(k, n). (3.203)

It is obvious that prediction errors e(n) deviating from a white process with
variance re(0, 0) will be penalized in (3.203). The first term is close to zero
as long as the variance re(0, n) of the test window is close to that of the
reference window re(0, 0). The second term remains close to zero only as
long as e(n) remains white as re(k, n) = σ2

eδ(k), where δ(k) is the unit
impulse function.
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An even simpler test for the detection of a change in spectral charac-
teristics is obtained by neglecting the second term [150, 157, 158] and by
modifying the first term in (3.203) so that only the power of the prediction
errors is monitored,

∆3(n) =
re(0, n)
re(0, 0)

− 1, (3.204)

which, after insertion of the correlation function estimate of the prediction
errors, is given by

∆3(n) =
1
Nt

Nt−1∑
k=0

(
e2(n + k)
re(0, 0)

− 1
)

. (3.205)

This dissimilarity measure can be derived within a more rigorous statistical
framework [157]; unfortunately, the performance of (3.205) suffers from a
serious deficiency in that several AR models may exist with a prediction error
variance identical to re(0, 0). Furthermore, the measure ∆3(n) represents an
asymmetric detection function since it is more sensitive to abrupt changes
manifested by an increase in signal power than by a decrease.

The above two error measures based on model-based segmentation incor-
porate knowledge of one single signal model, i.e., the AR model is estimated
from the reference window and then used for prediction in the test window.
Neither of the two measures is symmetric with respect to the detection of
signals with increasing or decreasing power. An ad hoc approach to mod-
ifying ∆3(n) so that it becomes a symmetric test is to extend (3.205) to
incorporate a “reverse” test, i.e., to also compute the prediction errors in
the reference window using the AR parameters estimated from the test win-
dow [159]. Thus, a modified error measure ∆4(n) involving knowledge on
two AR models can be defined as in (3.205) but by adding a second term,

∆4(n) =
1
Nt

Nt−1∑
k=0

(
e2
r(n + k)
rer(0, 0)

− 1
)

+
1

Nr

Nr−1∑
k=0

(
e2
t (k)

ret(0, n)
− 1

)
, (3.206)

where et(n) and er(n) denote the prediction errors obtained by AR param-
eter estimates from the test and the reference windows, respectively. The
corresponding prediction error variances are denoted ret(0, n) and rer(0, 0).
Simulations have indicated a better, more symmetric behavior for ∆4(n)
than for ∆3(n) [159]; however, the clinical value of ∆4(n) for EEG segmen-
tation remains to be established.

3.5.3 Segmentation Performance and Beyond

The performance of a correlation-based method [153], closely related to the
one given in (3.194), and that of the prediction-based method in (3.203)
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were compared using different types of simulated signals [149]. The signals
were generated by switching between two AR models with different power
spectra, both defined by a pair of complex-conjugated poles. Since the posi-
tions in time of the segment boundaries were known a priori, it was possible
to determine the detection rate, the false alarm rate, and the accuracy in
positioning the segment boundaries.

The simulation results showed that the overall performance of the two
methods was quite similar, although the prediction-based method was as-
sociated with a lower false alarm rate [149]. It is interesting to contrast
these findings on false alarm rate with those reported by Bodenstein and
Praetorius, who originally developed the prediction-based method but later
retracted from it because it too often led to misplaced segment boundaries
and hypersegmentation. They replaced the prediction-based method by the
much simpler correlation-based method using ∆1(n), since it was found
to be “better adapted to the practical needs of the clinical neurophysiol-
ogist” [148, 152, 160].

The discrepancy in performance results obtained using simulated signals
and EEG signals can, perhaps, serve as an example of the difficulty in assess-
ing the performance of methods by studying only simulation signals. Despite
this difficulty, the problem of segmenting EEG signals continues to receive
attention using spectral features and dissimilarity measures other than those
described above [161–164].

Once a method of EEG segmentation with an acceptable performance
has been devised, it will be of considerable interest to group multiple EEG
patterns based on the outcome of the automated segmentation procedure.
Pattern classification must make use of a set of features, for example, the
N ′ shortest correlation lags [160], various spectral features [158] (the power
spectrum being estimated with either a nonparametric or parametric tech-
nique), or the estimated AR model parameters. Classification produces a
number of pattern classes which reflect different types of activities in the
EEG recording and which ultimately may be presented to the clinician in
the form of a summary sheet.

3.6 Joint Time–Frequency Analysis

A major limitation of Fourier-based spectral analysis is its inability to pro-
vide information on when in time different frequencies of a signal occur.
The Fourier transform only reflects which frequencies exist during the to-
tal observation interval, because the Fourier transform integrates frequency
components over the total observation interval. While such spectral anal-
ysis is adequate for stationary signals whose frequencies, on average, are
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equally spread in time, it is inadequate for nonstationary signals with time-
dependent spectral content. Similar observations apply to parametric spec-
tral analysis. Consequently, there is strong motivation for the development
of methods that analyze signals with regard to both time and frequency so
that the frequencies present at each instant in time can be displayed. Joint
time–frequency information has been found extremely valuable not only in
the interpretation of EEG signals, but equally so for many other types of
biomedical signals exhibiting nonstationary characteristics.

Methods that produce signal representations in the time–frequency do-
main may be divided into the following three main categories.

1. Linear, nonparametric methods have in common that their time–fre-
quency representations can be obtained from a linear filtering opera-
tion. Among these methods, the short-time Fourier transform is the
classical one, which is described and exemplified in Section 3.6.1. The
wavelet transform is another popular method which belongs to the cat-
egory of linear methods which, due to its suitability for characterizing
transient signals, will be described in Chapter 4.

2. Quadratic, nonparametric methods offer improved time–frequency res-
olution. The Wigner–Ville distribution (WVD) is the most well-known
and is, together with a number of modifications introduced to address
its limitations, described in Sections 3.6.2–3.6.4. Similar to the meth-
ods of the first category, these methods do not involve any particular
assumptions regarding the signal.

3. Parametric methods produce time–frequency representations based on
the assumption that the observed signal derives from a statistical model
with time-varying parameters, usually with the AR model as the start-
ing point. The methods previously described for AR parameter esti-
mation are modified in Section 3.6.5 so that slow changes in the pa-
rameters can be tracked. The resulting parameter estimates are used
for computing successive power spectra.

While the purpose of this section is restricted to presenting some intro-
ductory concepts in time–frequency analysis, the reader should also be aware
that dozens of methods have been presented in this area, with each method
having its own particular merits. The interested reader is therefore referred
to the textbooks available on this topic which more profoundly deal with the
theoretical aspects and contain a variety of applications [165–170].

When presenting the nonparametric time–frequency methods below, we
have temporarily abandoned the discrete-time context since the continuous-
time description of the WVD is more easily comprehended. Accordingly,
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τ

x(t)w(t − τ)

x(t)w(t − τ)

Figure 3.28: In the short-time Fourier transform, a sliding time window w(τ − t)
is used for excerpting successive parts of the signal x(t).

details related to digital implementation of different time–frequency algo-
rithms are omitted, see instead [165, 168]. While it is straightforward to
translate the continuous-time, short-time Fourier transform to its discrete-
time counterpart, the WVD requires some further considerations. Another
difference in the presentation below is that signals are considered determin-
istic rather than stochastic, which otherwise is our common assumption. A
stochastic framework for the WVD has been presented [171], although it is
far less often adopted in the literature.

3.6.1 The Short-Time Fourier Transform

In its simplest form, time–frequency analysis can be carried out by divid-
ing the signal x(t) into short, consecutive, possibly overlapping, segments
which are subjected to spectral analysis, see Figure 3.28. The resulting
series of spectra reflect the time-varying nature of the signal. The most
well-known approach to time–frequency analysis makes use of nonparamet-
ric, Fourier-based spectral analysis (cf. Section 3.3) applied to each of the
short segments—an operation referred to as the short-time Fourier trans-
form (STFT). In this approach, the definition of the Fourier transform is
modified so that a sliding time window w(t) is included that defines each
time segment to be analyzed, thus resulting in a two-dimensional function
X(t, Ω) defined by

X(t, Ω) =
∫ ∞

−∞
x(τ)w(τ − t)e−jΩτdτ, (3.207)

where Ω denotes analog frequency. The STFT is said to produce a time–
frequency representation of x(t) or, equivalently, a time–frequency distribu-
tion of x(t) (where the word “distribution” is not used in the probabilistic
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sense). The time window w(t) is a positive-valued function which may have
a rectangular shape, although it is often chosen from among the shapes
previously described in nonparametric spectral analysis on page 96. The
window length determines the resolution in time and frequency such that a
short window yields good time resolution but poor frequency resolution, and
the opposite when a long window is used. The actual computation of the
STFT in (3.207) can be implemented by means of a linear filtering operation
(Problem 3.19).

Analogous to the computation of the periodogram in (3.81), which was
obtained as the squared magnitude of the Fourier transform of the signal,
the spectrogram of x(t) is obtained by computing the squared magnitude of
the STFT in (3.207),

Sx(t, Ω) = |X(t, Ω)|2. (3.208)

The spectrogram is a real-valued, nonnegative distribution which provides
a signal representation in the time–frequency domain. The stochastic (and
discrete-time) version of the spectrogram has, in fact, already been intro-
duced for the purpose of segmenting nonstationary signals; it was then called
the running periodogram and was defined in (3.191).

Spectral analysis based on the Fourier transform can never achieve per-
fect resolution in both time and frequency. It is possible to derive an uncer-
tainty principle which states that the product of a signal’s time duration ∆t

and its bandwidth ∆Ω must never be below a certain lower bound. In order
to express this principle in mathematical terms, we introduce the following
definitions of ∆t and ∆Ω,

∆t =

⎛⎜⎜⎝
∫ ∞

−∞
(t − t)2|x(t)|2dt∫ ∞

−∞
|x(t)|2dt

⎞⎟⎟⎠
1
2

, (3.209)

∆Ω =

⎛⎜⎜⎝
∫ ∞

0
(Ω − Ω)2|X(Ω)|2dΩ∫ ∞

0
|X(Ω)|2dΩ

⎞⎟⎟⎠
1
2

, (3.210)

where X(Ω) denotes the Fourier transform of x(t). Both definitions are
analogous to the definition of the standard deviation of a random variable,
and thus ∆t and ∆Ω represent measures of width in time and frequency,
respectively. The parameters t and Ω define the center point (“center-of-
gravity”) of x(t) and X(Ω), respectively, and are obtained in a way analogous
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to the mean value of a random variable,

t =

∫ ∞

−∞
t|x(t)|2dt∫ ∞

−∞
|x(t)|2dt

, (3.211)

Ω =

∫ ∞

0
Ω|X(Ω)|2dΩ∫ ∞

0
|X(Ω)|2dΩ

. (3.212)

With the above definitions of ∆t and ∆Ω, it can be shown that if x(t) decays
to zero such that [168]13

lim
|t|→∞

√
tx(t) = 0, (3.213)

then the uncertainty principle states that

∆t∆Ω ≥ 1
2
. (3.214)

Equality is only achieved when x(t) is a Gaussian signal,

x(t) = ce−(t−t0)2/σ, (3.215)

where σ denotes a width parameter, and c and t0 are constants. It should
be emphasized that the above uncertainty principle, with its particular
width definitions, only applies to Fourier-based spectral analysis, while other
bounds apply to quadratic time–frequency representations.

The spectrogram has been used in a wide range of EEG applications
thanks to its capability of lucidly displaying changes that occur in the rhyth-
mic activities of the EEG which otherwise would be difficult to perceive from
the time domain signal. For example, patients with suspected epilepsy un-
dergoing a photic stimulation test may or may not demonstrate an EEG
response to such stimulation (see page 42). By looking at the spectrogram it
becomes immediately clear whether such a response is present or not. Fig-
ure 3.29 shows a spectrogram obtained during photic stimulation which, for
this particular subject, contains a well-defined spectral peak at each of the
investigated stimulation rates. The display format in Figure 3.29 is often re-
ferred to as a compressed spectral array (CSA) since successive spectra, one
in front of the other, are compactly presented [172]. As we will see shortly,
other useful display formats are available.

13This requirement is not very restrictive since we are dealing with deterministic signals
assumed to have finite energy. In fact, most signals with finite energy fulfil this assumption.
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Figure 3.29: (a) Ten-second excerpt of a four-channel EEG recorded during photic
stimulation at 12 Hz; the EEG signals recorded during the other stimulation rates
(6, 10, 15, and 20 Hz) have been omitted. (b) The spectrogram, resulting from the
five rates, exhibits a marked peak at each rate. The power spectra are computed
from consecutive, 8-s intervals. (Reprinted from Scheuer [173] with permission.)

Another example which illustrates the usefulness of the spectrogram is
taken from heart surgery of an infant during which brain activity was mon-
itored, see Figure 3.30(a) [174]. Drastic spectral changes can be observed in
the infant’s EEG at the time when a decrease in blood pressure occurred;
this decrease can be established from the simultaneously recorded measure-
ments of diastolic pressure14 shown in Figure 3.30(c). The changes in the
EEG are primarily manifested by a reduction in the power in the interval
above 7–8 Hz (Figure 3.30(b)). This reduction is probably caused by a lack
of oxygenated blood which normally perfuses the brain.

While the EEG changes shown in Figures 3.29 and 3.30 took place over a
time span of one or several minutes, spectral changes may evolve much more

14The diastolic blood pressure represents the pressure in the arteries when the heart is
at rest.
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(a)

(b)

(c)

Figure 3.30: (a) The EEG recorded during heart surgery of an infant. (b) The
corresponding spectrogram displays a drastic reduction in high-frequency content
after 100 s, partially reverting at about 200 s. (c) The blood pressure measurements
show that a reduction in diastolic blood pressure precedes the reduction in high-
frequency content.

rapidly on a second-to-second basis. The latter situation is illustrated by
the 12-s EEG shown in Figure 3.31(a), recorded during an epileptic seizure.
Visually, one can easily establish that the temporary increase in amplitude is
coupled to a more sinusoidal behavior of the signal. However, it is almost im-
possible for the human eye to perceive the slowing down in frequency which
occurs in the interval from 4 to 8 s. By analyzing the corresponding spectro-
gram in Figure 3.31(b), it becomes immediately evident that the dominant
frequency component, initially located around 9 Hz at 4 s, gradually declines
to 6 Hz during the following 4 s. Finally, the dominant frequency dissolves
into a pattern which resembles the pattern observed prior to the seizure
episode. Although the physiological significance of this particular behavior
of “frequency slowing” is not clear, the example illustrates nonetheless the
fact that time–frequency analysis is a powerful technique for revealing non-
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stationary signal properties which would otherwise have remained hidden in
classical spectral analysis.15

Figure 3.31(b)–(d) presents the spectrograms that result from using dif-
ferent lengths of the time window when analyzing the EEG in Figure 3.31(a).
The spectrogram in Figure 3.31(c) is obtained with the longest time window
and therefore exhibits the poorest time resolution of the three lengths; this
property is reflected by a ridge which extends longer in time than does the
ridge in Figure 3.31(d). On the other hand, the best frequency resolution is
found in Figure 3.31(c) due to the longer time window, while the frequency
resolution in Figure 3.31(d) is worse. It is clear from this example that
one is always faced with a trade-off with respect to resolution in time and
frequency.

3.6.2 The Ambiguity Function

While the spectrogram has been found to be very useful in many biomedi-
cal applications, its relatively poor time–frequency resolution has prompted
the development of other techniques which better describe the time-varying
nature of a signal. The WVD is probably the most well-known technique
that addresses this issue and is not constrained by the uncertainty principle
in (3.214) related to the Fourier transform [178–182]. The original defini-
tion of the WVD, which actually appeared already in the 1930s [178], has
more recently been followed by several approaches with the common aim to
mitigate its drawbacks [167, 168].

Rather than proceeding directly to the definition of the WVD, we will
first introduce the ambiguity function Ax(ν, τ) which is central to the WVD
definition and which constitutes an important concept in time–frequency
analysis. This function is designed to reflect uncertainty in both time τ
and frequency ν associated with a signal x(t). In order to account for such
uncertainty, we introduce two versions of x(t) which are shifted in time and
frequency,

x(t; ν, τ) = x(t − τ

2
)e−jνt/2, (3.216)

x(t;−ν,−τ) = x(t +
τ

2
)ejνt/2. (3.217)

A frequency shift of x(t) is introduced by modulating x(t) with the com-
plex exponential ejνt. The ambiguity function is a two-dimensional function

15During epileptic seizures, a monotonic frequency slowing behavior, similar to the one
observed in Figure 3.31, has been mentioned in several studies which are based on obser-
vations from time–frequency analysis [94, 175–177]. The time–frequency distribution may
be used as a basis for developing a detector which finds “frequency ridges” characteristic
of certain EEG patterns. For example, it has been hypothesized that frequency ridges
present during a seizure can be modeled by a piecewise linear function [94].
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(a)

(b)

(c)

(d)

Figure 3.31: (a) The EEG at the onset of an epileptic seizure. The corresponding
spectrogram is computed using a Hamming window with a length of (b) 1 s, (c) 2 s,
and (d) 0.5 s.
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defined as the correlation between the time and frequency shifted signal
versions of which one is conjugated [183],

Ax(τ, ν) =
∫ ∞

−∞
x∗(t; ν, τ)x(t;−ν,−τ)dt

=
∫ ∞

−∞
x∗(t − τ

2
)x(t +

τ

2
)ejνtdt. (3.218)

The ambiguity function can be understood as the Fourier transform in the
variable t of the product x(t − τ

2 )x∗(t + τ
2 ) describing the deterministic,

instantaneous correlation of two values, separated by the time lag τ .
The definition of Ax(τ, ν) exhibits several interesting properties. For

example, the Fourier transform of Ax(τ, 0) with respect to τ yields the energy
density spectrum Sx(Ω),

Sx(Ω) =
∫ ∞

−∞
Ax(τ, 0)e−jΩτdτ

=
∫ ∞

−∞

(∫ ∞

−∞
x∗(t)x(t + τ)dt

)
e−jΩτdτ, (3.219)

where the expression within parenthesis defines a correlation function of x(t).
The spectrum Sx(Ω) in (3.219) can be viewed as the deterministic counter-
part to the power spectrum of a random signal. Another interesting ob-
servation is that the Fourier transform of Ax(τ, ν) yields the instantaneous,
time-dependent correlation,

1
2π

∫ ∞

−∞
Ax(τ, ν)e−jνtdν = x∗(t − τ

2
)x(t +

τ

2
). (3.220)

An important property of the ambiguity function is that its maximum
is always located at the origin (0, 0) of the τ -ν domain and is equal to the
energy of x(t) defined as

Ax(0, 0) =
∫ ∞

−∞
|x(t)|2dt. (3.221)

It can also be shown that A(τ, ν) remains concentrated to the origin of the
τ -ν domain, although x(t) has been subjected to a shift in time and fre-
quency.

In order to investigate the concentration property, it is helpful to first
consider a signal composed of a lowpass envelope modulated by a cosine at
frequency Ω1,

x(t) = s(t) cos(Ω1t). (3.222)
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This signal can be decomposed into the components x1(t) and x2(t), repre-
senting positive and negative frequency, respectively,

x(t) = x1(t) + x2(t), (3.223)

where

x1(t) =
1
2
s(t)ejΩ1t, (3.224)

x2(t) =
1
2
s(t)e−jΩ1t. (3.225)

The corresponding ambiguity function becomes

Ax(τ, ν) =
∫ ∞

−∞

(
x∗

1(t −
τ

2
) + x∗

2(t −
τ

2
)
) (

x1(t +
τ

2
) + x2(t +

τ

2
)
)

ejνtdt

=
1
2
As(τ, ν) cos(Ω1τ) +

1
4
As(τ, ν − 2Ω1) +

1
4
As(τ, ν + 2Ω1),

(3.226)

where

As(τ, ν) =
∫ ∞

−∞
s∗(t − τ

2
)s(t +

τ

2
)ejνdt. (3.227)

Apart from the “auto-term” 1
2As(τ, ν) cos(Ω1τ), being concentrated to the

origin, the ambiguity function also includes two undesirable terms with iden-
tical shape but translated ±2Ω1, reflecting an undesired cross-correlation
between positive and negative frequencies.

Fortunately, it is possible to remove such cross-correlation without sacri-
ficing signal information. Since real signals have symmetric frequency com-
ponents, of which one is redundant, we only need to consider positive fre-
quencies of the spectrum. This part can be isolated by using the analytic
signal xA(t) of x(t), which in the frequency domain is defined as

XA(Ω) =
{

2X(Ω), Ω ≥ 0;
0, Ω < 0.

(3.228)

For x(t) = s(t) cos(Ω1t), we have that

XA(Ω) =
{

S(Ω − Ω1), Ω ≥ 0;
0, Ω < 0,

(3.229)

where S(Ω) denotes the Fourier transform of s(t). The computation of the
analytic signal is later described in Section 7.4.3. Employing the analytic
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signal, the resulting ambiguity function AxA(τ, ν) no longer contains the two
terms at ±2Ω1.

For the previous example in (3.223)–(3.225), the analytic signal is given
by

xA(t) = s(t)ejΩ1t (3.230)

and

AxA(τ, ν) = As(τ, ν)ejΩ1τ . (3.231)

From now on, it will therefore be assumed that the analytic signal xA(t),
rather than the original real signal x(t), is analyzed although the denota-
tion x(t) is still used.

We now consider the case of a signal composed of two different compo-
nents,

x(t) = x1(t) + x2(t), (3.232)

where

x1(t) = s1(t)ejΩ1t, (3.233)

x2(t) = s2(t)ejΩ2t. (3.234)

Thus, the ambiguity function becomes

Ax(τ, ν) =
∫ ∞

−∞

(
x∗

1(t −
τ

2
) + x∗

2(t −
τ

2
)
) (

x1(t +
τ

2
) + x2(t +

τ

2
)
)

ejνtdt

= Ax1(τ, ν) + Ax2(τ, ν) + cross-terms. (3.235)

Apart from the two terms depending only on the individual signals (the
so-called auto-terms), the ambiguity function in (3.235) also includes cross-
terms which reflect the correlation between x1(t) and x2(t). The separation
of these two types of terms in the τ -ν domain turns out to be a very im-
portant property to exploit when certain limitations of the WVD are to be
addressed (Section 3.6.4).

The properties of the ambiguity domain are illustrated by a signal con-
sisting of two components, x1(t) and x2(t), whose envelopes are of Gaussian
shape. The two components are shifted in time by t1 and t2, respectively,
and have center frequencies at Ω1 and Ω2, respectively,

x1(t) = e−(t−t1)2/σejΩ1t, (3.236)

x2(t) = e−(t−t2)2/σejΩ2t, (3.237)
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see Figure 3.32(a). Hence, the two components are concentrated at the
points (t1,Ω1) and (t2,Ω2), respectively, in the t-Ω domain—a fact which
hopefully is reflected by any method designed for time–frequency analysis.
In the τ -ν domain, on the other hand, Ax1(τ, ν) and Ax2(τ, ν) are both
concentrated at the origin (|Ax1(τ, ν)|2 is displayed in Figure 3.32(b)), while
the two cross-terms can be shown to have their concentration at the points
(−(t2−t1),−(Ω2−Ω1)) and (t2−t1,Ω2−Ω1), respectively, see Figure 3.32(c).
The cross-terms are thus clearly separated from the auto-terms at the origin.

3.6.3 The Wigner–Ville Distribution

The continuous-time definition of the WVD is given by the two-dimensional
Fourier transform of the recently introduced ambiguity function Ax(τ, ν),

Wx(t, Ω) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
Ax(τ, ν)e−jνte−jΩτdνdτ. (3.238)

The definition of the WVD can be given a more intuitively appealing form
by inserting the definition of Ax(τ, ν) in (3.218) into (3.238), yielding

Wx(t, Ω) =
1
2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
x∗(s − τ

2
)x(s +

τ

2
)e−jν(t−s)e−jΩτdsdνdτ

=
∫ ∞

−∞
x∗(t − τ

2
)x(t +

τ

2
)e−jΩτdτ. (3.239)

This expression shows more explicitly how the WVD is related to x(t),
namely, the WVD is obtained by computing the Fourier transform of the
instantaneous, time-dependent correlation x∗ (

t − τ
2

)
x

(
t + τ

2

)
with respect

to the time lag variable τ . The WVD is referred to as a quadratic time–
frequency representation because x(t) enters quadratically into the definition
in (3.239). Moreover, it is obvious from the definition that the WVD is a
nonlocal transform since it weighs times which are far apart equally to those
which are close. The WVD can alternatively be expressed as a correlation
in the frequency domain by invoking Parseval’s relation,

Wx(t, Ω) =
∫ ∞

−∞
X∗(Ω − ν

2
)X(Ω +

ν

2
)e−jνtdν. (3.240)

The WVD possesses several attractive properties of which we will men-
tion the most important ones. The WVD is real-valued since

Wx(t,Ω) = W ∗
x (t, Ω). (3.241)

Time support is a desirable property of any time–frequency distribution and
means that if x(t) = 0 for |t| > t0, then Wx(t, Ω) = 0 for |t| > t0; expressed
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(a)

x1(t) x2(t)

t

(b)τ

ν
|Ax1(τ, ν)|2

(c)τ

ν|Ax(τ, ν)|2

cross-term

cross-term

Ω1 − Ω2

−(Ω1 − Ω2)
−(t2 − t1)

t2 − t1

Figure 3.32: (a) The signal x(t) is the sum of two modulated Gaussians x1(t) and
x2(t). Using the analytic signal representation, the ambiguity domain is shown for
(b) x1(t) and (c) x(t) = x1(t)+x2(t), where the auto-term and the two cross-terms
are well-separated from one another.
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in words this means that if the signal is zero outside an interval, then the
distribution is also zero outside an interval. In a similar way, the frequency
support property means that if X(Ω) = 0 for |Ω| > Ω0, then Wx(t, Ω) = 0
for |Ω| > Ω0. While the WVD has support both in time and frequency, the
spectrogram does not.

Two other properties of the WVD are related to what happens when the
WVD is integrated with respect to time or frequency. It can be shown that
by summing up the WVD for all values of t, we obtain, what one would hope
for, the total spectrum |X(Ω)|2,∫ ∞

−∞
Wx(t, Ω)dt = |X(Ω)|2. (3.242)

This condition is usually referred to as the frequency marginal condition.
The corresponding operation with respect to time yields the instantaneous
signal energy |x(t)|2,

1
2π

∫ ∞

−∞
Wx(t, Ω)dΩ = |x(t)|2, (3.243)

and is referred to as the time marginal condition.
The most important property of the WVD, and certainly the main reason

why the WVD has received so much attention, is its excellent joint resolution
in time and frequency [167]. This property can be established by introduc-
ing a different uncertainty principle, applicable to both the WVD and the
spectrogram [184]. Since the derivation of this result is beyond the scope
of this text, the improved resolution is instead illustrated by an example
in which the WVD is compared to the spectrogram using the modulated,
Gaussian signal in (3.236), i.e., a monocomponent signal. It can be observed
from Figure 3.33 that the corresponding spectral component is much more
concentrated in the WVD than in the spectrogram.

Unfortunately, the WVD exhibits some undesirable properties which are
important to be aware of. In contrast to the spectrogram, the WVD is not
always a positive-valued distribution even if it is supposed to reflect signal
energy in the time–frequency domain (the only signal for which the WVD
is always positive-valued is the Gaussian modulated chirp). In practice,
this property is not a particularly serious problem since the positive-valued
regions of the WVD have been found to correspond well with the time–
frequency structure one would expect [167].

Another, more annoying property is the presence of cross-terms which
arise because the WVD is a quadratic time–frequency distribution. For the
two-component signal in (3.232), it can be shown that the WVD satisfies

Wx(t, Ω) = Wx1(t, Ω) + Wx2(t, Ω) + 2
{Wx1,x2(t, Ω)}, (3.244)
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Figure 3.33: (a) The monocomponent signal x1(t) in (3.236) and the correspond-
ing (b) spectrogram and (c) WVD.

where the first two terms are quadratic in each signal component, while the
last term is a cross-term between x1(t) and x2(t), defined by

Wx1,x2(t, Ω) =
∫ ∞

−∞
x∗

1(t −
τ

2
)x2(t +

τ

2
)e−jΩτdτ. (3.245)

The function Wx1,x2(t, Ω) is referred to as the cross Wigner–Ville distribu-
tion. While quadratic distributions provide good concentration of a signal in
the time–frequency domain, the presence of cross-terms limits their practical
use when multicomponent signals are encountered.

The presence of cross-terms is illustrated for the two-component signal
consisting of two modulated Gaussians shown in Figure 3.34(a). The cor-
responding WVD is presented in Figure 3.34(c) where the cross-term in
between the two components can be clearly discerned (striped pattern); for
comparison, the spectrogram is shown in Figure 3.34(b). In this case, the
cross-term occurs midway between the frequencies Ω1 and Ω2 at (Ω1 +Ω2)/2
and has an amplitude oscillating with frequency (Ω1 −Ω2). When x(t) con-
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Figure 3.34: (a) The two-component signal of Figure 3.32 and the corresponding
(b) spectrogram and (c) WVD.

sists of more than two components, one cross-term will arise for every pair
of components, thereby causing substantial difficulties in interpreting the
time–frequency distribution.

From the definition of the WVD in (3.239) it is clear that every point
in time of a signal is assigned equal importance, and, therefore, the WVD
produces a highly nonlocal description of a signal. In certain cases, however,
it may be desirable to emphasize the signal properties around time t and thus
to deemphasize times which are farther away. Such weighting can be done
by multiplying the instantaneous, time-dependent correlation by a window
w(τ) centered around the time τ = 0,

W̆x(t, Ω) =
∫ ∞

−∞
x∗(t − τ

2
)x(t +

τ

2
)w(τ)e−jΩτdτ. (3.246)

This modification of the WVD is usually referred to as the pseudo Wigner–
Ville distribution (PWVD), or simply the windowed WVD.
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In situations where x(t) is a monocomponent signal, it may be of interest
to extract the predominant frequency, i.e., the frequency which defines the
main ridge of the time–frequency distribution. This information can be
extremely valuable for a neurophysiologist since it describes the temporal
variation of the dominant frequency. Such variation patterns often convey
more valuable clinical information than do the fine details of the power
spectrum at every time instant. In order to study the dominant frequency,
we make use of the complex signal representation,

x(t) = s(t)ejϕ(t), (3.247)

where s(t) denotes the magnitude (“envelope”) modulated by a complex
exponential function, defined by the phase ϕ(t). Both magnitude and phase
are real-valued functions. The first derivative of the phase, ϕ′(t), is defined
as the mean instantaneous frequency. This definition is reasonable since in
the case when s(t) is modulated by a cosine with frequency Ω0,


{x(t)} = s(t) cos(Ω0t) = 
{s(t)ejΩ0t}, (3.248)

the mean instantaneous frequency is equal to ϕ′(t) = Ω0.
Another attractive property of the WVD is that the mean instantaneous

frequency ϕ′(t) of a signal can be exactly determined from the WVD by
computing the mean frequency Ω(t) for each value of t. Similar to the
computation of the mean Ω in (3.212), we obtain that

Ω(t) =

∫ ∞

−∞
ΩWx(t, Ω)dΩ∫ ∞

−∞
Wx(t, Ω)dΩ

= ϕ′(t). (3.249)

A proof of this result can be found in [167, 168], see also Problem 3.21. It
can be shown that the result in (3.249) does not carry over to the cases when
Wx(t, Ω) is replaced by, e.g., the spectrogram or the PWVD, although the
resulting Ω(t) may still have some practical utility.

The computation of Ω(t), and the related interpretation as mean instan-
taneous frequency, is meaningful for signals classified as monocomponent
signals, exemplified by the EEG signal shown in Figure 3.31. By determin-
ing Ω(t) in that example, variations in the signal’s dominant frequency can
be quantified so that we can easily determine, e.g., the size and duration of
the decline in frequency during the epileptic event. However, the presence
of multicomponent signals renders the analysis difficult since Ω(t) looses its
interpretation as mean instantaneous frequency.
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3.6.4 General Time–Frequency Distributions—Cohen’s Class

A general class of time–frequency distributions has been introduced whose
degrees of freedom can be exploited for mitigating the cross-term prob-
lem [185]. A two-dimensional kernel function g(τ, ν) weights the ambiguity
function in such a way that undesired cross-terms, being far away from the
origin, are suppressed, whereas the auto-terms remain essentially unaffected;
cf. the properties of the ambiguity function illustrated in Figure 3.32(c). The
general time–frequency distribution is defined as

Cx(t, Ω) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
g(τ, ν)Ax(τ, ν)e−jνte−jΩτdνdτ (3.250)

and is known as Cohen’s class [167].
The time–frequency distributions earlier described are all members of

Cohen’s class. The time–frequency distribution Cx(t, Ω) simplifies to the
definition of the WVD in (3.238) when the kernel function is chosen as

g(τ, ν) = 1. (3.251)

The PWVD results from choosing the kernel function as the window function
w(t) in (3.246),

g(τ, ν) = w(τ). (3.252)

It can be shown that the spectrogram, defined by (3.207) and (3.208), also
belongs to Cohen’s class with the kernel function [183]

g(τ, ν) =
∫ ∞

−∞
w∗(t − τ

2
)w(t +

τ

2
)ejνtdt, (3.253)

where w(t) denotes the STFT window function in (3.207). Hence, the kernel
function associated with the spectrogram can, in itself, be understood as an
ambiguity function Aw(τ, ν) of the window w(t).

The suppression of cross-terms comes, however, at a price since g(τ, ν)
introduces smoothing of the WVD which, by necessity, reduces the time–
frequency resolution. The smoothing effect is due to the multiplication of
Ax(τ, ν) with g(τ, ν) in (3.250), thus corresponding to a two-dimensional
convolution of the WVD with the Fourier transform of the kernel function
given by

Cx(t, Ω) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
Wx(t′,Ω′)G(t − t′,Ω − Ω′)dt′dΩ′. (3.254)
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Here, the two-dimensional Fourier transform of the kernel function is ob-
tained by

G(t, Ω) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
g(τ, ν)e−jνte−jΩτdνdτ. (3.255)

This function can be viewed as a lowpass filter since g(τ, ν) is assumed to
have its maximum at origin with g(0, 0) = 1, which assures that the energy
is unaffected, cf. (3.221).

A kernel function g(τ, ν) should exhibit some other properties to make
the resulting time–frequency distribution attractive. The frequency marginal
condition in (3.243) remains valid for time–frequency distributions in Co-
hen’s class, ∫ ∞

−∞
Cx(t, Ω)dt = |X(Ω)|2, (3.256)

when the kernel function satisfies the condition

g(τ, 0) = 1. (3.257)

Similarly, the time marginal condition in (3.242) is satisfied when

g(0, ν) = 1. (3.258)

In order to assure that the distribution is real-valued, i.e., Cx(t, Ω) = C∗
x(t, Ω),

we must also require that

g(τ, ν) = g(−τ,−ν). (3.259)

A large number of kernel functions have been presented [186], and we
will here confine ourselves to only mentioning the most popular member of
Cohen’s class—the Choi–Williams distribution (CWD). This time–frequency
distribution, extensively applied in biomedical signal processing, is defined
by the exponential kernel [187, 188]

g(τ, ν) = e−ν2τ2/(4π2σ), σ > 0, (3.260)

where σ is a design parameter that determines the degree of cross-term
interference reduction and related smoothing effect. Figure 3.35 presents
the shape of the exponential kernel for two different values of σ: for a small
value of σ, the kernel is concentrated around the origin in the ambiguity
domain (except for the τ and ν axes), whereas the resulting distribution
tends to the WVD for large values of σ. With a suitable choice of σ, the
kernel can be used to reduce the influence of cross-terms, while essentially
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Figure 3.35: The exponential kernel function in (3.260) that defines the CWD
plotted for two different values of σ, namely, (a) 0.1 and (b) 1.

preserving the auto-terms. It can be easily verified that the exponential
kernel satisfies the marginal conditions in (3.257), (3.258), and (3.259).

The performance improvement associated with the CWD is illustrated in
Figure 3.36 where the Gaussian two-component signal is analyzed again. It
is evident that the cross-term of the WVD is now suppressed in the CWD.
We also revisit the example in Figure 3.31 of an EEG signal, recorded at
the onset of a seizure, by comparing the corresponding spectrogram, WVD,
and CWD (Figure 3.37). It is noted that the abundance of cross-terms
present in the WVD (Figure 3.37(c)) is largely suppressed in the CWD
(Figure 3.37(d)). Of the three time–frequency representations, the CWD
is thus the one which, for this particular example, gives the most clear-cut
description of the spectral change.

The results presented in Figure 3.37(d) may also serve as an illustration
of a problem associated with the exponential kernel that defines the CWD, as
well as any kernel which fulfils the marginal conditions in (3.258) and (3.257).
Since the exponential kernel does not offer any cross-term reduction along
the τ -axis, or the ν-axis, the CWD contains as a result horizontal and ver-
tical ripple. The horizontal ripple is due to auto-terms centered around
the same frequency but occurring at different times, whereas the vertical
ripple is due to auto-terms with the same time center but occurring at dif-
ferent frequencies. In Figure 3.37(d), some vertical ripple can be noted,
although its presence is hardly decisive for the overall interpretation of the
time–frequency analysis.

Another step taken to improve the performance of time–frequency anal-
ysis is to make use of a signal-dependent kernel rather than a fixed kernel
such as the exponential one in (3.260). This step is motivated by the fact
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Figure 3.36: (a) The WVD and (b) the CWD for the two-component Gaussian
signal in Figure 3.32. The parameter σ that determines the degree of cross-term
interference reduction is equal to one.

that the locations of auto-terms and cross-terms in the ambiguity domain
are dependent on the analyzed signal. With a signal-dependent kernel it is
possible to reduce the presence of the above-mentioned horizontal/vertical
ripple. The search for the “best” signal-dependent kernel has been an im-
portant research topic, and the reader is referred to [189–191] for details on
how such kernels can be designed.

Time–frequency analysis has been extensively used in EEG signal pro-
cessing for detection, characterization, and classification of epileptic signals,
see, e.g., [176, 192–196]. Such analysis has also been considered for moni-
toring the depth of anesthesia; based on animal experiments, it was found
that features derived from the CWD performed better than did features
from traditional Fourier-based analysis [197]. Furthermore, time–frequency
analysis has been used for investigating EEG signals recorded during sleep.
The scope of such analysis may range from estimation of the instantaneous
frequency for the purpose of sleep staging to the more advanced task of de-
termining the anatomical location of cortical regions which generate sleep
spindles [198–200].

Another application of time–frequency analysis in EEG signal process-
ing is the evaluation of common energy between two signals, employing a
cross time–frequency distribution. Such a distribution determines whether
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(a)

(b)

(c)

(d)

Figure 3.37: (a) The EEG at the onset of an epileptic seizure, previously shown
in Figure 3.31(a), and the corresponding (b) spectrogram (imported from Fig-
ure 3.31(b)), (c) WVD, and (d) CWD.
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the time–frequency components of one signal are related to the compo-
nents of another signal. An example is the cross Wigner–Ville distribution
Wx1,x2(t, Ω), defined in (3.245), which has been used for studying the rela-
tionship between pairs of EEG channels recorded during a seizure [193]. In
such studies, the signals x1(t) and x2(t) are derived from two separate chan-
nels, rather than signifying two components of a single signal as was done
in (3.232). In another study, an improved version of the “cross-spectrogram”
was used for investigating signal transmission properties between two differ-
ent regions of the brain [116, 201].

With several approaches to nonparametric time–frequency analysis avail-
able, the following question is inevitable: which type of time–frequency ana-
lysis is to be preferred? The answer to this question is unfortunately not eas-
ily delineated, although it is fair to say that the CWD, or a signal-dependent
kernel, is often preferable thanks to its better time–frequency resolution. It
is important to remember, however, that the spectrogram in its simplic-
ity may be sufficiently adequate for analyzing certain types of biomedical
signals. Recent research has dealt with the issue to define measures for eval-
uating the performance of different approaches to nonparametric, quadratic
time–frequency analysis [202]. Although such measures are very helpful in
comparing the performance when the observed signal is simulated, or avail-
able in a “stylized” form, the results cannot be directly translated to the
performance on EEG signals but should be viewed as a guideline. The pre-
ferred time–frequency analysis is ultimately the one which yields the better
performance in clinical terms.

3.6.5 Model-based Analysis of Slowly Varying Signals

Joint time–frequency analysis has, so far, been synonymous with nonpara-
metric approaches. However, such analysis may as well be based on a para-
metric model of the signal. In this section, we will outline how the parameters
of a time-varying AR model,

x(n) = −a1(n)x(n − 1) − · · · − ap(n)x(n − p) + v(n), (3.261)

can be estimated under the assumption that temporal variations are rela-
tively slow. In addition to the parameters a1(n), . . . , ap(n), the input noise
v(n) is also assumed to be time-varying with variance σ2

v(n). Hence, the
time-varying power spectrum is given by

Sx(ejω, n) =
σ2

v(n)∣∣∣∣∣1 +
p∑

k=1

ak(n)e−jωk

∣∣∣∣∣
2 , (3.262)
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offering another alternative to time–frequency representation of the observed
signal. It is often sufficient to compute the sequence of spectra in (3.262)
for a subset of the samples, for example, for every fifth sample, which helps
to reduce the amount of computations. However, methods which estimate
the values of the AR parameters need to operate sequentially so that the
estimator must nonetheless be updated every time a new sample becomes
available.

We will present two adaptive methods below which minimize sequentially
different definitions of the prediction error criterion. The first method mini-
mizes the forward prediction error variance and leads to the LMS algorithm.
The second method minimizes the forward and backward prediction error
variances, assuming a lattice structure of the predictor, and leads to the
gradient adaptive algorithm. In both cases, the gradient descent approach
is employed to find the desired algorithm.

LMS Algorithm. The derivation of the LMS algorithm is done by first
recalling the definition of the forward prediction error variance from (3.119),

E
[
e2
p(n)

]
= E

[
aT

p x̃p(n)x̃T
p (n)ap

]
.

This error is minimized sequentially by using the LMS algorithm, previously
introduced in (3.48), which, with notation in terms of the linear predictor,
becomes

a′
p(n + 1) = a′

p(n) − 1
2
µ∇a′

p
E

[
e2
p(n)

]
, (3.263)

where a′
p(n) denotes the coefficient vector with the fixed element a0 = 1

excluded,

a′
p(n) =

⎡⎢⎢⎢⎣
a1

a2
...

ap

⎤⎥⎥⎥⎦ . (3.264)

The error gradient is given by

∇apE
[
e2
p(n)

]
= 2E

[
x̃p(n)x̃T

p (n)ap

]
= 2E [ep(n)x̃p(n)] , (3.265)

where use has been made of (3.116) in order to obtain the second equality.
The resulting LMS algorithm for estimating the predictor coefficients is then
given by

a′
p(n + 1) = a′

p(n) − µep(n)x̃′
p(n), (3.266)
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where the expected value in (3.265) has been replaced by its instantaneous
estimate, cf. (3.52); note that the vector x̃′

p(n) is defined similarly to a′
p(n)

in (3.264). For the steady-state situation, the LMS algorithm converges if

0 < µ <
2

tr(R̃x)
. (3.267)

Gradient Adaptive Lattice Algorithm. The other adaptive algorithm
considered is related to Burg’s method and is known as the gradient adaptive
lattice (GAL) predictor. The derivation of the GAL algorithm is based on the
error criterion in (3.140) and involves both forward and backward prediction
error variances,

σ2
e(n) = E

[
|e+

j (n)|2
]

+ E
[
|e−j (n)|2

]
. (3.268)

The scalar update equation for each FIR lattice coefficient γj is again given
by the gradient descent approach,

γj(n + 1) = γj(n) − 1
2
µj

∂σ2
e(n)

∂γj
, j = 1, . . . , p. (3.269)

The step size parameter µj is here allowed to be different for each lattice
coefficient. From the lattice filter equations in (3.153) and (3.154) it follows
that the gradient is

∂σ2
e(n)

∂γj
= −2

(
E

[
e+
j (n)e−j−1(n − 1)

]
+ E

[
e−j (n)e+

j−1(n)
])

. (3.270)

Replacing the expected values with their corresponding instantaneous esti-
mates, we obtain the GAL algorithm,

γj(n + 1) = γj(n) + µj

(
e+
j (n)e−j−1(n − 1) + e−j (n)e+

j−1(n)
)

. (3.271)

It can be shown that γj(n) converges to Burg’s solution in (3.159) if the step
size is chosen such that [103]

0 < µj <
2

E
[
|e+

j−1(n)|2
]

+ E
[
|e−j−1(n − 1)|2

] . (3.272)

In order to compute the power spectrum from the resulting lattice coefficient
estimates, we insert γj(n) into the Levinson–Durbin recursion in (3.130) to
obtain a1(n), . . . , aj(n), which then are used in (3.262).

Often, the step size µj is made time-varying and is chosen so that the
gradient is normalized with respect to the total energy ξj(n) of the forward



Section 3.6. Joint Time–Frequency Analysis 161

0 1 2 3 4  5

10

0

20

30

40

50

60

70

80

Frequency (Hz)

AR power
spectrum

EEG

T
im

e 
(s

)

0 1 2 3 4  5
Frequency (Hz)

Figure 3.38: Time–frequency analysis of an EEG signal recorded during a seizure
using a time-varying AR modeling approach (main panel). The left panel displays
the EEG signal, and the bottom panel displays the power spectrum that results
from the assumption of an AR model with time-invariant parameters. (Reprinted
from Celka et al. [94] with permission.)

and backward prediction errors, i.e., µj(n) ∼ 1/ξj(n). The energy ξj(n) is
usually defined by an exponentially weighted sum in which the most recent
prediction errors are assigned the largest weights,

ξj(n) = β

n∑
i=1

(1 − β)n−i
(
|e+

j−1(i)|2 + |e−j−1(i − 1)|2
)

, (3.273)

where β denotes an exponential weighting factor (0 < β < 1). The weighted
sum in (3.273) can be efficiently computed using the following recursion,

ξj(n) = βξj(n − 1) + (1 − β)
(
|e+

j−1(n)|2 + |e−j−1(n − 1)|2
)

. (3.274)

Time–frequency analysis based on a time-varying AR model is illustrated
in Figure 3.38 for an EEG signal recorded during a seizure. The time–
frequency representation was obtained using a slightly modified version of
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the above LMS algorithm, assuming an AR model order of p = 8 [94]. Fig-
ure 3.38 shows that the dominant frequency of the seizure signal increases
during the first 30 s, after which it declines rapidly in frequency during
the next 10 s. The dominant frequency then reaches a steady state which
lasts during the remaining 40 s of the recording. The graphical format of
Figure 3.38 differs from those previously used for time–frequency represen-
tations in that both the signal and its power spectrum are included. This
format illustrates clearly that the AR power spectrum provides insufficient
information about the behavior of the signal. Finally, we note that several
other studies have made use of time-varying AR models in the context of
EEG signal processing [175, 203–205].
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62, Elsevier, 1986.

[64] J. W. Clark, “The origin of biopotentials,” in Medical Instrumentation. Application
and Design (J. G. Webster, ed.), pp. 121–182, New York: John Wiley & Sons, 1998.



166 Chapter 3. EEG Signal Processing

[65] J. V. Basmajian and C. J. De Luca, Muscles Alive. Their Functions Revealed by
Electromyography. Baltimore: Williams & Wilkins, 1985.

[66] P. K. H. Wong, Digital EEG in Clinical Practice. Philadelphia: Lippincott - Raven,
1996.

[67] D. P. Burbank and J. G. Webster, “Reducing skin potential motion artifact by skin
abrasion,” Med. Biol. Eng. & Comput., vol. 16, pp. 31–38, 1978.

[68] L. A. Geddes, Electrodes and the Measurement of Bioelectric Events. New York:
John Wiley & Sons, 1972.

[69] A. S. Gevins, C. L. Yeager, G. M. Zeitlin, S. Ancoli, and M. Dedon, “On-line
computer rejection of EEG artifact,” Electroencephal. Clin. Neurophysiol., vol. 42,
pp. 267–274, 1977.

[70] A. S. Gevins, G. M. Zeitlin, S. Ancoli, and C. L. Yeager, “On-line computer re-
jection of EEG artifact. II. Contamination by drowsiness,” Electroencephal. Clin.
Neurophysiol., vol. 43, pp. 31–42, 1977.

[71] E. R. John, H. Ahn, L. Prichep, M. Trepetin, D. Brown, and H. Kaye, “Develop-
mental equations for the electroencephalogram,” Science, vol. 210, pp. 1255–1258,
1980.

[72] A. V. Oppenheim, R. W. Schafer, and T. G. Stockham, “Nonlinear filtering of
multiplied and convolved signals,” Proc. IEEE, vol. 56, pp. 1264–1291, 1968.

[73] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. New Jersey:
Prentice-Hall, 1975.

[74] R. C. Kemerait and D. G. Childers, “Signal detection and extraction using cepstrum
techniques,” IEEE Trans. Inform. Theory, vol. 18, pp. 745–759, 1972.

[75] B. Salzberg, “The potential role of cepstral analysis in EEG research in epilepsy,”
in Quantitative Analytic Studies in Epilepsy (P. Kellaway and I. Petersén, eds.),
pp. 559–563, New York: Raven Press, 1976.

[76] J. Gotman, J. R. Ives, and P. Gloor, “Frequency content of EEG and EMG at seizure
onset: Possibility of removal of EMG artifact by digital filtering,” Electroencephal.
Clin. Neurophysiol., vol. 52, pp. 626–639, 1981.

[77] P. P. Lawrence, A. W. Juhn, and P. B. Michael, “Practical digital filters for reduc-
ing EMG artifact in EEG seizure recording,” Electroencephal. Clin. Neurophysiol.,
vol. 72, pp. 268–276, 1989.

[78] T. L. Johnson, S. C. Wright, and A. Segall, “Filtering of electrode and muscle artifact
from the electroencephalogram,” IEEE Trans. Biomed. Eng., vol. 26, pp. 556–563,
1979.

[79] C. Zheng, J. C. Sackellares, W. J. Williams, A. Tornow, and R. Kushwaha, “Reduc-
ing EMG artifact in EEG recording with standard median filter and FIR-median
hybrid filter,” in Proc. Conf. IEEE Eng. Med. Biol. Soc. (EMBS), pp. 847–848,
IEEE, 1990.

[80] M. Akay and J. A. Daubenspeck, “Investigating the contamination of electroen-
cephalograms by facial muscle electromyographic activity using matching pursuit,”
Brain and Language, vol. 66, pp. 184–200, 1999.

[81] M. van der Velde, G. van Erp, and P. J. M. Cluitmans, “Detection of muscle artefact
in the normal human awake EEG,” Electroencephal. Clin. Neurophysiol., vol. 107,
pp. 149–158, 1998.



Bibliography 167

[82] D. G. Girton and J. Kamiya, “A simple on-line technique for removing eye movement
artifacts from the EEG,” Electroencephal. Clin. Neurophysiol., vol. 34, pp. 212–216,
1973.

[83] J. L. Whitton, F. Lue, and H. Moldofsky, “A spectral method for removing eye
movement artifacts from the EEG,” Electroencephal. Clin. Neurophysiol., vol. 44,
pp. 735–741, 1978.
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[101] T. Gasser, L. Sroka, and J. Möcks, “The correction of EOG artifacts by frequency
dependent and frequency independent methods,” Psychophysiology, vol. 23, pp. 704–
712, 1986.

[102] W. Du, H. M. Leong, and A. S. Gevins, “Ocular artifact minimization by adaptive
filtering,” in Proc. IEEE Workshop on Statistical Signal and Array Proc., pp. 433–
436, 1994.

[103] M. Hayes, Statistical Digital Signal Proccessing and Modeling. New York: John
Wiley & Sons, 1996.

[104] G. Dumermuth and H. Flühler, “Some modern aspects in numerical spectrum anal-
ysis of multichannel electroencephalographic data,” Med. Biol. Eng., vol. 5, pp. 319–
331, 1967.

[105] F. H. Lopes da Silva, “EEG analysis: Theory and practice,” in Electroencephalogra-
phy. Basic Principles, Clinical Applications and Related Fields (E. Niedermayer and
F. Lopes da Silva, eds.), pp. 1135–1163, Baltimore: Williams & Wilkins, 1999.

[106] N. Kawabata, “Test of statistical stability of the electroencephalogram,” Biol. Cy-
bern., vol. 22, pp. 235–238, 1976.

[107] A. Sances and B. A. Cohen, “Stationarity of the human electroencephalogram,”
Med. Biol. Eng. & Comput., vol. 15, pp. 513–518, 1977.
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for time–frequency signal analysis—Part III: Relations with other time–frequency
signal transformations,” Philips J. Res., vol. 35, pp. 372–389, 1980.

[183] A. Mertins, Signal Analysis. Chichester: John Wiley, 1999.
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Problems

3.1 Higher-order moments are sometimes used to characterize the EEG signal.
For example, the univariate third- and fourth-order moments, i.e., the skew-
ness γs and kurtosis γk, respectively, can be estimated by [30]

γs =
1

(σ2
x)3/2

· 1
N

N−1∑
n=0

(x(n) − x)3 ,

and

γk =
1

(σ2
x)2

· 1
N

N−1∑
n=0

(x(n) − x)4 − 3,

where x = 1
N

∑N−1
n=0 x(n) and σ2

x = 1
N

∑N−1
n=0 (x(n) − x)2. In order to illus-

trate the significance of γs and γk, we assume that two different signals, x1(n)
and x2(n), are characterized by PDFs which constrain the signals to only as-
sume fixed values. For x1(n) the fixed values are ±A, and the corresponding
PDF is given by

p(x1(n)) =
1
2
δ(x1(n) − A) +

1
2
δ(x1(n) + A),

whereas for x2(n) the fixed values are ±A/2 and ±
√

13A/2, and

p(x2(n)) =
3
8
δ

(
x2(n) − A

2

)
+

3
8
δ

(
x2(n) +

A

2

)
+

1
8
δ

(
x2(n) −

√
13A

2

)
+

1
8
δ

(
x2(n) +

√
13A

2

)
.

Compute the mean, variance, skewness, and kurtosis for x1(n) and x2(n),
and interpret the results.

3.2 We are interested in artifact cancellation using filtered reference signals when
a priori information on the impulse response hi is available. Show that the
filter solution hi, i = 1, . . . , M , minimizing the MSE can be expressed as the
solution of the matrix equation in (3.77),⎛⎜⎝

⎡⎢⎣Rv1v1 · · · Rv1vM

...
. . .

...
RvMv1 · · · RvMvM

⎤⎥⎦ − 2νI

⎞⎟⎠
⎡⎢⎣ h1

...
hM

⎤⎥⎦ =

⎡⎢⎣ rxv1 − 2νh1
...

rxvM − 2νhM

⎤⎥⎦ .

3.3 Derive the mean of the periodogram given in (3.82).
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3.4 Given the power spectrum Sx(ejω), find the least-squares estimate of the
spectral slope parameter b used in the approximate decomposition

log Sx(ejω) ≈ log Sr
x(ejω) + b|ω|.

3.5 Derive the time domain expressions of the spectral moments in (3.100)–
(3.102). Hint: Use the Fourier transform pair

(jΩ)nSx(Ω) FT←→ ∂nrx(τ)
∂τn

.

3.6 A continuous-time EEG signal is modeled by the following power spectrum
with bandpass characteristic,

Sx(Ω) =
{

1, 1/4 < |Ω| < 1/2;
0, otherwise.

a. Determine the value of the mobility descriptor H1, and decide if the
value closely approximates the dominant frequency of the signal.

b. Determine the value of the complexity descriptor H2, and decide if the
value closely approximates half the spectral bandwidth.

c. Determine the value of the spectral purity index ΓSPI, and judge its
ability to describe spectral concentration.

3.7 An amplitude-modulated sinusoid with frequency 9 Hz is subjected to spec-
tral analysis which shows that two frequencies at 8 and 10 Hz are present.
Determine the frequency of the modulating signal, and explain the results
of the spectral analysis [3].

3.8 Show that an AR(p) model analyzed with a model order of p′ > p yields the
same parameter estimates as when analyzed with a model order of p. Hint:
Consider the matrix equation in (3.126) for different model orders.

3.9 Derive the normal equations for backward prediction, and verify that bp = ap

for the real-valued case.

3.10 Sketch the AR autocorrelation function as a function of sampling rate by
sampling a continuous-time signal at various rates. Comment on how the
sampling rate influences the model order selection in the parameter estima-
tion procedure.
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3.11 Show that the solution of the normal equations for AR parameter estimation
can be expressed as⎡⎢⎢⎢⎣

a1

a2
...

ap

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
rx(0) · · · rx(p − 1)
rx(1) · · · rx(p − 2)

...
...

rx(p − 1) · · · rx(0)

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

−rx(1)
−rx(2)

...
−rx(p)

⎤⎥⎥⎥⎦ ,

followed by a second step which produces an estimate of the variance σ2
e ,

σ2
e = rx(0) +

p∑
i=1

airx(i).

3.12 Show that the pair of coefficients in the partial fraction expansion of (3.174)
satisfies c2i−1 = c∗2i when these belong to a pair of complex-conjugate poles
d2i and d2i−1.

3.13 Assuming that AR modeling is used for power spectral analysis, show that
the power Pi of the ith spectral component can be calculated by the following
expression,

Pi = rxi(0)

=
8σ2

v

1 − |d2i|2
[



(
2(c2i) + 
2(c2id
∗
2i) −
(c2i)
(c2id

∗
2i)(d2i + d−1

2i )
1 + |d2i|2 − d2

2i − d∗2id
−1
2i

)]
,

which results from evaluating the residues of the spectral component Sxi(z).

3.14 (cont’d) Assuming that AR modeling is considered for power spectral analy-
sis, show that an estimate of the peak frequency of the ith spectral component
can be obtained by

ωi = arccos
(

1 + r2
i

2ri
cos φi

)
.

3.15 When the peaks of an AR power spectrum are not well-separated, i.e., the
assumption in (3.178) no longer holds, it is not possible to determine the
power from individual spectral components Sxi(z) associated with pairs of
poles, cf. (3.184). Instead, the power must be determined from the total
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power spectrum by making use of the z-transform integral inversion formula

rx(k) =
1

2πj

∮
C

Sx(z)zk−1dz

=
p∑

j=1

Res
[
Sx(z)z−1, dj

]
dk

j ,

which, when solving for k = 0, 1, 2, . . . and applying symmetry, results in

rx(k) =
p∑

j=1

γjd
|k|
j .

a. For an AR power spectrum with p distinct poles,

Sx(z) =
σ2

A(z)A(z−1)
=

σ2

p∏
j=1

(
1 − djz

−1
) (

1 − d∗jz
) .

Determine the value of each residual γj so that the signal power can
be computed as the autocorrelation at zero lag, given by

rx(0) =
p∑

j=1

γj .

b. With the definition of the complex power spectrum Sx(z),

Sx(z) =
∞∑

k=−∞
rx(k)z−k,

interpret the total power as the sum of p terms for each pole.

3.16 Modify the error measure ∆2(n) in (3.199) such that an increase or a decrease
in signal power is treated in the same way; compare with the modification
done when ∆1(n) was introduced in (3.193).

3.17 Find a time domain expression of ∆′
2(n) derived in Problem 3.16 by making

use of the approach for deriving ∆2(n) in (3.203).

3.18 Show that the uncertainty principle in (3.214) for the continuous-time case
also holds for the discrete-time case such that

∆n∆ω ≥ 1
2
,
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where

∆2
n =

∞∑
n=−∞

(n − n)2x2(n)

∞∑
n=−∞

x2(n)

, ∆2
ω =

1
2π

∫ π

0
(ω − ω)2|X(ejω)|2dω

1
2π

∫ π

0
|X(ejω)|2dω

,

and

n =

∞∑
n=−∞

nx2(n)

∞∑
n=−∞

x2(n)

, ω =

1
2π

∫ π

0
ω|X(ejω)|2dω

1
2π

∫ π

0
|X(ejω)|2dω

.

3.19 Show that the short-time Fourier transform, defined in (3.207), can be viewed
as a linear filtering operation, and determine the impulse response of the
linear filter.

3.20 The WVD is usually described in continuous-time where it can be more
easily perceived. The WVD can, of course, also be described in discrete-
time by, for example, introducing sampling into the following form of the
WVD,

Wx(t, Ω) =
∫ ∞

−∞
x∗

(
t − τ

2

)
x

(
t +

τ

2

)
e−jΩτdτ.

It is assumed that the sampling rate Fs is equal to the Nyquist frequency,
i.e., Fs = 2B, where B is the bandwidth of x(t). Show that folding arises
in the WVD at half the Nyquist frequency of x(t), i.e., at B rather than
at 2B (the latter being the folding frequency of the power spectrum of a
discrete-time signal). This result necessitates either that x(t) is sampled at
a rate higher than twice the Nyquist frequency or that use is made of the
analytic signal in the WVD.

3.21 Show the result in (3.249), which states that Ω(t) = ϕ′(t) for the WVD when
the signal is given by xc(t) = s(t)ejϕ(t).





Chapter 4

Evoked Potentials

Evoked potentials (EPs) constitute an event-related activity which occurs as
the electrical response from the brain or the brainstem to various types of
sensory stimulation of nervous tissues; auditory and visual stimulation are
commonly used. The recording of such electrical potentials represents a non-
invasive objective test which provides information on, e.g., sensory pathways
abnormalities, the localization of lesions affecting the sensory pathways, and
disorders related to language and speech. Evoked potentials are recorded
from the scalp using an electrode configuration similar to that of an EEG
recording. The potentials typically manifest themselves as a transient wave-
form whose morphology depends on the type and strength of the stimulus
and the electrode positions on the scalp. The mental state of the subject,
exemplified by attention, wakefulness, and expectation, also influences the
waveform morphology.

Individual EPs have a very low amplitude, ranging from 0.1 to 10 µV, and
are, accordingly, hidden in the ongoing EEG background activity, having an
amplitude on the order of 10 to 100 µV. In contrast to Chapter 3, the EEG in
the present chapter is viewed as “noise” whose influence should be minimized
so that the EP waveform can be subjected to reliable scrutiny. As a result,
noise reduction is one of the most frequently addressed signal processing
issues in the analysis of EPs. Fortunately, an EP usually occurs after a time
interval related to the time of stimulus presentation, whereas the background
EEG activity and non-neural noise occur in a more random fashion. The
stimulus and response property means that repetitive stimulation can be
used in combination with ensemble averaging techniques to help reduce the
noise level (Section 4.3) [1, 2]. With a sufficiently low noise level, the time
delay (latency) and amplitude of each constituent wave of the EP can be
accurately estimated and interpreted in suitable clinical terms (Figure 4.1).
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Figure 4.1: Various morphologies of evoked potentials. The duration, amplitude,
and morphology differ considerably from potential to potential.

The use of ensemble averaging is, however, not without complications,
since the evoked response, in certain situations, undergoes dynamic changes,
thereby violating the averaging assumption of a response exhibiting fixed
waveform morphology. One such situation occurs during neurosurgical pro-
cedures in which it is important to detect time-varying EP changes related
to neurological injury. Considerable research has been directed toward find-
ing techniques which can track dynamic changes, while at the same time
providing sufficient noise reduction. One popular approach is to introduce
certain prior information on the behavior of EP morphology, for example,
by assuming that each response can be modeled as a linear combination of
a subset of orthogonal basis functions. A noise-reduced response is obtained
by “reconstructing” the response from a small number of basis functions;
the weights of the linear combination result from fitting the basis functions
to the observed response. The analysis of time-varying EP changes is com-
monly referred to as single-trial analysis and is described in Sections 4.5
and 4.6.

By convention, the peak/trough wave components of the EP are referred
to by the letters P (positive amplitude) and N (negative amplitude). A num-
ber is appended to the letter reflecting the latency in milliseconds from the
time at which the stimulus was elicited. Alternatively, the appended number
may reflect the temporal order of the component, and is then less than ten.
For example, P300 signifies that a positive peak occurred at 300 ms, whereas
N3 implies that the third waveform component had a negative amplitude.
It should be noted that EPs, by odd convention, are usually plotted with
reversed polarity so that P300 actually corresponds to a trough, and vice
versa (this convention is shared by some other bioelectrical signals).

Evoked potentials resulting from auditory (AEP), visual (VEP), and so-
matosensory (SEP) stimulation are the most commonly used modalities in
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clinical routine, with each modality being described in further detail in Sec-
tion 4.1. For all modalities, measurements on latency and amplitude are
extracted from the waves of the averaged EP and are compared to norma-
tive values in order to discriminate normal, healthy subjects from subjects
with various kinds of neurological impairment [3]. Normative values are
strongly dependent on age, and, therefore, different values have been deter-
mined for newborns and adults. Factors which suggest that an EP should
be interpreted as abnormal include waves which

• have increased latency,

• have decreased amplitude, or

• are missing.

Evoked potentials are often analyzed in individual channels with respect
to temporal and amplitude waveform properties without involving informa-
tion recorded in other channels—an analysis perspective also adopted in this
chapter. However, additional information can be derived on the spatial dis-
tribution of voltages on the scalp by simultaneously analyzing all the data
in a multichannel recording. The analysis of such a recording is illustrated
in Figure 4.2(a) where the EPs resulting from averaging of data, obtained
at different electrode positions, are displayed. From these EPs, it is possible
to construct a series of maps which reflects how the spatial distribution of
voltages evolves in time, see Figure 4.2(b). Each map is created by con-
necting points on the scalp with equal voltages, i.e., an isopotential map;
interpolation is usually performed to make the map continuous-looking for
ease of interpretation. The resulting series of maps can be used to localize
the underlying sources that would generate the maps, sources which usually
are considered in terms of a dipole model [4]. The calculation of maps is,
of course, not restricted to EPs, but can also be done with EEGs, recorded
without any external stimulus, for the purpose of, for example, locating an
epileptic focus [5].

4.1 Evoked Potential Modalities

A stimulus elicits electrical impulses in local sensory nerve cells which prop-
agate along the nerve fibers to the brain. The sum of all resulting impulses,
in combination with the ongoing electrical activity of the brain, constitutes
the stimulus response. The elicited impulse is initially spike-shaped with a
very short duration, but is prolonged by various factors when recorded by
the surface electrode on the scalp. The change in waveform morphology is
partly caused by impulse propagation in several parallel nerve fibers with
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Figure 4.2: (a) Auditory evoked potentials obtained at different positions on the
scalp. (b) Scalp distribution maps of voltages, calculated at four different latencies,
for three of the AEPs shown in (a). The heavy lines in the maps represent the zero
voltage level. The dashed lines represent contours for negative voltages, and the
thin lines represent contours for positive voltages. The maps were computed for
latencies at which the waveforms either had a peak or a trough. (Reprinted from
Picton et al. [4] with permission.)
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slightly different conduction velocities. Another determining factor is that
the surface electrode “views” the neural activity over a rather large region,
and, therefore, the morphology of the EP is smoothed. The resulting re-
sponse reflects impulse propagation from the entrance of the brainstem into
various parts of the cortex, see Figure 2.2. However, the amplitude of the
brainstem response is smaller than that of the cortex since it originates from
a more distant part of the brain with respect to the electrode. During iden-
tical stimulus and recording conditions, the brainstem response is about one
tenth the size of the cortical response.

Another general property of an EP is that the waves exhibit a gradual
slowdown as the response propagates toward the more complex structures
of the cortex, i.e., the interpeak latencies are prolonged with time. There-
fore, interpeak latencies of the brainstem response are on the order of a few
milliseconds, while late cortical responses have an interpeak latency of more
than 100 ms. Often, short latencies are associated with low amplitudes,
while longer latencies are associated with larger amplitudes.

4.1.1 Auditory Evoked Potentials

Auditory EPs are generated in response to an auditory stimulation usually
produced by a short sound wave. This type of evoked response reflects how
neural information propagates from the acoustic nerve in the ear to the
cortex. The response can be divided into three different intervals according
to latency: the brainstem response, constituting the earliest part, followed by
the middle and late cortical responses. Brainstem auditory evoked potentials
(BAEPs) have primarily been used for the evaluation of different types of
hearing loss (“audiometry”), diagnosis of certain brainstem disorders, and
intraoperative monitoring in order to prevent neurological damage during
surgery [6].

The waveform characteristics of the middle latency AEP are useful for
monitoring the depth of anesthesia during surgery [7, 8]. Since a change
in concentration of the anesthetic dose has been found to be closely related
to latency, appropriate anesthetic depth can be maintained by continuously
tracking changes in latency.

Recording setup. Auditory EPs are elicited by a short duration click
sound delivered to the subject through a conventional set of stereo head-
phones. One ear is stimulated at a time, while the other ear is masked with
bandlimited noise (“pink noise”). The click sound is usually produced by a
0.1-ms square wave pulse, having a repetition rate of 8–10 clicks per second.
The stimulus intensity is commonly defined in units of peak equivalent sound
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(a) (b)

Figure 4.3: Auditory evoked potentials. (a) Recording setup and (b) typical
morphology of a brainstem auditory evoked potential.

pressure level and can vary between 40 and 120 decibels (dB) [9]; the dB
scale is logarithmic with 0 dB defined as a sound pressure of 20 µPa.

Auditory EPs are usually recorded by placing electrodes behind the left
and right ear and at the vertex. The placement is identical to that used
in EEG recordings, i.e., the standardized 10/20 electrode placement system
described in Section 2.3.

Waveform characteristics. The three parts of the AEP exhibit consid-
erable differences in signal properties. The BAEP has a very low amplitude,
ranging from 0.1 to 0.5 µV, and occurs from 2 to 12 ms after stimulus. Due
to its low amplitude, several thousands of stimuli are required to achieve
an acceptable noise level by averaging. The short duration of the BAEP
implies that most of its spectral content is contained in the interval from
500 Hz to about 1.5 kHz [10, 11]. In a normal subject, the BAEP consists
of up to seven waves, generated by various neural structures in the auditory
pathways. By convention, these waves are labeled with Roman numbers,
see Figure 4.3. The loss or reduction of individual waves provides clinically
important information, as do absolute and interpeak latencies.

The middle AEP occurs from 12 to 50 ms, and is followed by the late
response [6]. The amplitudes of these later components are considerably
larger (1–20 µV) than those of the BAEP and increase with latency. One
hundred to 1000 stimuli are usually sufficient for adequate noise reduction.
While the early brainstem response is quite reproducible from stimulus to
stimulus, the middle and late responses can exhibit considerable variability
in morphology.
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(a) (b)

Figure 4.4: Somatosensory evoked potentials. (a) Recording setup and (b) typical
SEP morphology when the peroneal nerve of the leg is stimulated.

4.1.2 Somatosensory Evoked Potentials

Somatosensory evoked potentials (SEPs) are elicited by electrical stimulation
from the body surface of a particular peripheral nerve, usually from an arm or
a leg, see Figure 4.4.1 This type of stimulation provides valuable information
about nerve conduction functionality between the selected stimulation point
via the spinal cord to the cerebral cortex.

Somatosensory EPs can be used to identify blocked or impaired con-
duction in the sensory pathways, produced by certain neurological disorders
such as multiple sclerosis [12]. Another application of the SEP is intraoper-
ative monitoring during spine surgery; an unchanged waveform morphology
throughout surgery suggests that no deterioration in neurological function
has taken place.

Recording setup. Stimulation is performed by delivering a brief elec-
trical impulse via two stimulus electrodes positioned close to the sensory
nerve fiber. Similar to the recording of AEPs and VEPs, SEPs are recorded
by placing electrodes over the motorsensory cortex at predefined locations.
However, a number of additional electrodes are needed, and these are po-
sitioned along the nerve pathway to the cortex, e.g., on the knee and the
spinal cord.

In clinical routine, SEPs are usually recorded by stimulation of three
different nerves: the median nerve in the arm and the tibial and peroneal
nerves which are both in the leg.

Waveform characteristics. The SEP has most of its spectral content in
an interval located well above 100 Hz. The total SEP duration is about

1The prefix somato implies that electrical stimulation is possible from almost any nerve
on the human body.
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(a) (b)

Figure 4.5: Visual evoked potentials. (a) Recording setup where pattern reversal
is used as the stimulation method and (b) typical VEP morphology.

400 ms; however, only the first 40 ms are commonly recorded and analyzed
because the long-latency response exhibits large variability. Similar to the
AEP, the SEP amplitude has substantial intersubject variability and, there-
fore, is of limited clinical value. Important diagnostic information derived
from the SEP waveform is conveyed by the absence of peaks, slow conduction
velocities, and electrode-to-electrode variations in conduction velocity.

4.1.3 Visual Evoked Potentials

The electrical response elicited by visual stimuli can be recorded from the oc-
cipital region of the scalp for the evaluation of visual pathway functionality.
Two different types of stimulus are used, pattern reversal and flashing, de-
pending on the suspected disorder and the ability of the subject to cooperate
during the recording procedure, see Figure 4.5. The clinically useful infor-
mation from VEPs is extracted from the later parts of the response, starting
at about 75 ms, and, accordingly, the VEP is referred to as a long-latency
response [13].

Visual EPs are used for investigating ocular and retinal disorders and
for detecting visual field defects and optic nerve pathology. It has also been
suggested that the VEP be used for intraoperative monitoring where the aim
is to detect early changes in waveform morphology in order to avoid visual
loss and damage to the optic nerve.

Recording setup. The recording of a VEP is often based on a pattern
reversal stimulus, generated by a chessboard pattern being displayed on a
video screen. During the investigation, the patient is required to focus on
a point in the center of the screen while the black-and-white squares are
reversed at a fixed repetition rate so that the white squares become black,
and vice versa. Typically, a rate of two reversals per second is used. The size
of the chessboard squares, the luminance and contrast of the squares, and
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the repetition rate exemplify factors which influence the waveform ampli-
tude and latency. These factors must therefore be taken into account when
interpreting the VEP; the factors can obviously be manipulated in order to
infer additional information from the VEP.

The use of flash stimulus is considered when the patient is unable to
either focus or maintain the level of fixation required for pattern reversal
stimulation. For example, flash stimulation can be helpful when suspected
vision disorders are investigated in neonates. Flash stimulus is delivered at a
rate of five to seven flashes per second. Although the eyes are closed during
this procedure, a sufficient amount of light will pass through the eyelids to
activate the retina.

The recording electrodes are positioned at locations close to the visual
cortex, and the reference electrode is placed at the vertex.

Waveform characteristics. The VEP has an amplitude which is con-
siderably larger than that of an AEP or SEP, ranging up to 20 µV. As a
consequence, the VEP is the only type of EP that, at best, can be observed
directly in the EEG without prior noise reduction. However, such reduction
is performed in clinical routine in order to assure a sufficiently low noise
level; typically 100 stimuli are needed to achieve that level.

The spectral components of a VEP range, in rough terms, from 1 to
300 Hz. The P100 wave can occasionally exhibit a split (“bifid”) morphology,
which may be indicative of abnormality. From a signals analyst’s point of
view, the presence of a bifid morphology implies that the high-frequency
content of a VEP increases.

In a normal subject, the VEP waveform configuration is described by
a small positive peak, a larger negative peak occurring about 75 ms after
stimulus (N75), and a large positive peak about 100 ms after stimulus (P100).
The duration of the response may extend beyond 300 ms. The absolute
latency of P100 as well as differences in P100 latency between the left and
right eye are important measurements which are useful for diagnosis.

4.1.4 Evoked Potentials and Cognition

The above three EP modalities represent different types of response to
physical stimuli and are therefore referred to as “exogenous” responses.
However, EPs can also be elicited by various cognitive factors (“endoge-
nous” responses), resulting in a late response with latencies of 300 ms and
longer [14, 15]. The most well-known, late-latency peak is P300 which is
considered to reflect the cognitive capability of a subject, involving higher
mental functions such as attention and memory processes. The P300 latency
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is related to the time required for memory updating associated with a given
task; in general, latency decreases for increased cognitive performance [16].

The P300 is commonly elicited by means of an “oddball” task in which
two different stimuli, for example, two tones with different pitch, are pre-
sented at random to the subject, although one of the stimuli occurs more
infrequently. The task of the subject is to indicate, by pressing a button,
when the infrequent stimulus occurs (i.e., the oddball) but not when the
frequent one occurs. The responses related to the infrequent stimulus are
then averaged, and the resulting waveform is analyzed [17].

Evoked potentials have also been considered in the study of language
comprehension, where it is of interest to understand how the normal brain
constructs meaning from words in real time. It has been shown that a neg-
ative peak at around 400 ms (N400) varies systematically when semantic
information is being processed [18–20]. For example, it has been observed
that a stimulus defined by a semantically anomalous word in a sentence con-
text produces an electrical response. The amplitude of the N400 in response
to such an “outlier” word is sensitive to the local context in which it occurs;
words which are in context are easier to process for the brain and, therefore,
elicit smaller N400 amplitudes than do words which are out of context (Fig-
ure 4.6). The amplitude of the N400 peak has also been found to be sensitive
to the ease with which information is accessed from long-term memory.

4.2 Noise Characteristics

In the analysis of EPs, noise is essentially synonymous with the spontaneous
background EEG activity whose signal properties have been described in
Section 2.2. Thus, the EEG is the target activity when methods for noise
reduction are discussed below. Noncerebral noise sources, hampering the
success of EEG signal processing, must also be taken into account when EPs
are processed. We reiterate the insight expressed in Section 3.2, that the
main noncerebral sources are eye blinks, eye and eyelid movements, muscle
activity, 50/60 Hz powerline interference, instrumentation noise, and poor
electrode attachment.

Linear, time-invariant, bandpass filtering is sometimes used to remove
noise whose spectral content is outside that of the EP. It is imperative to use
filters with a linear phase response in order to avoid distorting the interpeak
latencies [22–24]. For example, the analysis of BAEPs usually includes band-
pass filtering of the averaged signal; the lower and upper cut-off frequencies
of the filter are located approximately at 25 and 2000 Hz, respectively. As
we will see later, the bandpass characteristic arises naturally when the aim
is to design filters which maximize the signal-to-noise ratio (SNR) of EPs.
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‘They wanted to make the hotel look like a tropical resort.
 So along the driveway they planted rows of ....’ 

5 µV

Figure 4.6: The amplitude of the N400 response is sensitive to semantic relation-
ships. The sentence above is presented with three different endings, of which two
are unexpected and associated with increased amplitude in the interval between
250 and 500 ms after the final word. The ending “pines”, which is within the same
category (i.e., trees) as the expected ending, produced an N400 peak with lower
amplitude than the ending “tulips”, which violates the tree category. (Reprinted
from Federmaier and Kutas [21] with permission.)

Certain types of noise and artifacts are related in time to the stimulus
and, therefore, will degrade the performance of ensemble averaging methods.
Eye movement represents the most important source of such artifacts and
distorts the signal to various degrees depending on the direction of the eye
movement and the electrode position. The influence of such ocular activity
can be substantially reduced by computing an ensemble average of the ocular
activity using the EOG which reflects the electrical activity associated with
eye movement. The averaging technique requires that eye movement first
be reliably detected in an EOG. A signal, produced by suitably combining
selected weights of the average ocular activity, is then subtracted from the
EEG channel, and the “corrected” EEG is used for analysis of EPs [25–
28]. The weights used for subtraction can be determined using the linear
cancellation method described in Section 3.2.4.

The electrical activity of the heart is another noise source whose contri-
bution is difficult to cancel with ensemble averaging techniques, especially
when the heart rate happens to coincide with the stimulus rate. Information
on heartbeat timing can, however, be acquired so that a stimulus rate can
be selected which precludes this type of time-locked artifact [29]. Another
technique for avoiding such artifacts is to use an aperiodic presentation of
the stimulus [30], [31, p. 192ff].
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4.3 Noise Reduction by Ensemble Averaging

The starting point for noise reduction in event-related signals is the observa-
tion that a stimulus causes a brain response time-synchronized to the stim-
ulus. The stimulus is assumed to be elicited at equidistant points in time,
and the resulting EPs are contained in a signal recorded from a suitably po-
sitioned scalp electrode. The observed EEG signal can be transformed into
an ensemble of M different potentials, with each potential xi(n) described
by N samples,

xi(n), i = 1, . . . , M ; n = 0, . . . , N − 1. (4.1)

The ensemble is the natural starting point for the discussion in this section
and is conveniently represented by the N × M matrix X,

X =
[
x1 x2 · · · xM

]
, (4.2)

where the ith potential is contained in the column vector

xi =

⎡⎢⎢⎢⎣
xi(0)
xi(1)

...
xi(N − 1)

⎤⎥⎥⎥⎦ . (4.3)

Figure 4.7 illustrates the formation of an ensemble with EPs.
The assumption of perfect time synchronization between stimulus and

response, being implicit in (4.1), is not always valid; variations in latency can
be attributed, to various degrees, to the inherent phenomenon of biological
variability. It may, therefore, be necessary to introduce techniques that can
estimate and compensate for such variations prior to ensemble averaging
(see Section 4.3.7). Other complications are related to the fact that EPs
can differ in amplitude and morphology and are sometimes even completely
absent; some of these aspects are discussed in Section 4.3.4.

Although noise reduction by ensemble averaging will be discussed within
the context of EP analysis, identical approaches have been considered in
many applications in the area of biomedical signal processing. For exam-
ple, reliable characterization of cardiac late potentials in the ECG requires
that averaging of several cardiac cycles first be performed (Section 6.6.5). In
that particular application, no prior time reference is available for the heart-
beats, but it must be inferred from the signal itself employing a suitable
detection/estimation procedure.
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Figure 4.7: Formation of an ensemble with EPs of somatosensory origin. The
stimulus is elicited periodically at the instants indicated by the arrows. The signal
x1 contains 40 ms of data preceding the first stimulus (prestimulus data), 40 ms of
data following the first stimulus, and so on. Stimulation can, if required, be done
aperiodically.

4.3.1 Averaging of Homogeneous Ensembles

Ensemble averaging is based on a simple signal model in which the potential
xi of the ith stimulus is assumed to be additively composed of a deterministic,
evoked signal component s and random noise vi which is asynchronous to
the stimulus,

xi = s + vi, (4.4)

where

s =

⎡⎢⎢⎢⎣
s(0)
s(1)

...
s(N − 1)

⎤⎥⎥⎥⎦ . (4.5)
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The noise vi of the ith EP,

vi =

⎡⎢⎢⎢⎣
vi(0)
vi(1)

...
vi(N − 1)

⎤⎥⎥⎥⎦ , (4.6)

is assumed to derive from the ongoing “noise” process v(n) which, in this
model, is a stationary, zero-mean process,

E[v(n)] = 0. (4.7)

The noise is characterized by its correlation function rv(k),

rv(k) = E[v(n)v(n − k)]. (4.8)

Consequently, the noise variance is fixed and identical in all potentials,

rv(0) = E[v2
i (n)] = σ2

v , i = 1, . . . , M. (4.9)

Ensemble averaging does not exploit the detailed properties of rv(k), except
that rv(k) is assumed to decay to zero so fast that the background noise can
be considered to be uncorrelated from potential to potential,

E[vi(n)vj(n − k)] = rv(k)δ(i − j), (4.10)

where

δ(i) =
{

1, i = 0;
0, i �= 0.

(4.11)

However, the detailed properties of rv(k) will be investigated in Section 4.4
for the purpose of noise reduction using linear filtering techniques.

Ensemble averaging is a straightforward approach to estimate the deter-
ministic signal s and produces the estimate ŝa,

ŝa =
1
M

(x1 + x2 + · · · + xM ) =
1
M

X1 (4.12)

= s +
1
M

V1,

where the noise components, represented by the column matrix

V =
[
v1 v2 · · · vM

]
, (4.13)

are attenuated by the factor 1/M . The column vector 1 has the value one
in all entries. The exact notation is ŝa,M , where M indicates the size of the
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(a)

(b)

Figure 4.8: Noise reduction by ensemble averaging. (a) Four of the M different
VEPs contained in the ensemble and (b) the resulting ensemble average based on
different ensemble sizes.

ensemble; however, M is omitted unless it is explicitly required. The more
familiar expression for ensemble averaging,

ŝa(n) =
1
M

M∑
i=1

xi(n), (4.14)

is obtained by separating out the nth element of ŝa in (4.12). The perfor-
mance of ensemble averaging is illustrated in Figure 4.8, where ŝa is com-
puted from ensembles of different sizes, with each individual potential having
a very low SNR.

It is of great interest to determine the statistical properties of ŝa(n) as
characterized, for example, in terms of its mean and variance. Since the
noise is zero-mean, it is easily shown that the ensemble average ŝa(n) is an
unbiased estimator,

E[ŝa(n)] = s(n). (4.15)

Combining this result with (4.10), which states that the noise is uncorrelated
from potential to potential, it is easily shown that ŝa(n) has a variance
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V [ŝa(n)] being inversely proportional to the number of averaged potentials,

V [ŝa(n)] = E
[
(ŝa(n) − E[ŝa(n)])2

]
=

1
M2

M∑
i=1

M∑
j=1

E[vi(n)vj(n)]

=
σ2

v

M
. (4.16)

Since the variance approaches zero with an increasing value of M , the esti-
mator is referred to as consistent. From (4.16) it is obvious that the expected
magnitude of the noise is reduced by a factor

√
M . Accordingly, a fourfold

number of potentials is required to reduce the noise level, defined by σv, by
a factor of two.

The reduction in noise variance rests upon a number of model assump-
tions whose validity must be examined. The discussion also provides impor-
tant background to the development of other methods described later in this
chapter.

1. Starting with the noise, the assumption of zero-mean in (4.7) is the
least critical of the model; a nonzero mean can easily be estimated
from the observed signal and subtracted.

2. Large, slowly changing EEG components may invalidate the assump-
tion in (4.10), which states that the noise is uncorrelated from potential
to potential. However, suitable use of linear phase, highpass filtering
can often remedy this problem without distorting the amplitudes and
latencies of the EP waveform. Any remaining interpotential correla-
tion will reduce the effectiveness of ensemble averaging. Decreasing
the stimulus rate reduces this problem although at the expense of pro-
longed acquisition time.

Although the ongoing EEG activity may be viewed as a stationary
process during a single potential, its statistical properties change con-
siderably during the course of an EP investigation. One way to ac-
count for such changes is to assume that the noise variance is response-
dependent; weighted averaging is a methodology that exploits such an
assumption, see Section 4.3.4.

3. The assumption of a signal component s(n) being fixed from potential
to potential is inadequate in certain applications, for example, in intra-
operative monitoring where sudden changes in waveform morphology
may occur. Even under less strenuous conditions, various factors, due
to subject expectation and habituation or environmental activity, may
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introduce potential-to-potential variations. Techniques for handling
such variations are presented in Section 4.3.7.

Although ensemble averaging can be based on shorter, consecutive sub-
intervals (“subaveraging”) for improved tracking of waveform changes,
such an improvement comes at the expense of less efficient noise re-
duction. Therefore, various methods involving model-based signal pro-
cessing and adaptive estimation techniques have been developed for
single-trial analysis (Section 4.5). Even the analysis of unaveraged
EP data has recently been advocated as a better way of viewing and
describing event-related brain dynamics [32].

4. In addition to inter-response changes in waveform morphology, the sig-
nal s(n) may exhibit correlation with the noise vi(n). This situation
may arise when the patient is aware of the experiment and, therefore,
expects a stimulus. The additive model in (4.4) was actually seriously
questioned by Sayers et al. [33, 34] who hypothesized that the EP is
not an additive component, but rather a phase reorganization of the
ongoing EEG. For auditive stimuli, they showed, using Fourier-based
spectral analysis, that the phase spectra changed from the prestimulus
EEG to the EP, while the amplitude spectra and the total energy con-
tent of the signal largely remained unchanged. A more recent study
was, however, not able to confirm these findings, but concluded that
additive energy was introduced during the presence of an EP [35]. In
another experiment, a certain interaction between the EP and the on-
going EEG activity was observed for visual stimuli [36]. In particular,
it was found that the EEG amplitude decreased by 5–15% during mas-
sive visual stimulation.

While correlation between s(n) and vi(n) implies less efficient noise
reduction, the ensemble averaging procedure is still applicable and will
enhance a recurrent signal component.

5. Ensemble averaging, as presented above, does not involve any assump-
tion on the statistical distribution of the noise. However, the compu-
tation of the mean and the variance in (4.15) and (4.16), respectively,
possibly suggests that the noise is Gaussian since these two quanti-
ties provide complete characterization of ŝa(n) when the noise is white
and Gaussian. Not really surprisingly, it will later be shown that the
ensemble average constitutes an optimal estimator of s(n) when the
noise is Gaussian. The appropriateness of modeling the spontaneous
EEG as a Gaussian process has been the subject of investigation, see
Section 3.1.2 and [37, 38]. Although published results are conflicting,
it can be concluded that the EEG is close to a Gaussian distribution
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when considered as an ensemble of waveforms [39]. Intermittently oc-
curring noise and artifacts, for example, due to blinking, may suggest
that a noise distribution with longer tails is more appropriate. Since
the ensemble average in (4.12) cannot handle such noise distributions
in a graceful way, it is desirable to study more robust methods for the
estimation of s(n); the topic of robust averaging is briefly described in
Section 4.3.5.

Once the assumptions associated with ensemble averaging are judged to
be reasonably valid, it may be of interest to estimate the variance σ2

v in order
to assess the reliability of the ensemble average. A simple approach to vari-
ance estimation is to use the “silent” prestimulus interval which essentially
contains only noise. However, this approach becomes unreliable when the
prestimulus interval is very short and fails completely when the timing of
stimuli is such that late EP components overlap the early components of the
subsequent response.

Another technique for estimating σ2
v is to compute the ensemble variance

for each sample n using the following expression,2

σ̂2
v(n) =

1
M

M∑
i=1

(xi(n) − ŝa,M (n))2 . (4.17)

Although the ensemble variance is a function of time, it is reasonable to es-
timate σ2

v by averaging the samples of σ̂2
v(n) within the observation interval

[0, N − 1] if s(n) is fixed and the noise is stationary. Figure 4.9 shows the
reduction in noise level, as characterized by the ensemble standard devia-
tion σ̂v/

√
M , for an increasing number of potentials M .

It should be pointed out that the ensemble variance is not only used
for estimating σ2

v , but can also be considered for measuring the degree of
morphologic waveform variability, as produced by various underlying phys-
iological mechanisms. For example, latency variation of a certain peak is
manifested by a local peak in σ̂2

v(n) which stands out from the background
variability due to noise.

Yet another approach to estimate σ2
v is split trial assessment, being a

computationally much less costly technique than the ensemble variance de-
fined in (4.17) [40, 41]. The ensemble is split into two parts of equal size
obtained by grouping together odd- and even-numbered potentials and com-

2Although this is an asymptotically unbiased estimator, it is used for reasons of simi-
larity with other estimators presented in this chapter. In the unbiased variance estimator
the factor 1/M is replaced by 1/(M − 1).
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Figure 4.9: The reduction in noise level of the ensemble average as a function of
the number of potentials M ; the data are identical to those used in Figure 4.8. The
noise level is defined by the ensemble standard deviation σ̂v, obtained by averaging
σ̂v(n) over the interval [0, N − 1], cf. (4.17). The dashed line displays the noise
estimate σ̂v before division by the factor 1/

√
M .

puting the corresponding subaverages,

ŝal
(n) =

2
M

M/2∑
i=1

x2i−l(n), l = 0, 1, (4.18)

where M is assumed to be an even integer. The ensemble can, of course,
be divided in many other ways, e.g., using the first and second half of the
ensemble, respectively, to compute the subaverage,

ŝal
(n) =

2
M

M/2∑
i=1

xi+lM/2(n), l = 0, 1. (4.19)

The estimation of σ2
v is based on the difference signal ∆ŝa(n) between the

two subaverages,

∆ŝa(n) = ŝa0(n) − ŝa1(n), (4.20)

which only contains noise since the signal contribution is cancelled out. Using
either of the subaverage definitions in (4.18) and (4.19), the variance of
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∆ŝa(n) is given by

V [∆ŝa(n)] =
4σ2

v

M
. (4.21)

Thus, an estimate of σ2
v can be determined by first computing the variance

of ∆ŝa(n) followed by multiplication by M/4,

σ̂2
v =

M

4
σ̂2

∆ŝa

=
M

4
1
N

N−1∑
n=0

(∆ŝa(n))2. (4.22)

It should be emphasized that the variance estimation in (4.22) is computed
in time for consecutive samples, whereas the variance estimation in (4.17) is
computed across the ensemble for a fixed instant in time.

Subaveraging has also been employed for defining performance measures
that reflect the SNR of the ensemble average. One such measure is the
cross-correlation coefficient ρ between the two subaverages ŝa0 and ŝa1 [42],

ρ =
ŝT
a0

ŝa1√
ŝT
a0

ŝa0

√
ŝT
a1

ŝa1

. (4.23)

By use of the Cauchy–Schwarz inequality, it can be shown that |ρ| ≤ 1.
The cross-correlation coefficient ρ approaches one when ŝa0 and ŝa1 be-
come increasingly similar in morphology, and, therefore, the cross-correlation
coefficient can be interpreted as a normalized SNR measure. In order to
make the computation of ρ meaningful, the DC levels of ŝa0 and ŝa1 must
first be removed. The SNR measure in (4.23) can be extended from being
a cross-correlation between two subaverages to a cross-correlation between
all M potentials—a measure which is referred to as “ensemble correlation”
(Section 4.3.8). Other SNR definitions have been suggested in the literature
which are based on a pair of subaverages [43–45].

In addition to the definition of an SNR, subaveraging represents a stan-
dard technique for visually assessing the reproducibility of an EP investiga-
tion. The two subaverages are graphically superimposed on each other to
help reveal morphologic deviations that may indicate variability in signal
morphology or noise with nonstationary properties.

4.3.2 Ensemble Averaging Interpreted as Linear Filtering

Ensemble averaging can be interpreted in terms of linear, time-invariant
filtering and can therefore be characterized by a filter impulse response h(n).
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The derivation of h(n) and its Fourier transform provide additional insight
into the mechanisms of ensemble averaging. The ensemble of EPs can be
viewed as a composite signal x(n) that results from periodic stimulation with
a period length N ,

ŝa(n) =
1
M

M−1∑
i=0

x(n − iN). (4.24)

The signal x(n) is obtained from concatenation of successive potentials
x1(n), . . . , xM (n),

x(n) = x� n
N �+1

(
n −

⌊ n

N

⌋
N

)
, n = 0, . . . , NM − 1, (4.25)

where �·� denotes the integer part of the argument. Using the fundamental
property which allows a discrete-time signal x(n) to be expressed as a series
expansion of unit impulse functions δ(n),

x(n) =
∞∑

l=−∞
x(l)δ(n − l), (4.26)

the ensemble average in (4.24) can be rewritten as a convolution between
x(n) and h(n),

ŝa(n) =
1
M

M−1∑
i=0

∞∑
l=−∞

x(l)δ(n − l − iN)

=
∞∑

l=−∞
x(l)h(n − l), (4.27)

where the impulse response is defined by

h(n) =
1
M

M−1∑
i=0

δ(n − iN). (4.28)

Ensemble averaging is thus synonymous with causal filtering of the M po-
tentials, using an FIR filter whose coefficients are all identical to 1/M . The
frequency response H(ejω) of the filter is given by the Fourier transform
of h(n),

H(ejω) =
1
M

∞∑
n=0

M−1∑
i=0

δ(n − iN)e−jωn. (4.29)
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The calculation of H(ejω) can be performed by first calculating the Fourier
transform of

h′(n) =
1
M

M−1∑
i=0

δ(n − i) (4.30)

and then taking care of the factor N . Since h′(n) represents a rectangular
signal of duration M , its Fourier transform is given by

H ′(ejω) =
1
M

∞∑
n=0

M−1∑
i=0

δ(n − i)e−jωn

=
sin(ωM/2)
M sin(ω/2)

exp
[
−jω(M − 1)

2

]
. (4.31)

Next, we note that the factor N in (4.28) corresponds to a zero-filling opera-
tion of the impulse response h′(n) in which N −1 zeros are inserted between
the successive unit impulse functions, represented by the term δ(n − iN).
It is well-known from multirate signal processing that this operation is syn-
onymous with upsampling which results in an N -fold periodic repetition of
H ′(ejω) [46]. Hence, the desired frequency function H(ejω) is given by

H(ejω) = H ′(ejωN )

=
sin(ωNM/2)
M sin(ωN/2)

exp
[
−jωN(M − 1)

2

]
. (4.32)

The magnitude response of H(ejω) is presented for various values of M
and N in Figure 4.10. Since |H(ejω)| is a periodic function of ω with period
2π/N , exhibiting a comb-like appearance, this type of filter is commonly re-
ferred to as a comb filter. It is obvious from Figures 4.10(a) and (b) that the
amplitude and width of the sidelobes are inversely proportional to the num-
ber of potentials M . Hence, improved noise suppression is achieved when
the sidelobes become increasingly smaller for increasing values of M . Prob-
lems arise, however, when the background EEG rhythm, or various types of
artifact, has a spectral content close to the stimulus frequency and/or its har-
monics. For example, the stimulus rate should not be selected as a harmonic
of the powerline interference, i.e., the 50/60 Hz powerline frequency.

4.3.3 Exponential Averaging

A disadvantage of ensemble averaging is that the resulting estimate cannot
track dynamic changes occurring in the observed signal. In order to derive
such an estimator, we will start by describing how the ensemble average ŝa,M
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Figure 4.10: The magnitude response |H(ejω)| of the ensemble averager h(n)
in (4.28) is shown for three different combinations of the number of potentials M
and the length N of each potential: (a) (M, N) = (10, 10), (b) (M, N) = (40, 10),
and (c) (M, N) = (40, 20).

can be computed recursively. This is done by updating the existing estimate
as soon as a new potential xM becomes available. The update equation is
then given by

ŝa,M =
1
M

XM1M

=
1
M

(XM−11M−1 + xM )

= ŝa,M−1 +
1
M

(xM − ŝa,M−1), M ≥ 1. (4.33)

The recursion is initialized by setting

ŝa,0 = 0, (4.34)

where 0 denotes a vector whose entries are all zero.
The recursive approach to computing the ensemble average suggests a

technique for tracking slow changes in waveform morphology, namely, the
one obtained by simply replacing the factor 1/M in (4.33) with a fixed
weight factor α,

ŝe,M = ŝe,M−1 + α(xM − ŝe,M−1). (4.35)

This type of estimator is referred to as the exponential averager and is com-
monly used. The weight factor α should be chosen such that 0 < α < 1 in
order to assure stability and an asymptotically unbiased estimator ŝe,M (see
below). Evidently, small values of α imply that less new information is in-
troduced into ŝe,M and thus slower tracking of morphologic changes results.
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On the other hand, an α value close to one results in a noisy estimate since
only the most recent potentials are considered.

In order to study the performance of the exponential averager, we will
investigate the bias and the variance of ŝe,M as the number of potentials
approaches infinity. The bias is given by

E[ŝe,M (n)] = E

[
M−1∑
i=0

α(1 − α)ixM−i(n)

]

=
M−1∑
i=0

α(1 − α)i(s(n) + E[vM−i(n)])

=
(
1 − (1 − α)M

)
s(n), (4.36)

where initialization is assumed to be given by ŝe,0(n) = 0. For 0 < α < 1,
ŝe,M (n) is asymptotically unbiased since

lim
M→∞

E[ŝe,M (n)] = s(n). (4.37)

The variance of ŝe,M (n) is given by

V [ŝe,M (n)] = E
[
(ŝe,M (n) − E[ŝe,M (n)])2

]
= α2 1 − (1 − α)2M

1 − (1 − α)2
σ2

v . (4.38)

The derivation of this expression is treated in Problem 4.7. The asymptotic
variance is easily found to be

lim
M→∞

V [ŝe,M (n)] =
α

2 − α
σ2

v . (4.39)

It may be of interest to compare the asymptotic variance in (4.39) to that
of the ensemble averager. In doing so, a Taylor series approximation can be
employed for the common case when α is close to zero,

lim
M→∞

V [ŝe,M (n)] =
α

2

(
1 +

α

2
+

α2

4
+ · · ·

)
σ2

v

≈ α

2
σ2

v . (4.40)

Consequently, the asymptotic variance in (4.40) is approximately equal to
that of the ensemble average ŝa,M (n), given in (4.16), when the weight factor
α is chosen such that

α =
2
M

. (4.41)
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Similar to ensemble averaging, we can interpret exponential averaging in
terms of linear, time-invariant filtering. Assuming that subsequent exponen-
tial averages form a repetitive signal y(n),

y(n) = ŝe,(� n
N �+1)

(
n −

⌊ n

N

⌋
N

)
, n = 0, . . . , NM − 1, (4.42)

we can write

y(n) = y(n − N) + α (x(n) − y(n − N)) . (4.43)

The transfer function of the exponential averager is given by the Fourier
transform of (4.43), which is

H(ejω) =
α

1 + (α − 1)e−jωN
. (4.44)

The magnitude function of H(ejω) is shown in Figure 4.11 for two different
values of the weight factor α.
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Figure 4.11: The magnitude response |H(ejω)| of the exponential averager with
the weight factor (a) α = 0.05 and (b) α = 0.25, for N = 10.

The performance of the exponential averager is illustrated in Figure 4.12
by a case where the EP amplitude suddenly (and by artificial means) in-
creases by a factor of two. The corresponding exponential averages demon-
strate the trade-off that must be made between achieving a low noise level,
obtained for small values of α, and sufficiently rapid tracking of amplitude
changes, obtained for large values of α.

The exponential averager will reappear later on in Section 4.6, where
noise reduction is accomplished by combining adaptive filtering techniques
with the modeling of EPs using a series expansion of orthogonal basis func-
tions.
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Figure 4.12: The performance of exponential averaging for a sudden increase in
amplitude occurring at M = 250. (a) The amplitude of the trough of ŝe,M for
α equal to 0.005, 0.01, and 0.0275, respectively, has been computed from (b) the
signal estimate ŝe,M .



Section 4.3. Noise Reduction by Ensemble Averaging 207

4.3.4 Averaging of Inhomogeneous Ensembles

The assumption of a fixed noise variance in all EPs of the ensemble, as de-
fined in (4.9), can be questioned since the ongoing EEG activity generally
must be viewed as a nonstationary process. It may therefore be more appro-
priate to consider the ensemble of potentials as “inhomogeneous”, signifying
the presence of various types of noise and artifact such as:

• The presence of short-duration artifacts;

• EP-to-EP variations in noise level; and

• a non-Gaussian noise distribution.

Since such noise and artifacts cause performance degradation of ensemble
averaging, it is important to develop methods which better handle these
problems. One such method is weighted averaging, described below. Before
going into the details of weighted averaging, it should be pointed out that
simple measures such as the rejection of occasional EPs with unreasonably
large amplitudes, for example, exceeding the limits of the A/D converter, can
improve the accuracy of averaging [45]. Care must, however, be exercised
not to reject too many EPs, since this leads to inadequate noise reduction.

Large EP-to-EP variations in noise level may persist despite the fact that
artifact rejection has been performed. In order to account for such variations,
the model in (4.4) is extended so that the noise variance is allowed to change
from potential to potential; the noise within each potential is still considered
to have fixed variance. This model extension implies that the fixed weights
1/M of ensemble averaging are replaced by weights adapted to the noise
level of each potential xi: an EP with a high noise level is assigned a smaller
weight than is an EP with a low noise level [47–50]. We will also describe
the “dual” situation in which the amplitude of s is assumed to vary from EP
to EP, while the noise variance is fixed.

The weighted average ŝw is computed by weighting the EPs in the en-
semble X with the vector w,

ŝw = Xw, (4.45)

where

w =

⎡⎢⎢⎢⎣
w1

w2
...

wM

⎤⎥⎥⎥⎦ . (4.46)
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Each weight wi must be positive-valued and chosen such that ŝw is unbiased,

E[ŝw] = s. (4.47)

In order to determine the exact structure of the weight vector w, we
define the following two entities:

1. A model for the ensemble data X; and

2. a performance criterion which yields the desired weight vector.

The model of all signals in the ensemble is described by

X = saT + V, (4.48)

where s is a deterministic waveform whose amplitude can, if desired, be made
to differ from EP to EP by the vector

a =

⎡⎢⎢⎢⎣
a1

a2
...

aM

⎤⎥⎥⎥⎦ . (4.49)

Each amplitude ai must be positive-valued to make the averaging operation
meaningful. The additive noise V is completely characterized by its M ×M
correlation matrix

RV = E[VTV], (4.50)

which defines the noise correlation between different potentials. It should
be emphasized that the matrix definition in (4.50) differs from the matrix
Rv which describes the correlation between the samples v(n) at different
time lags. The diagonal elements of RV describe the noise variance in each
individual EP, while the remaining elements describe the degree to which
the noise variances in two EPs are correlated. It is obvious from (4.48) and
(4.50) that this model allows us to account for both the cases with varying
noise variance and varying amplitude of s.

Several criteria have been considered for determination of the weight
vector w, i.e., maximum likelihood (ML) estimation, minimum mean-square
error (MMSE), and SNR maximization. Interestingly, all three criteria will,
under certain conditions, produce the same weight vector as the optimal
solution. Here, we will focus on SNR maximization since it does not require
any assumptions on the noise distribution; the relationship between SNR
maximization and ML estimation is then briefly reviewed. The derivation
based on the MMSE is considered in Problem 4.16.
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We begin our derivation by noting that the signal part of the weighted
average is given by saTw and the noise part is given by Vw. The SNR of
the weighted average ŝw is defined as the ratio of the signal energy and the
noise energy,

SNR =
wTasT saTw
E[wTVTVw]

=
wTasT saTw

wTRV w
, (4.51)

where the expectation operator in the denominator is required since the noise
is random. We can, without sacrificing generality, assume that the energy
of s is normalized to unity,

sT s = 1, (4.52)

since the amplitude a and the noise variance, characterized by RV , are both
allowed to vary.

The goal is now to find that weight vector w which maximizes the SNR.
In order to perform the maximization, the numerator of (4.51) is maximized
while the denominator is kept fixed, constraining it to

wTRV w = 1. (4.53)

This constraint is necessary since, otherwise, any factor of w will also max-
imize the SNR. Optimization problems involving one or several linear con-
straints are usually solved by the use of Lagrange multipliers (see Appen-
dix A). The function to be maximized is augmented with the constraint in
(4.53), multiplied by the Lagrange multiplier λ,

L = wTAw + λ(1 − wTRV w), (4.54)

where A denotes a rank-one, amplitude “correlation matrix”,

A = aaT . (4.55)

When the constraint is satisfied, the extra term in (4.54) is zero, so that
maximizing L is equivalent to maximizing the SNR. Differentiation of L
with respect to w yields

∇wL = 2Aw − 2λRV w = 0, (4.56)

which is equal to

Aw = λRV w. (4.57)

This equation is recognized as the generalized eigenvalue problem [51]. In
order to maximize the SNR, we should choose the eigenvector w associated
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with the largest eigenvalue λmax. This solution can be obtained by multi-
plying (4.57) by wT ,

wTAw = λwTRV w = λ, (4.58)

and noting that the weight vector that maximizes the SNR corresponds to
the generalized eigenvector with the largest eigenvalue. The last equality in
(4.58) follows from the constraint in (4.53).

Naturally, the solution of the generalized eigenvalue problem depends on
the particular structure assigned to the quantities a and RV . In the follow-
ing, we will consider the two cases “varying noise variance” and “varying
signal amplitude”, both having attracted attention in the EP literature.3

Case 1: Varying noise variance. In this case, we assume that the am-
plitude is fixed for all stimulus responses and equal to a0 [47, 52],

a = a01. (4.59)

The noise variance is modeled by the diagonal matrix RV ,

RV = N

⎡⎢⎢⎢⎣
σ2

v1
0 · · · 0

0 σ2
v2

· · · 0
...

...
...

0 0 · · · σ2
vM

⎤⎥⎥⎥⎦ , (4.60)

where σ2
vi

denotes the noise variance of the ith potential. Insertion of the
amplitude and the noise variance into (4.57) yields the following ordinary
eigenvalue problem,

a2
0R

−1
V 11Tw = λw. (4.61)

While the solution to this equation, in general, consists of M different eigen-
vectors, the matrix R−1

V 11T has rank one, and, therefore, only one eigen-
value, λ1, is nonzero, which thus must be the largest value, i.e., λmax; the
remaining eigenvalues are λ2 = . . . = λM = 0.4 In order to find the nonzero
eigenvalue, and the corresponding eigenvector, we will make use of the rela-
tion that (cf. (A.39))

a2
0 tr(R−1

V 11T ) =
M∑
i=1

λi = λ1 = λmax. (4.62)

3While these two cases were originally analyzed using different performance criteria,
we will treat both cases within the context of SNR maximization and, accordingly, as
solutions to the generalized eigenvalue problem.

4The reader may want to consult Appendix A, page 638 and onwards, for a brief review
of matrix eigendecomposition.
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For this particular case, the trace of the matrix can be expressed as a
quadratic form using (A.30),

λ1 = a2
0 tr(R−1

V 11T ) = a2
01

TR−1
V 1. (4.63)

By insertion of λ1 into (4.61), it can be shown that the corresponding eigen-
vector is given by

w = cwR−1
V 1, (4.64)

where cw denotes a constant chosen such that the requirement of unbiased
estimation in (4.47) is fulfilled. We have

E[ŝw] = E[Xw] = E[XcwR−1
V 1]

= E[(sa01T + V)cwR−1
V 1]

= E[a0s1T cwR−1
V 1]

?= a0s, (4.65)

which implies that

cw =
1

1TR−1
V 1

. (4.66)

Note that this choice of cw also fulfils the constraint in (4.53). The optimal
weight vector is then found by combining the expression of cw with w in
(4.64), yielding

w =
R−1

V 1
1TR−1

V 1
=

1
M∑
i=1

1
σ2

vi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
σ2

v1
1

σ2
v2
...
1

σ2
vM

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.67)

It is obvious that the weights are inversely proportional to the noise variance
of xi. This result is, of course, satisfactory from an intuitive point of view
since noisy EPs are assigned smaller weights than reliable EPs.

In order to gain some insight into the performance of weighted averag-
ing based on the varying noise variance assumption, we will calculate the



212 Chapter 4. Evoked Potentials

variance of ŝw(n). The variance is given by

V [ŝw(n)] = V

⎡⎢⎢⎢⎢⎢⎣
1

M∑
i=1

1
σ2

vi

M∑
i=1

xi(n)
σ2

vi

⎤⎥⎥⎥⎥⎥⎦
=

1
M∑
i=1

1
σ2

vi

. (4.68)

The variance reduction associated with weighted averaging is now com-
pared to that of ensemble averaging. To do this, we consider an inhomoge-
neous ensemble where εM EPs of subset A have a variance of σ2

vA
and the

other (1− ε)M EPs of subset B have the variance σ2
vB

where 0 ≤ ε ≤ 1 [52];
for simplicity, we assume that ε is chosen such that the values of both εM
and (1 − ε)M are integers. The resulting variance of the classical ensemble
average ŝa(n) is given by

V [ŝa(n)] = V [εŝA(n) + (1 − ε)ŝB(n)]

=
1
M

(
εσ2

vA
+ (1 − ε)σ2

vB

)
. (4.69)

The variance of the weighted average ŝw(n) is obtained using the optimal
weights in (4.64),

V [ŝw(n)] =
1

εM

σ2
vA

+
(1 − ε)M

σ2
vB

. (4.70)

The variance ratio is then given by

V [ŝa(n)]
V [ŝw(n)]

= 1 + ε(1 − ε)
(σ2

vA
− σ2

vB
)2

σ2
vA

σ2
vB

. (4.71)

Since the second term on the right-hand side in (4.71) is always positive, it
can be concluded that weighted averaging is associated with a lower variance
than ensemble averaging. The variance ratio is equal to one only when
averaging of a homogeneous ensemble is performed, i.e., for ε = 0, 1 or
σ2

vA
= σ2

vB
.

The variance ratio V [ŝa(n)]/V [ŝw(n)] gives an indication of the kind
of ensemble heterogeneity that results in a variance reduction for weighted
averaging. The variance ratio is presented in Figure 4.13 as a function of ε
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Figure 4.13: Variance ratio of the ensemble average and the weighted average,
displayed as a function of ε, which describes the degree of ensemble inhomogeneity.
The variance ratio is computed for σ2

vA
/σ2

vB
equal to 2, 3, 4, and 5 (bottom to top).

The variance ratio is only presented for 0 ≤ ε ≤ 0.5 since the ratio is symmetric
with respect to ε = 0.5.

for different noise variance ratios σ2
vA

/σ2
vB

. It is clear from this diagram that
the weighted average is much more efficient when large differences in noise
variance exist between the subsets A and B; this property is particularly
pronounced for subsets of similar sizes, i.e., when ε is close to 0.5.

Figure 4.14 illustrates weighted averaging of an inhomogeneous EP en-
semble, characterized by ε = 0.8. It is evident that the noise level of the
weighted average is considerably lower than that of the ensemble average.
Moreover, the peak amplitude of ŝa,100 is overestimated due to noise compo-
nents; however, the overestimation becomes less and less pronounced as M
increases.

A fundamental difference between weighted averaging and ensemble av-
eraging is that the former technique requires knowledge of the noise variance
of individual EPs. Therefore, the noise variances σ2

vi
must be estimated from

the ensemble X before weighted averaging becomes practical.
The prestimulus interval may be used to find an estimate of σ2

vi
, provided

that the stimulus repetition rate is slow enough. Then, the following model
is assumed,

xi(n) =
{

vi(n), −D ≤ n ≤ −1;
s(n) + vi(n), 0 ≤ n ≤ N − 1,

(4.72)

where the interval [−D,−1], immediately preceding the elicited stimulus at
n = 0, is used.
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(a)

(b)

Figure 4.14: (a) The weighted average ŝw,100 and (b) the ensemble average ŝa,100

using the data of Figure 4.8, but with the amplitude of the added noise (i.e., the
background EEG) scaled such that σ2

vA
= 1 for 80 EPs and σ2

vB
= 20 for the

remaining ones (i.e., ε = 0.8). The noise-free EP is indicated by the thin line.

The response interval [0, N − 1] itself can also be used for variance esti-
mation provided that the SNR is very low. The noise variance is then simply
obtained by

σ̂2
vi

=
1
N

xT
i xi, (4.73)

where xi is assumed to be zero-mean. The variance estimate in (4.73) has
been found adequate in weighted averaging of BAEPs and SEPs, whereas it
should be avoided in VEP analysis where the SNR may be too high.

Yet another approach investigated is to adaptively estimate the weights
w in (4.67) using the LMS algorithm, assuming that one of the EPs consti-
tutes the reference signal [53]. The details of this approach are developed in
Problem 4.19.

Case 2: Varying signal amplitude. Another approach to weighted av-
eraging is to assume that the signal amplitude a differs from EP to EP, while
the noise variance remains constant in all EPs [54],

a =

⎡⎢⎢⎢⎣
a1

a2
...

aM

⎤⎥⎥⎥⎦ , (4.74)

RV = Nσ2
vI. (4.75)
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For these model assumptions, the generalized eigenvalue problem in (4.57),
yielding the optimal weights, is again reduced to the ordinary eigenvalue
problem,

Aw = λNσ2
vw, (4.76)

where A = aaT . Similar to the previous case with varying noise variance,
a closed-form solution can be obtained since A is a rank-one matrix. All
eigenvalues are equal to zero, except λ1 which equals

λ1 =
aTa
Nσ2

v

. (4.77)

The optimal weight vector w is proportional to the corresponding eigenvector
given by a,

w = cwa.

The weight vector must be normalized such that

w =
1

aTa
a (4.78)

in order to assure that the weighted average for the case of varying signal
amplitude is unbiased.

Again, it is necessary to first estimate the amplitude a from X before
(4.78) can be used in practice. One approach which produces such an esti-
mate is the cross-correlation of the EPs in X to the ensemble average ŝa,

â = XT ŝa. (4.79)

The rationale behind the cross-correlation approach can be understood by
studying the cross-correlation for one individual weight,

ŝT
a xi = ŝT

a (ais + vi)

= aiŝT
a s + ŝT

a vi. (4.80)

Provided that sufficiently many potentials have been included in ŝa, it is
reasonable to assume that ŝa and vi are approximately uncorrelated and that
ŝa and s have approximately the same morphology, implying that ŝT

a s ≈ 1
because of (4.52). Thus, the expected value of ŝT

a xi is approximately equal
to the optimal weight in (4.78),

E
[
ŝT
a xi

]
= E

[
aiŝT

a s + ŝT
a vi

]
≈ ai. (4.81)
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Figure 4.15: Weighted averaging of AEPs recorded from two different subjects.
Each diagram shows the results of four trials of each subject. The ensemble aver-
age and the weighted average are plotted with dotted and solid lines, respectively.
(Reprinted from Davila and Mobin [54] with permission.)

While the optimal weight vector in (4.78) produces an SNR which is
better than that of ensemble averaging, it is not evident that the weight
vector estimate in (4.79) has the same property. However, it can be shown
that this weight vector estimate actually exhibits a similar SNR-enhancing
property; the details of the proof can be found in [54].

The performance of weighted averaging, assuming a varying signal am-
plitude, is illustrated in Figure 4.15 for AEPs recorded from two different
subjects. The most notable difference observed in these AEPs is that the
amplitude of the weighted average is considerably larger than that of the
ensemble average.

Gaussian noise with varying variance—The ML approach. We will
now show that the weights resulting from maximization of the SNR criterion
in (4.51), assuming fixed amplitude and varying noise variance, can also be
obtained by employing ML estimation. This type of estimation assumes that
the probability density function p(x; θ) for the observations x has a known
form, and depends on a fixed but unknown parameter θ to be estimated.
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The ML estimate is defined as that value of θ which maximizes the PDF,
provided that the samples of the observed signal x are fixed,

θ̂ = arg max
θ

p(x; θ). (4.82)

In this expression, the PDF p(x; θ) should not be interpreted, as is normally
done, as a function of the random quantity x, but rather as a function of θ.
The function p(x; θ) is therefore referred to as a likelihood function [55, 56].

For weighted averaging with varying noise variance, the observation
model is given by

xi(n) = s(n) + vi(n), n = 0, 1, . . . , N − 1, (4.83)

where it is assumed that the noise vi(n) is not only zero-mean and with vari-
ance σ2

vi
, but now also Gaussian. The noise is considered to be uncorrelated

from EP to EP, cf. (4.10). For time n, the joint PDF of the noise for the
ensemble of M different EPs is given by

pv(v1(n), . . . , vM (n)) =
M∏
i=1

pv(vi(n))

=
M∏
i=1

1√
2πσ2

vi

exp
[
−v2

i (n)
2σ2

vi

]
. (4.84)

The joint PDF of xi(n) at time n is identical to that of vi(n) but with
the mean value equal to s(n) (recall from the additive noise model that
vi(n) = xi(n) − s(n)),

pv(x1(n), . . . , xM (n); s(n)) =
M∏
i=1

1√
2πσ2

vi

exp
[
−(xi(n) − s(n))2

2σ2
vi

]
. (4.85)

In order to find the ML estimator of s(n), which thus represents our desired
parameter θ, we maximize the logarithm of the likelihood function,5

ln pv(x1(n), . . . , xM (n); s(n)) = −1
2

M∑
i=1

ln
(
2πσ2

vi

)
−

M∑
i=1

(xi(n) − s(n))2

2σ2
vi

.

(4.86)

5Maximization of (4.85) is equivalent to maximization of the log-likelihood function
because the logarithm is a monotonic function. The log-likelihood function is often con-
sidered since maximization can be more easily performed.
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By taking the derivative with respect to s(n) and setting the result equal to
zero,

∂ ln pv (x1(n), . . . , xM (n); s(n))
∂s(n)

=
M∑
i=1

(xi(n) − s(n))
σ2

vi

= 0, (4.87)

the ML estimator of s(n) is obtained and is found to equal the weighted
average of xi(n),

ŝw(n) =
1

M∑
i=1

1
σ2

vi

M∑
i=1

xi(n)
σ2

vi

. (4.88)

Hence, each EP is weighted by

wi =

1
σ2

vi

M∑
j=1

1
σ2

vj

, (4.89)

which is identical to the weight in (4.67) which resulted from maximization
of the SNR criterion.

Moreover, it should be noted that the expression in (4.88) simplifies to
the ensemble average when the noise is considered to be fixed and identical
in all EPs, i.e., σ2

vi
≡ σ2

v ,

ŝa(n) =
1
M

M∑
i=1

xi(n). (4.90)

The ensemble average is thus the optimal estimator of a fixed waveform s(n)
disturbed by white, Gaussian noise.

Finally, we should mention that the weighted average ŝw,M (n) can, as in
the case of the ensemble average ŝa,M (n), be computed recursively from

ŝw,M (n) = ŝw,M−1(n) + αM (xM (n) − ŝw,M−1(n)), (4.91)

where the gain αM is identical to the weight defined in (4.67),

αM = wM =

1
σ2

vM

M∑
j=1

1
σ2

vj

. (4.92)

The derivation of the recursion in (4.91), as well as that for the associated
variance V [ŝw,M (n)], is considered in Problems 4.12 and 4.14.
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4.3.5 Spike Artifacts and Robust Averaging

The ensemble averager, the exponential averager, and the weighted aver-
ager represent linear techniques and, as such, perform well when the noise is
Gaussian. Their performance will, however, become markedly poorer when
occasional spike artifacts (“outlier samples”) occur with atypically large am-
plitudes, as linear techniques offer no means of limiting the influence of such
disturbances. Although weighted averaging mitigates this type of problem to
a certain degree, by weighting each EP inversely proportionally to its noise
variance, the model in (4.83) involves the assumption of Gaussian noise and
thus cannot handle such spike artifacts sufficiently well.

One approach used to derive more robust averaging methods, capable
of handling impulse disturbances, is to assume that the noise in (4.83) is
modeled by a PDF whose tails account for the presence of outlier samples.
Below, some well-known, robust methods possessing a nonlinear structure
are described, suitable for either batch or recursive EP processing.

Ensemble averaging with outlier rejection. Improved statistical mod-
eling of spike artifacts may be obtained by considering the generalized Gaus-
sian PDF—this is actually a family of PDFs whose tail decay rates are de-
termined by the shape parameter ν. The zero-mean, generalized Gaussian
PDF is completely characterized by ν and the standard deviation σv,

pv(vi(n)) =
ν

2σvΓ(1/ν)b(ν)
exp

[
−

( |vi(n)|
σvb(ν)

)ν]
, (4.93)

where

b(ν) =

√
Γ(1/ν)
Γ(3/ν)

and the Gamma function Γ(ν) is defined by

Γ(ν) =
∫ ∞

0
tν−1e−tdt.

Figure 4.16 presents the shape of the PDF for ν = 1, 1.5, and 2 using a
logarithmic format; the tails of the PDF become increasingly larger as ν de-
creases. It should be noted that the Gaussian PDF (ν = 2) and the uniform
PDF (ν → −1) are both special cases of the generalized Gaussian PDF.

Another important special case is the Laplacian PDF for ν = 1 which,
thanks to its heavy tails, represents a reasonable, and analytically tractable,
model of spike artifacts. The Laplacian PDF of a noise sample vi(n) is given
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Figure 4.16: The generalized Gaussian PDF, with zero-mean and unit variance,
displayed for three different values of ν. The Laplacian and Gaussian PDFs are
obtained for ν = 1 and 2, respectively. Note that the scale of the vertical axis is
logarithmic.

by

pv(vi(n)) =
1√
2σ2

vi

exp

[
−

√
2

σ2
vi

|vi(n)|
]

. (4.94)

Our primary goal here is to determine the optimal ML estimator of s(n)
based on the available noisy observations x1(n), . . . , xM (N), each character-
ized by a Laplacian PDF. As before, we assume that the noise is uncorrelated
from EP to EP and that the noise variance is fixed and identical in all EPs
(i.e., σ2

vi
≡ σ2

v). The ML estimator is obtained by maximization of the
following likelihood function,

pv(x1(n), . . . , xM (n); s(n)) =
M∏
i=1

1√
2σ2

v

exp

[
−

√
2
σ2

v

|xi(n) − s(n)|
]

, (4.95)

with respect to s(n); for now, M is assumed to be odd. Taking the logarithm
of the likelihood function, the estimate that maximizes (4.95) is found by
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differentiating the expression and setting the result equal to zero,

∂ ln pv (x1(n), . . . , xM (n); s(n))
∂s(n)

= − ∂

∂s(n)

(√
2
σ2

v

M∑
i=1

|xi(n) − s(n)|
)

= 0.

(4.96)

The function to be maximized is denoted J(n),

J(s(n)) =
M∑
i=1

|xi(n) − s(n)|

=
M∑
i=1

√
(xi(n) − s(n))2, (4.97)

which, when differentiated, yields

∂J(s(n))
∂s(n)

=
M∑
i=1

xi(n) − s(n)√
(xi(n) − s(n))2

=
M∑
i=1

xi(n) − s(n)
|xi(n) − s(n)| = 0. (4.98)

By introducing the sgn(x) function, defined by6

sgn(x) =
x

|x| =

⎧⎨⎩
1, x > 0;
0, x = 0;
−1, x < 0,

(4.99)

the equation which describes the ML estimator of s(n) can be written as

M∑
i=1

sgn(xi(n) − s(n)) = 0. (4.100)

To make sure that the sum in (4.100) is equal to zero, we must choose s(n) so
that exactly half of the sample values are greater than s(n) and the remaining
values are smaller. This procedure is identical to finding the ensemble median
of the data. Hence, the median constitutes the ML estimator of s(n) when
the noise is Laplacian.

6Although the function |x| does not have a derivative at x = 0, it is nevertheless
reasonable to use the value zero since it agrees with the customary definition of the sgn
function.
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The procedure for computing the median consists of sorting the sequence
of observed samples in order of magnitude,

{x1(n), x2(n), . . . , xM (n)} sort−→ {x(1)(n), x(2)(n), . . . , x(M)(n)}, (4.101)

where x(1)(n) < x(2)(n) < · · · < x(M)(n), followed by selection of the mid-
point at (M + 1)/2 when M is odd or the average of the two midpoints at
M/2 and M/2 + 1 when M is even,

ŝmed(n) =

{
x(M+1

2
)(n), M odd;

1
2(x(M

2
)(n) + x(M

2
+1)(n)), M even.

(4.102)

The benefits of computing the ensemble median instead of the ensemble
average were realized at an early stage of computerized EP analysis [57].
The performance of these two estimators is illustrated in Figure 4.17, where
either Gaussian or Laplacian noise is added to an ensemble of simulated EPs.
The noise is white and has a variance of σ2

v = 0.25 for both PDFs. Since the
noise-free signal is available, the performance can be quantified in terms of
noise variance of the resulting estimate. For Laplacian noise, the ensemble
median is better than the ensemble average since σ̂2

v = 0.0014 and 0.0025,
respectively, whereas the ensemble average is better than the median for
Gaussian noise, σ̂2

v = 0.0025 (which equals the theoretically predicted value,
σ2

v/100 = 0.0025) and 0.0038, respectively. A theoretical comparison of these
two estimators shows that the noise variance increases by approximately
50% when the median is used in Gaussian noise [58]; this increase can also
be observed from the simulated EP data in Figure 4.17.

The ensemble average and the ensemble median can both be viewed as
special cases of a more general family of estimators, commonly referred to as
trimmed means [59]. In contrast to the median, which trims away all samples
except the midpoint of the ordered samples, this family of estimators makes
use of all the ordered samples except a certain fraction of the smallest and
largest sample values which are trimmed away. The number of samples to
be excluded is related to the trimming factor γ, which is constrained to the
interval 0 ≤ γ < 0.5. The trimmed mean is computed by averaging the
remaining samples,

ŝtri(n) =
1

M − 2K

M−K∑
i=K+1

x(i)(n), (4.103)

where K denotes the number of samples to be trimmed away, given by the
largest integer less than or equal to γM . The trimming factor can either be
fixed or adapted to a measure reflecting the tail behavior of the PDF [60].
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(a)

(b)

Figure 4.17: Noise reduction achieved by the ensemble average and the ensemble
median, using an ensemble of 100 simulated EPs. Each EP is additively corrupted
by white noise characterized by (a) a Gaussian PDF or (b) a Laplacian PDF.

It should be noted that the ensemble average and the ensemble median
correspond to γ = 0 and 0.5, respectively.

The use of robust averaging techniques in the analysis of VEPs has not
been found to offer significant improvements in noise reduction [39]; however,
the improvements will be more pronounced in recording situations where it
is probable that outliers will often occur.

Recursive, robust averaging with outlier rejection. We will just
briefly mention the possibility of performing robust estimation recursively.
The general structure of such a recursive estimator is closely related to that
of the exponential averager, but with the update part modified by the influ-
ence function η(x), so that

ŝr,M = ŝr,M−1 + αM · η(xr,M − ŝr,M−1), (4.104)

where the subscript “r” denotes robust. The function η(x) is designed to
reduce the influence of outlier values on the estimate ŝr,M ; whether xM

should be considered as an outlier value or not is judged by its relation to
the most recent estimate ŝr,M−1.
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Figure 4.18: Two examples of influence functions for use in robust, recursive
averaging: (a) the sign limiter and (b) the hard limiter. The increment/threshold
parameter η0 was set to 5.

An example of a simple influence function is the one which adds or sub-
tracts a fixed increment η0 from the current estimate depending on the sign
of the update (see Figure 4.18(a)),

η(x) = η0 · sgn(x) =

⎧⎨⎩
η0, x > 0;
0, x = 0;
−η0, x < 0.

(4.105)

It can be shown that the recursion in (4.104), when combined with this
influence function, tends to converge to the ensemble median [61], see Prob-
lem 4.22. This function is apparently insensitive to intermittently occurring
spikes but provides, on the other hand, very conservative tracking of changes
in EP morphology.

Another example of an influence function is the hard limiter in which
deviations with a magnitude below a certain threshold η0 are treated in
the same was as in the exponential averager, but otherwise limited to the
threshold values ±η0 (see Figure 4.18(b)),

η(x) =

⎧⎨⎩
η0, x > η0;
x, −η0 ≤ x ≤ η0;
−η0, x < −η0.

(4.106)

The exponential averager is defined by the function η(x) = x which, evi-
dently, does not offer any protection against outlier values.
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4.3.6 The Effect of Latency Shifts

The latencies of an EP have, so far, been considered as a quantity which
is fixed from EP to EP. However, variations in latency may occur which
introduce distortion into the resulting ensemble average. The nature of such
distortion can be perceived from the simulation example in Figure 4.19,
where ten noise-free EPs are shown with identical morphology but with
slightly different latencies. The ensemble average of the ten EPs is shown
at the bottom of Figure 4.19, together with the ensemble average for the
case when no variation in latency is present. The effect of latency shifts is
primarily manifested as a significant reduction in amplitude of the ensemble
average.

We will now take a closer look at two types of time shift, namely, those
modeled by continuous- and discrete-valued random variables. The first case
reflects the fact that latency shifts caused by various biological mechanisms
are not constrained to the time grid imposed by sampling. The second,
discrete-time case is useful when studying the effect of variations that take
place in the sampled signal.

Shifts in continuous-time signals. The influence of latency shifts on
the ensemble average can be studied in terms of the earlier adopted “signal-
plus-noise” model in (4.4), but modified to account for an unknown latency
shift τ . Since τ is continuous-valued, we will consider the continuous-time
counterpart to the model in (4.4),

xi(t) = s(t − τi) + vi(t), (4.107)

where t denotes time and τi, i = 1, . . . , M are samples of the random vari-
able τ which is completely characterized by the PDF pτ (τ). Based on the
observation model in (4.107), the expected value of the ensemble average
ŝa(t) is given by

E[ŝa(t)] =
1
M

M∑
i=1

E[s(t − τi)]

=
∫ ∞

−∞
s(t − τ) pτ (τ) dτ. (4.108)

Introducing the characteristic function of pτ (τ) [62, p. 115],

Pτ (Ω) =
∫ ∞

−∞
pτ (τ)ejΩτdτ, (4.109)
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Figure 4.19: The effect of latency shifts on the ensemble average. The shifts are
introduced in a simulated, noise-free signal, and the size of the shifts are shown
by the horizontal bars to the right. At the bottom, the resulting ensemble average
ŝa(t) is shown together with the true signal s(t) superimposed (thin line).
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the convolution integral in (4.108) can be expressed as a product in the
frequency domain,

E[Ŝa(Ω)] = S(Ω)P ∗
τ (Ω), (4.110)

where Ŝa(Ω) and S(Ω) are the continuous-time Fourier transforms of ŝa(t)
and s(t), respectively; Ω = 2πF where F denotes analog frequency and the
asterisk (∗) denotes the complex-conjugate.7

In most cases of practical interest, the PDF pτ (τ) can be assumed to be
symmetric around τ = 0, with tails that decrease monotonically to zero. As a
result, the effect of Pτ (Ω) on the original signal S(Ω) in (4.110) is equivalent
to filtering of s(t) with a linear, time-invariant, lowpass filter whose impulse
response is given by pτ (τ). The ensemble average computed in the presence
of latency shifts is thus biased and will not approach s(t) as the number of
EPs increases.

An example of pτ (τ) is the zero-mean, Gaussian PDF with a variance σ2
τ

whose characteristic function is

Pτ (Ω) = e−
1
2
Ω2σ2

τ . (4.111)

This type of latency shift acts as a lowpass filter on s(t) to a degree de-
termined by στ . It is of particular interest to compute the –3 dB cut-off
frequency, denoted Fc, as a function of στ :

e−2(πFcστ )2 =
1√
2
,

or

Fc =

√
ln 2

2πστ
. (4.112)

Figure 4.20(a) displays the relationship between Fc and στ . For example, it
can be seen that a dispersion of στ = 1 ms corresponds to lowpass filtering
with a cut-off frequency of 133 Hz.

Another type of latency shift is that caused by sampling (“sampling jit-
ter”), typically assumed to have a uniform PDF over the sampling interval T ,

pτ (τ) =

⎧⎨⎩
1
T

, −T/2 ≤ τ ≤ T/2;

0, otherwise.
(4.113)

7The definition of the characteristic function is identical to the Fourier transform of
pτ (τ), except that ejΩτ is used instead of e−jΩτ in the integrand.
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Figure 4.20: The –3 dB cut-off frequency Fc associated with the lowpass filtering
effect due to latency shifts; Fc is plotted as a function of (a) the standard deviation
στ of a Gaussian PDF and (b) the sampling interval T of a uniform PDF.

The lowpass filtering effect due to sampling is described by the corresponding
sinc characteristic function

Pτ (Ω) =
sin 1

2ΩT
1
2ΩT

. (4.114)

In contrast to the Gaussian case in (4.112), it is difficult to derive a closed-
form expression from (4.114) relating Fc to the dispersion parameter T . The
desired relationship is, however, easily calculated by numerical techniques
and is presented in Figure 4.20(b).

When pτ (τ) is known, the influence of latency shifts on the ensemble
average can be determined using (4.110). However, it is actually possible to
obtain certain information on the statistics of τ without knowledge of the
PDF. For example, the variance of τ can be estimated from the ensemble
variance [63].

Shifts in discrete-time signals. The discrete-time counterpart of the
observation model in (4.107) is defined by

xi(n) = s(n − θi) + vi(n), (4.115)

where θi is an integer-valued random variable characterized by the PDF pθ(θ).
The discrete-time case may be of special interest when studying the perfor-
mance of different methods developed for compensation of random latency
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shifts. Proceeding in a way similar to the continuous-time case, the expected
value of the discrete-time ensemble average ŝa(n) is

E [ŝa(n)] =
∞∑

θ=−∞
s(n − θ) pθ(θ). (4.116)

Introducing the discrete-time characteristic function of pθ(θ),

Pθ(ejω) =
∞∑

θ=−∞
pθ(θ)ejωθ, (4.117)

the convolution sum in (4.116) can be expressed as a product in the frequency
domain,

E[Ŝa(ejω)] = S(ejω)P ∗
θ (ejω), (4.118)

where Ŝa(ejω) and S(ejω) are the discrete-time Fourier transforms of ŝa(n)
and s(n), respectively.

4.3.7 Estimation of Latency Shifts

It is desirable to develop methods which can compensate for variations in
latency so that the ensemble average becomes more accurate. A tempting
approach is to simply perform deconvolution of the ensemble average Ŝa(ejω)
by inverse filtering with P ∗

θ (ejω) [64],

Ŝ(ejω) =
Ŝa(ejω)
P ∗

θ (ejω)
. (4.119)

This technique, which operates directly on the ensemble average, is, however,
associated with serious problems, making it less suitable for correction of
latency shifts. The characteristic function Pθ(θ) is not known a priori and
cannot be easily estimated from the ensemble of EPs. Even if Pθ(ejω) is
known, inverse filtering implies that the high-frequency content of Ŝ(ejω)
may be overemphasized since Pθ(ejω) has values close to zero for higher
frequencies.

Another, much more useful approach is to find an estimate of the latency
shift θi in each individual EP followed by computation of the ensemble av-
erage from the latency-corrected EPs or by any other technique for noise
reduction. Of the many methods developed for latency correction [65–71],
the most well-known method is the Woody method [72, 73] which has its
starting point in the observation model defined in (4.115). The main ingre-
dients of this method are:
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• The estimation of θi using a matched filter;

• the related problem of estimating the impulse response of the matched
filter; and

• an iterative procedure for improving the latency estimates.

The final product of the Woody method is the latency-corrected ensemble
average.

Initially, we assume that s(n) is a known waveform, additively disturbed
by zero-mean, white, Gaussian noise vi(n) with variance σ2

v . Since both these
assumptions on signal and noise properties can be questioned, we will relax
the assumptions so that s(n) is estimated from the ensemble of data X, and
the color of the noise is characterized by the correlation matrix Rv. Each
observed signal xi(n) is associated with an unknown latency shift θi so that

xi(n) =

⎧⎨⎩
vi(n), n = 0, . . . , θi − 1;
s(n − θi) + vi(n), n = θi, . . . , θi + D − 1;
vi(n), n = θi + D, . . . , N − 1,

(4.120)

where D denotes the duration of s(n).8 The latency shift θi is assumed to
be constrained to the interval [0, N − D] so that s(n) is always completely
contained in the observation interval and the energy of s(n) is fixed for all
values of θi,

Es =
θi+D−1∑

n=θi

s2(n − θi) =
N−1∑
n=0

s2(n). (4.121)

Maximum likelihood estimation is now considered to find the estimator
of the latency θi. Since the noise is assumed to be white and Gaussian, the
PDF of the observed signal is given by

pv(xi; θi) =
θi−1∏
n=0

1√
2πσ2

v

exp
[
−x2

i (n)
2σ2

v

]

·
θi+D−1∏

n=θi

1√
2πσ2

v

exp
[
−(xi(n) − s(n − θi))2

2σ2
v

]

·
N−1∏

n=θi+D

1√
2πσ2

v

exp
[
−x2

i (n)
2σ2

v

]
,

(4.122)

8The model in (4.120) can be extended from including only one EP to account for
all the M different EPs of the ensemble so that the latency shifts θ1, . . . , θM are jointly
estimated [74]. Using an ML approach, the optimal estimator can be derived, but is
found to require a massive amount of computation. It is therefore of interest to develop
suboptimal approaches of which the Woody method represents one.
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where xi =
[
xi(0) xi(1) · · · xi(N − 1)

]T . Evaluation of the exponent
(xi(n) − s(n − θi))2 yields the following expression for the PDF,

pv(xi; θi) =
N−1∏
n=0

1√
2πσ2

v

exp
[
−x2

i (n)
2σ2

v

]

·
θi+D−1∏

n=θi

1√
2πσ2

v

exp
[
xi(n)s(n − θi)

σ2
v

]

·
θi+D−1∏

n=θi

1√
2πσ2

v

exp
[
−s2(n − θi)

2σ2
v

]
,

(4.123)

from which it is obvious that the first product factor is not a function of θi

and that the third product factor contains the energy Es which is also in-
dependent of θi due to (4.121). The logarithm of the likelihood function is
given by

ln pv(xi; θi) = constant +
1
σ2

v

θi+D−1∑
n=θi

xi(n)s(n − θi), (4.124)

where the constant collects all the terms that are independent of θi. The
ML estimate is given by that value of θi which maximizes the sum on the
right-hand side of (4.124),

θ̂i = arg max
θi

⎛⎝θi+D−1∑
n=θi

xi(n)s(n − θi)

⎞⎠ . (4.125)

Hence, the estimate of θi is given by the time at which the best cross-
correlation between s(n) and xi(n) is achieved. Alternatively, the maxi-
mization in (4.125) can be interpreted as a filtering operation,

yi(θi) =
θi+D−1∑

n=θi

xi(n)h(θi − n), (4.126)

where the impulse response of the filter h(k) is equal to the time-reversed
version of s(n),

h(k) =
{

s(D − 1 − k), k = 0, . . . , D − 1;
0, otherwise.

(4.127)
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In terms of the earlier introduced vector notation (see page 88), the impulse
response of the filter is given by

h =

⎡⎢⎢⎢⎣
s(D − 1)
s(D − 2)

...
s(0)

⎤⎥⎥⎥⎦ = s̃. (4.128)

Thus, the ML estimator of θi is that particular time at which the maximum
peak occurs in the filter output yi(θi). The filter in (4.127) is the well-known
matched filter and constitutes an important building block in many detection
schemes [75].

In practice, the waveform s(n) that defines the matched filter has to
be estimated from X. Under the assumption that the latency variations
are relatively small, the ensemble average ŝa(n) can be used as an initial
estimate of s(n) for the estimation procedure in (4.125),

ŝ(0)
a (n) = ŝa(n). (4.129)

In the case of large latency variations, it may be more appropriate to use
a predefined pulse-shaped waveform, for example, a triangular waveform
resembling the overall shape of the response.9

A new, latency-corrected ensemble average, denoted ŝ
(1)
a (n), is obtained

after all the EPs have been corrected by θ̂
(1)
i ,

ŝ(1)
a (n) =

1
M

M∑
i=1

xi(n + θ̂
(1)
i ). (4.130)

Evidently, the estimation of θ
(1)
i can be repeated using ŝ

(1)
a (n) instead of

ŝa(n) as the matched filter; such a step will, almost certainly, improve
the earlier latency-corrected ensemble average ŝ

(1)
a (n). In fact, the Woody

method was originally designed to iteratively update the ensemble average

ŝ(j)
a (n) =

1
M

M∑
i=1

xi(n + θ̂
(j)
i ) (4.131)

until a suitable termination criterion was fulfilled. In (4.131), ŝ
(j)
a (n) denotes

the ensemble average that results from the jth iteration making use of the
latency estimate θ

(j)
i .

9A related approach is the one based on the Karhunen–Loève expansion in which the
most significant eigenvector is used as an estimate of s(n) [76]; this type of series expansion
is described later on in this chapter.
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The iterative procedure can be terminated in various ways. One approach
is to terminate when the maximum of successive differences in the latency
estimates drops below a certain threshold ηθ,

max
i

∣∣∣θ̂(j)
i − θ̂

(j−1)
i

∣∣∣ ≤ ηθ, j ≥ 1, (4.132)

where ηθ is a positive-valued integer. Another approach is based on simi-
larity in morphology, quantified by the cross-correlation coefficient defined
in (4.23). Since the morphology of several EPs should be taken into ac-
count, the average of the cross-correlation coefficient ρ

(j)
i between ŝ(j)

a and
xi is computed,

ρ(j) =
1
M

M∑
i=1

ρ
(j)
i

=
1
M

M∑
i=1

xT
i ŝ(j)

a√
xT

i xi

√(
ŝ(j)
a

)T
ŝ(j)
a

. (4.133)

The iterative procedure is terminated when∣∣∣ρ(j) − ρ(j−1)
∣∣∣ ≤ ηρ, (4.134)

where the threshold ηρ should be chosen such that 0 < ηρ < 1. A value
of ρj equal to one corresponds to the case when the SNR is infinite and
all waveforms have identical morphologies. Although no general proof of
convergence has been presented for the Woody method, experimental results
have shown that convergence is usually achieved within a few iterations,
provided that the waveforms are initially reasonably well-aligned and that
the SNR is reasonably good.

A block diagram summarizing the Woody method is presented in Fig-
ure 4.21. The performance of the method is illustrated in Figure 4.22, which
shows the results of processing signals with different SNRs. Ensemble av-
erages are computed before and after latency correction. For moderate to
high SNRs, the peak amplitudes of the latency-corrected averages are con-
siderably larger than those of the uncorrected averages, see Figures 4.22(a)
and (b). When the SNR deteriorates, however, the main waves of the
latency-corrected EP become smeared, and reliable amplitude measurements
can no longer be made. This type of behavior is caused by various undesired
EEG components, such as alpha activity, which are aligned and included in
the ensemble average. Several studies have reported on the performance of
the Woody method, including the observation of limiting behavior at low
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Processing of individual potentials
Ensemble
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xi(n)

Matched
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Estimate
latency

Delay
by θ
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no

Eq.
(4.132)

yes

no

i = i + 1 j = j + 1

Update
average

Figure 4.21: Block diagram of the Woody method for latency correction of EPs.
The correction procedure is iterative and is terminated when either the criteria
defined in (4.132) or (4.134) is fulfilled or, possibly, when both criteria are fulfilled.

SNRs [77–82]. Ultimately, the usefulness of the Woody method depends on
the application of interest: analysis of VEPs stands out as the most appro-
priate one due to its relatively high SNR.

Although the matched filter in (4.127), derived from the white noise as-
sumption, can be used for latency estimation in a colored noise situation, its
performance will be inferior to that achieved by a filter especially designed
for the colored noise situation. Such noise is characterized by the correlation
matrix Rv which, for example, can be estimated from the prestimulus inter-
val containing only the background EEG. For the analysis of AEPs, it has
been found that the variance of the latency estimates θ̂i was considerably
lower when a filter matched to colored noise was applied [80].

The ML estimator of θi for the case of colored noise can be compactly
expressed using matrix notation. The necessary notation may be introduced
by first recasting the “white noise” ML estimator in (4.125) into

θ̂i = arg max
θi

(xT
i sθi

),

where the signal vector sθi
is defined by

sθi
=

⎡⎣ 0θi

s
0N−D−θi

⎤⎦ , (4.135)
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(a)

(b)

(c)

Figure 4.22: The performance of the Woody method illustrated at different SNRs:
(a) a high SNR, (b) an intermediate SNR, and (c) a low SNR. For each of the three
SNRs, one of the EPs in the ensemble is displayed together with the corresponding
ensemble average, obtained either before or after latency correction. The averages
are based on an ensemble of 100 EPs.
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and 0k denotes a column vector with k zeros. Assuming that the number
of observed samples N is considerably larger than the maximum nonzero
correlation lag of the colored noise, it can be shown that the ML estimator
is given by (see Problem 4.26),

θ̂i = arg max
θi

(xT
i R−1

v sθi
). (4.136)

Thus, the signal vector sθi
is modified by the inverse of the noise correlation

matrix R−1
v before it is correlated with the signal xi; the resulting product

is then used for determining the optimal value of θi.
Reality is actually more complicated than what was suggested by the

model in (4.120) because the EP peak components may have latencies which
vary independently of one another. This property cannot be handled by
the Woody method since it is based on the assumption that the latencies
of all peaks are identical. Consequently, attempts have been made to de-
velop methods for latency correction in which the EP peak components are
subjected to segmentation, followed by alignment and averaging of each indi-
vidual peak within the ensemble [83–85]. These approaches suffer, however,
from the drawback that the latency-corrected average is a signal defined by
a series of disjointed segments which, due to the gaps, may be difficult to
interpret. The problem of disjointed segments has been addressed by intro-
ducing a nonlinear procedure in which the time axis of each EP is subjected
to expansion or contraction before alignment is performed [86, 87].

We conclude this section on estimation of latency shifts by commenting
on the jitter that results from time discretization of the signal. In certain
situations, such sampling jitter must be taken into account when designing
a method for latency correction. If this is not done, jitter may seriously
deteriorate the accuracy of certain ensemble-related clinical measures. It has
been shown that an appreciably higher sampling rate (about three times)
must be used when the ensemble variance, rather than the ensemble average,
represents the measure conveying clinical information [88]. Choosing the
Nyquist rate as the sampling rate is insufficient when the goal is to obtain
accurate measurements on ensemble variance. The simplest way to account
for this result is to precede the estimation of latency shifts by a block which
increases the sampling rate by interpolating between the existing samples of
the signal. Unfortunately, an increased sampling rate not only implies better
performance, but also an increased amount of computation.

4.3.8 Weighting of Averaged Evoked Potentials Using
Ensemble Correlation

Although ensemble averaging reduces the noise level, it is obvious that cer-
tain segments of the ensemble average will contain only noise simply because
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no activity is present. One approach to further reduce the noise level in such
noisy segments is to analyze the correlation properties across the ensemble
for each sample n and then to apply a weight function to the ensemble aver-
age which reflects the ensemble correlation information. A high correlation
value indicates that activity is present, and, therefore, the sample in the en-
semble average should be weighted by a value close to one. A low correlation
value indicates, on the other hand, that activity is essentially absent, and
the corresponding weight should therefore be close to zero.

Sample-by-sample weighting of the ensemble average by a weight function
w(n) can be useful when the aim is to find a transition from a noise-only
segment to a segment that contains activity, or vice versa. Although this
technique has found no particular interest in EP analysis, the idea behind
ensemble correlation presented below nevertheless helps to bridge the gap
between previous concepts on ensemble averaging and those presented in
the next section on noise reduction by linear filtering. The idea of applying
a weight function based on ensemble correlation originally stems from the
area of high-resolution ECG analysis where an important task is to detect
the end point in time of late potentials after which only noise is considered
to be present [89].

We will once again study the signal-plus-noise model

xi(n) = s(n) + vi(n) (4.137)

in order to derive an optimal weight function. However, the present model
differs, in certain respects, from the one considered earlier for averaging of
homogeneous ensembles. While the signal part s(n) is still assumed to be
identical in all potentials, it is now random in nature and characterized by
its first- and second-order moments,

E[s(n)] = 0, (4.138)

E[s2(n)] = σ2
s(n), (4.139)

for n = 0, . . . , N − 1. The variance σ2
s(n) is now a function of time in order

to account for the fact that s(n) has varying strength. The two assumptions
in (4.138) and (4.139) provide, of course, a minimalistic statistical charac-
terization of s(n) but will suffice for the purposes of this section. Similar
to averaging of homogeneous ensembles, the noise vi(n) is considered to be
zero-mean, with a fixed variance σ2

v for all EPs, and is uncorrelated from EP
to EP. We conclude the model description by pointing out that the signal
and noise are mutually uncorrelated,

E[s(n)vi(n)] = 0, i = 1, . . . , M. (4.140)
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The weight w(n) should be chosen such that the error between the signal
s(n) and the weighted ensemble average w(n)ŝa(n) is minimized. Employing
the MSE criterion,

E
[
(s(n) − w(n)ŝa(n))2

]
, (4.141)

it is easily shown that the weight minimizing this criterion is given by

w(n) =
σ2

s(n)

σ2
s(n) +

σ2
v

M

. (4.142)

The optimal weight w(n) can be interpreted as a measure of the SNR whose
values are normalized to the interval [0, 1]. Consequently, the amplitude
of the weighted ensemble average w(n)ŝa(n) remains unaltered only if the
observed data are noise-free, while it is otherwise reduced depending on the
local SNR at time n.

Gaussian assumption. The weight suggested in (4.142) is, unfortunately,
of limited value since the quantities σ2

s(n) and σ2
v are not known a pri-

ori. Somewhat surprisingly, it is possible to estimate the right-hand side of
(4.142) from the ensemble of data when both s(n) and vi(n) are assumed
to be Gaussian. As a starting point for our derivation, we observe that the
cross-correlation coefficient of xi(n) and xj(n),

ρij(n) =
E [xi(n)xj(n)]√

E[x2
i (n)]

√
E[x2

j (n)]
, (4.143)

for the above model is almost identical to (4.142). We obtain

ρij(n) =

⎧⎨⎩
1, i = j;

σ2
s(n)

σ2
s(n) + σ2

v

, i �= j,
(4.144)

and thus ρij(n) = ρ(n) for i �= j. The terms due to noise obviously differ in
(4.142) and (4.144) because ensemble averaging reduces the noise variance
σ2

v by a factor of M . It is, however, possible to express w(n) in terms of ρ(n)
using the following simple transformation,

w(n) =
ρ(n)

ρ(n)
(

1 − 1
M

)
+

1
M

⎛⎜⎜⎝=
σ2

s(n)

σ2
s(n) +

σ2
v

M

⎞⎟⎟⎠ . (4.145)



Section 4.3. Noise Reduction by Ensemble Averaging 239

The vector x(n) contains all the M samples of the ensemble at a certain
time n,

x(n) =

⎡⎢⎢⎢⎣
x1(n)
x2(n)

...
xM (n)

⎤⎥⎥⎥⎦ , (4.146)

and follows a zero-mean, Gaussian PDF defined by

p(x(n)) =
1√

(2π)M |Rx|
exp

[
−1

2
xT (n)R−1

x x(n)
]

. (4.147)

This density function is completely characterized by its correlation ma-
trix Rx,

Rx =

⎡⎢⎢⎢⎣
E[x2

1(n)] E[x1(n)x2(n)] · · · E[x1(n)xM (n)]
E[x2(n)x1(n)] E[x2

2(n)] · · · E[x2(n)xM (n)]
...

...
...

E[xM (n)x1(n)] E[x1(n)x2(n)] · · · E[x2
M (n)]

⎤⎥⎥⎥⎦ , (4.148)

which, for the model in (4.137), is equal to

Rx =
(
σ2

s(n) + σ2
v

)
⎡⎢⎢⎢⎣

1 ρ(n) · · · ρ(n)
ρ(n) 1 · · · ρ(n)

...
...

. . .
...

ρ(n) ρ(n) · · · 1

⎤⎥⎥⎥⎦ . (4.149)

Maximum likelihood estimation. Next, ML estimation is employed
to obtain an estimate of ρ(n), and the resulting estimate is then inserted
into (4.145) in order to produce the desired weight w(n). The ML esti-
mator is derived by finding ρ(n) that maximizes the log-likelihood function
ln (p(x(n); ρ(n))),

ρ̂(n) = arg max
ρ(n)

ln (p(x(n); ρ(n))) . (4.150)

The different steps involved in the derivation of ρ̂(n), such as finding the
determinant |Rx| and the inverse R−1

x in (4.147) and the differentiation of
the log-likelihood function, can be found in [89], see also Problem 4.29. The
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resulting ML estimate is given by

ρ̂(n) =

M∑
i=1

M∑
j=1
i �=j

xi(n)xj(n)

(M − 1)
M∑
i=1

x2
i (n)

. (4.151)

Here, the numerator provides us with an estimate of the signal variance
σ2

s(n), since averaging is performed over all possible cross-term combinations
of xi(n) and xj(n). The sum in the denominator of (4.151) provides an
estimate of the total energy of the observed signals xi(n), i.e., σ2

s(n) + σ2
v .

Finally, the sample-by-sample weighted ensemble average ša(n) is com-
puted from

ša(n) = w(n)ŝa(n), n = 0, . . . , N − 1. (4.152)

Again, we note that the weight w(n) is related to the SNR of the ensemble
average ŝa(n) at time n.

Estimator properties. The ensemble correlation estimator in (4.151)
possesses certain undesirable properties, namely, negative values and large
variance. While the optimal weight in (4.142) is always positive-valued, this
property is not carried over to ρ̂(n). It can be shown that ρ̂(n) is bounded
by −1/M ≤ ρ̂(n) ≤ 1 for even values of M and by −1/(M − 1) ≤ ρ̂(n) ≤ 1
for odd values of M . A simple remedy to this problem is to set negative
values of ρ̂(n) equal to zero.

More seriously, the estimate ρ̂(n) is associated with a large variance
unless M is large. A straightforward approach to reduce the variance is
to replace the numerator and denominator expressions in (4.151) with time
averages computed locally around the time n,

ρ̂(n) =

n+W∑
k=n−W

⎡⎢⎢⎣ M∑
i=1

M∑
j=1
i �=j

xi(n)xj(n)

⎤⎥⎥⎦
(M − 1)

n+W∑
k=n−W

M∑
i=1

x2
i (k)

, (4.153)

where 2W + 1 is the length of the averaging window. Although temporal
detail of ρ̂(n) has to be traded for variance reduction, “local” averaging can
be acceptable since σ2

s(n) often changes slowly. It should be noted that
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(4.153) has to be modified in some way to handle averaging at the interval
end points, i.e., for n < W and n ≥ N − W .

Weighting by ensemble correlation is illustrated in Figure 4.23 for a simu-
lated signal which exhibits a gradually decreasing amplitude. It is obvious
from Figure 4.23(d) that weighting of ŝa(n) with w(n), thus resulting in
ša(n), reduces the noise level in the intervals adjacent to the signal interval
in comparison with the (unweighted) ensemble average ŝa(n) displayed in
Figure 4.23(b).

The estimation of ensemble correlation is here based on a homogeneous
ensemble of data, i.e., with fixed noise variance in all EPs. This type of
analysis can, however, be extended to process inhomogeneous ensembles
of data with varying noise variances, a case previously considered in Sec-
tion 4.3.4 [90].

4.4 Noise Reduction by Linear Filtering

Ensemble averaging relies on the assumption that the noise is uncorrelated
from EP to EP. No information is included that reflects the degree to which
successive samples in an EP are correlated. Hence, the noise level is reduced
by averaging, while the stimulus-related EP (ideally) remains unchanged. It
seems, however, plausible to assume that the noise in the ensemble average
can be even further reduced by exploiting the property that the signal and
the noise are, to various degrees, correlated in time; a white noise assumption
applying to both these quantities is evidently rather far-fetched. Once such
correlation information becomes available, the extensive knowledge available
in the area of optimal filtering may help us to develop a method for extract-
ing the signal part from the noisy observations. The main ingredients of
optimal filtering are the statistical signal model, incorporating the correla-
tion information, and the optimization of an error criterion, ensuring that
the filtered signal resembles the desired signal as much as possible, for ex-
ample, in the MSE sense. Comprehensive presentations of optimal filtering
techniques can be found in [55, 56, 91].

Below, we will describe EP modeling in terms of stationary processes
and the design of an optimal, linear, time-invariant filter to be applied to
the ensemble average ŝa(n). Since the correlation information is not a priori
available, it must be estimated a posteriori from the ensemble of EPs once
the recording procedure is finished; hence, the resulting filter is commonly
referred to as an a posteriori filter.

It is essential to underline that the word “optimal”—as in “optimal
filtering”—must be used with great caution since optimality is meaning-
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Figure 4.23: Weighting of the ensemble average by ensemble correlation. (a) A
noise-free, simulated signal s(n), (b) the ensemble average ŝa(n) resulting from
100 EPs with added white, Gaussian noise with σ2

v = 1, (c) the estimated weight
function ŵ(n) describing the ensemble correlation, and (d) the weighted ensemble
average ša(n).
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ful only as long as the model assumptions are fulfilled (which, unfortunately,
is rarely the case in biomedical signal processing).

4.4.1 Time-Invariant, A Posteriori Filtering

As several times before in this chapter, we adopt the signal-plus-noise model
in (4.4) as the starting point for our presentation,

xi(n) = s(n) + vi(n), i = 1, . . . , M, (4.154)

where s(n) and vi(n) are both considered to be zero-mean, stationary pro-
cesses and thus completely characterized by their respective correlation func-
tions rs(k) and rv(k). Alternatively, they are completely characterized by
their respective power spectra Ss(ejω) and Sv(ejω). The noise vi(n), present
in each of the M different EPs, is described by the same correlation function
rv(k) and, hence, the variance rv(0) = σ2

v . Moreover, it is assumed that both
s(n) and vi(n) are uncorrelated,

E[s(n)vi(n)] = 0, i = 1, . . . , M. (4.155)

The reader is reminded of the relationships between the correlation function
and the power spectrum:

Sx(ejω) =
∞∑

k=−∞
rx(k)e−jωk

and

rx(k) =
1
2π

∫ π

−π
Sx(ejω)ejωkdω.

Either of these representations is used below, depending on which is consid-
ered to be the most suitable.

Correlation functions. In practice, the correlation functions rs(k) and
rv(k) are unknown and must be inferred, in some way, from the ensemble of
EPs. One straightforward approach is to consider the correlation function
rŝa(k) of the ensemble average ŝa(n), which can be expressed in terms of
rs(k) and rv(k),

rŝa(k) = rs(k) +
1
M

rv(k). (4.156)
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Similarly, the average of the correlation functions rxi(k), obtained from each
of the EPs xi(n), is given by

rx(k) =
1
M

M∑
i=1

rxi(k) = rs(k) + rv(k). (4.157)

By combining (4.156) and (4.157), the desired correlation functions can be
expressed in terms of rŝa(k) and rx(k) such that

rs(k) =
M

M − 1

(
rŝa(k) − 1

M
rx(k)

)
(4.158)

and

rv(k) = rx(k) − rs(k). (4.159)

It is straightforward to compute the correlation functions rx1(k), . . . , rxM (k)
and rŝa(k) from the ensemble of data using the estimator previously given
in (3.78). This a posteriori approach was originally suggested in [92, 93], see
also [94–97].

Another a posteriori approach to estimate the signal and noise correlation
functions is to employ alternate ensemble averaging in which every second
EP is included with opposite sign [98] (see also page 198). The alternate
ensemble average is defined by

v(n) =
1
M

M∑
i=1

(−1)i xi(n), (4.160)

where M is assumed to be an even integer. This technique cancels the signal
part s(n), assumed to be invariant from EP to EP, whereas a residual noise
component persists in v(n). Since the correlation functions of v(n) and v(n)
are related by

rv(k) = Mrv(k), (4.161)

we have from (4.156) that

rs(k) = rŝa(k) − rv(k). (4.162)

An obvious advantage of the procedure defined by (4.161) and (4.162) is that
these expressions require a far smaller amount of computation than do the
corresponding ones in (4.158) and (4.159); the correlation function needs to
be computed only twice instead of M +1 times. Unfortunately, the saving in
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computation time is accompanied by an increased variance in the correlation
function estimates based on alternate ensemble averaging [98].

Yet another approach is to make use of the prestimulus interval to esti-
mate the noise correlation rv(k) [99], cf. the definition in (4.72). The validity
of this approach relies on the assumption that the correlation properties of
the EEG remain the same throughout the EP; an assumption which is not
entirely valid, as was already pointed out on page 197. In contrast to the
above two a posteriori techniques, which rely on the ensemble properties to
find estimates of rs(k) and rv(k), the prestimulus technique makes it possible
to use estimates of the noise correlation function rvi(k) that differ from EP
to EP.

Noncausal infinite impulse response filtering. We will now consider
the design of a linear filter h(k) that processes the ensemble average ŝa(n)
in order to produce an estimate of the desired signal s(n). Initially, we will
assume that the observation interval is infinite and that the filter is allowed
to be noncausal so that both past and future samples are used for filtering.
The transfer function of the filter is described by its z-transform

H(z) =
∞∑

k=−∞
h(k)z−k.

The output of the filter is obtained from the following convolution sum,

ŝ(n) =
∞∑

k=−∞
h(k)ŝa(n − k). (4.163)

The filter is designed with reference to the MSE criterion, which involves the
desired signal s(n) and the filtered signal ŝ(n),

E = E
[
(s(n) − ŝ(n))2

]
. (4.164)

Minimization of this error criterion is achieved by differentiating E with re-
spect to each of the filter coefficients h(l) and setting the resulting derivatives
equal to zero,

∂

∂h(l)
E

⎡⎣(
s(n) −

∞∑
k=−∞

h(k)ŝa(n − k)

)2
⎤⎦ = 0, −∞ < l < ∞. (4.165)

Performing the differentiation, we obtain an infinite set of equations with an
infinite number of unknowns,

∞∑
k=−∞

h(k)rŝa(l − k) = rsŝa(l), −∞ < l < ∞, (4.166)
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where the cross-correlation between s(n) and ŝa(n) is

rsŝa(k) = E[s(n)ŝa(n − k)]. (4.167)

The equations in (4.166) are well-known as the Wiener–Hopf equations of the
noncausal, infinite impulse response (IIR) Wiener filter [100]. Their solution
is straightforward, since the left-hand side of (4.166) is a convolution of
h(k) with rŝa(k) in the time domain, and, therefore, can be expressed as a
multiplication in the frequency domain. Hence, the Wiener–Hopf equations
can be expressed as

H(ejω)Sŝa(e
jω) = Ssŝa(e

jω),

where Ssŝa(e
jω) is the cross-power spectrum of s(n) and ŝa(n − k). The

frequency response of the optimal, noncausal Wiener filter is given by

H(ejω) =
Ssŝa(e

jω)
Sŝa(ejω)

. (4.168)

Since the noise vi(n) is assumed to be zero-mean and uncorrelated with s(n),
the cross-correlation between s(n) and ŝa(n) becomes

E[s(n)ŝa(n − k)] = E[s(n)s(n − k)] +
1
M

M∑
i=1

E[s(n)vi(n − k)]

= E[s(n)s(n − k)] + 0 = rs(k). (4.169)

Hence, the frequency response in (4.168) can be expressed in terms of the
signal and noise spectra,

H(ejω) =
Ss(ejω)

Ss(ejω) +
1
M

Sv(ejω)
. (4.170)

Since the power spectrum of a stationary process is always non-negative,
i.e., S(ejω) ≥ 0, the frequency response H(ejω) is restricted such that

0 < H(ejω) < 1 (4.171)

for all values of ω. Filtering with H(ejω) does not introduce any phase
distortion since the power spectrum is a real function, and, therefore, the
phase function is equal to zero. It is noted that the signal passes through
the filter almost unattenuated for values of ω at which the SNR is high, i.e.,
for Ss(ejω) � Sv(ejω), since |H(ejω)| ≈ 1. On the other hand, the filter
suppresses the noise at low SNRs, Ss(ejω) � Sv(ejω), since |H(ejω)| has
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Figure 4.24: Design of a Wiener filter. (a) The signal and noise power spectra
Ss(ejω) and Sv(ejω) and (b) the frequency response of the corresponding Wiener
filter H(ejω), defined in (4.170). The noise is completely attenuated by the filter in
frequency intervals without signal content.

almost zero gain. These filter characteristics resemble those of the sample-
by-sample weight function, presented previously in (4.142), in the sense that
the weight is close to one for a high SNR and close to zero for a low SNR;
however, the weight function in (4.142) does not depend on the frequency ω.
Figure 4.24 presents the frequency response of a Wiener filter resulting from
known signal and noise spectra.

An undesirable implication of the filter gain property in (4.171) is that
amplitude measurements from the filtered ensemble average are systemati-
cally underestimated. Hence, the estimate ŝ(n) that results from the Wiener
filter in (4.170) is, in general, a biased estimate of s(n), although with re-
duced variance. As a consequence, amplitude measurements obtained from
the filtered ensemble average cannot be directly compared to normal values
of EP amplitude obtained from ensemble average measurements. Instead,
such values have to be redeveloped using filtered ensemble averages obtained
from a population of normal subjects. Normal values of EP latencies are, on
the other hand, less influenced by filtering thanks to the zero-phase property.

Having derived the Wiener filter under the assumption of known power
spectra, we now consider how the filter design is modified when the a pos-
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teriori estimation technique is incorporated. From (4.158) and (4.159) we
know that estimates of the signal and noise power spectra are given by

Ŝs(ejω) =
M

M − 1

(
Sŝa(e

jω) − 1
M

Sx(ejω)
)

, (4.172)

Ŝv(ejω) = Sx(ejω) − Ŝs(ejω), (4.173)

respectively, where Sx(ejω) is related to rx(k). Insertion of these estimates
into H(ejω), as given in (4.170), yields the frequency response

Ĥ1(ejω) =
M

M − 1

(
1 − 1

M

Sx(ejω)
Sŝa(ejω)

)
. (4.174)

It is important to realize that this frequency response represents an estimate
of the Wiener filter and can no longer be considered optimal for the model
of interest. Considering the power spectra based on the alternate ensemble
average, we obtain the following frequency response:

Ĥ2(ejω) = 1 − Sv(ejω)
Sŝa(ejω)

. (4.175)

Both of the above two frequency response estimates suffer from certain
problems which must be dealt with in order to avoid serious degradation of
performance. Perhaps, the most striking problem is that negative values may
occur in the frequency response because the terms Sx(ejω)/(MSŝa(e

jω)) and
Sv(ejω)/Sŝa(e

jω), being subtracted in (4.174) and (4.175), respectively, may
be greater than one; this property is in contrast to the frequency response
of the Wiener filter, which is always positive-valued. A simple remedy is to
clip any value that is less than zero [101, 102],

Ĥc
1(e

jω) =
{

Ĥ1(ejω), Ĥ1(ejω) ≥ 0;
0, Ĥ1(ejω) < 0.

(4.176)

A similar procedure has also been suggested for the sample-by-sample weight
function in (4.152) which exhibits the same type of problem.

Another problem is that the estimates of Sx(ejω) and Sŝa(e
jω) are pe-

riodograms and, therefore, exhibit substantial variance, as indicated by the
expression in (3.86). The variance can be reduced, to a certain degree, by
smoothing of each spectrum (i.e., lowpass filtering of the spectrum) or by
splitting the ensemble into several subensembles accompanied by averaging
of the resulting subensemble power spectra [98]. Figure 4.25 presents a typi-
cal example of an estimated frequency response and the effect of clipping and
spectral smoothing. It can be seen that the combined use of smoothing and
clipping yields an estimate of the frequency response which is considerably
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Figure 4.25: The frequency response of the time-invariant, a posteriori filter in
(4.174) and its improvements. The filters are estimated from an ensemble for which
the signal-to-noise ratio of the average is presented. (a) The frequency response
before (dotted line) and after clipping, (b) the smoothed frequency response before
and after clipping, and (c) the theoretical frequency response determined from prior
knowledge of the signal and noise power spectra.

closer to the a priori frequency response than is the unprocessed frequency
response. The frequency responses in Figure 4.25 are estimated from the
simulated data used in Figure 4.26.

As the number M of EPs increases, the a posteriori filter becomes an
increasingly better approximation of the a priori Wiener filter because the
accuracy of the power spectrum estimates improves. However, the SNR of
the ensemble average ŝa(n) to be filtered also increases, and, consequently,
the need for a posteriori filtering diminishes. On the other hand, the a pos-
teriori filter becomes less and less reliable when it is really needed at lower
SNRs [103]. This property limits the overall usefulness of the a posteriori
filter.

The performance of a posteriori filtering is illustrated by the simulation
example in Figure 4.26. The filters are estimated using (4.174) in combi-
nation with an ensemble of 100 identical EPs at three different SNRs. The
ensemble averages plotted in Figure 4.26(a) were processed with estimated
filters whose frequency responses have either been clipped (Figure 4.26(b)),
or smoothed and clipped (Figure 4.26(c)). Since both the signal and noise
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Figure 4.26: Performance of time-invariant, a posteriori “Wiener” filtering for
different signal-to-noise ratios. (a) The ensemble average and the desired signal
(thin line). The filtered ensemble average results from a filter whose frequency
response is either (b) clipped or (c) smoothed and clipped. (d) The filtered ensemble
average using the optimal filter, defined in (4.170).

power spectra are known a priori in this example, filtered ensemble averages
can also be computed using the optimal filter in (4.170), see Figure 4.26(d).
A considerable reduction in variance can be observed in the a posteriori
filtered ensemble averages when compared to the corresponding ensemble
averages; this is especially noticeable for lower SNRs. However, this im-
provement comes at the expense of underestimated peak amplitudes of the
waveform whether a priori or a posteriori filtering is employed.

Causal FIR filtering. The derivation of the noncausal IIR Wiener filter
displays in a clear way several important issues related to the usefulness of
a posteriori filtering. However, a causal filter with FIR structure is often
preferable [83]. Although an IIR filter can be subjected to truncation, the
resulting FIR filter no longer has an obvious relation to the MMSE. In de-
riving the FIR Wiener filter, the following error criterion should instead be



Section 4.4. Noise Reduction by Linear Filtering 251

minimized,

E = E

⎡⎣(
s(n) −

L−1∑
k=0

h(k)ŝa(n − k)

)2
⎤⎦ , (4.177)

where the upper limit of the convolution sum is determined by the FIR filter
length L. By introducing the following vector notation (cf. (3.62)),

ŝa(n) =

⎡⎢⎢⎢⎣
ŝa(n − L + 1)

...
ŝa(n − 1)

ŝa(n)

⎤⎥⎥⎥⎦ , h =

⎡⎢⎢⎢⎣
h(0)
h(1)

...
h(L − 1)

⎤⎥⎥⎥⎦ , (4.178)

the gradient of (4.177) can be calculated with respect to h and set equal to
zero,

∇hE

[(
s(n) − hT ˜̂sa(n)

)2
]

= 0 (4.179)

or

2E
[
˜̂sa(n)

(
s(n) − ˜̂s

T
a (n)h

)]
= 0. (4.180)

The resulting equation can be written as

R̃ŝah = rsŝa , (4.181)

where

Rŝa = E
[
ŝa(n)ŝT

a (n)
]

(4.182)

and

rsŝa = E
[
s(n)˜̂sa(n)

]
. (4.183)

Equation (4.181) is the matrix form of the Wiener–Hopf equations and
constitutes the causal FIR filter counterpart of the noncausal IIR filter in
(4.168). Since ŝa(n) was assumed to be a stationary process, the matrix Rŝa

is symmetric and Toeplitz, and, accordingly, the reversed correlation matrix
is R̃ŝa = Rŝa .

Similar to the noncausal filtering case, Rŝa and rsŝa can be expressed in
terms of signal and noise correlation using the relationships given in (4.156)
and (4.169), respectively, and thus,

h =
(
Rs +

1
M

Rv

)−1

rs, (4.184)
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where

rsŝa = rs =

⎡⎢⎢⎢⎣
rs(0)
rs(1)

...
rs(L − 1)

⎤⎥⎥⎥⎦ . (4.185)

Finally, an estimate of h is obtained by replacing Rs,Rv, and rs in (4.184)
with their a posteriori estimated counterparts in (4.158) and (4.159).

4.4.2 Limitations with Time-Invariant, A Posteriori
Filtering

The value of time-invariant, a posteriori filtering for improving the SNR
of averaged EPs has not been unanimously agreed upon in the literature;
instead, the performance results range from “inefficient” [101, 104–106] to
“significant improvements” [107–109]. One plausible explanation of why
such considerable differences in results have been reported is due to the fact
that different EP modalities have been investigated [103]. For example, an
AEP or VEP consists of several, consecutive waves which are relatively well
modeled by a stationary process. On the other hand, an SEP has a more
transient character and is therefore poorly modeled by a stationary process.
For any transient waveform, however, the assumption of stationarity is not
very well-founded, and, therefore, the motivation to develop methods that
replace the above power spectral characterization has been strong. In fact,
several approaches have been presented which account for the nonstationary
behavior of EPs, most notably by generalizing a posteriori filtering to a time-
varying spectral description. In such cases, the ensemble average ŝa(n) is
processed by a linear filter whose impulse response h(l, n) is time-variant.
The output ŝ(n) is given by the convolution sum

ŝ(n) =
∑

l

h(n − l, n)ŝa(l). (4.186)

The filter h(l, n) can be designed to be either causal or noncausal. The design
of time-varying filters, as well as their performance, has been investigated
at length [110–115]. We note that the sample-by-sample weight function
related to ensemble correlation in (4.142) is one particular simple case of a
time-varying filter whose impulse response equals

h(l, n) = w(n)δ(l).

Another weak point of time-invariant, a posteriori filtering is that the
signal s(n) is assumed to be deterministic when considering the reduction in
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noise level of the ensemble average (e.g., used in the derivation of (4.156)),
whereas it is assumed to be stochastic and stationary in the development of
the Wiener filter [103].

The reader may question why several pages have been spent on describing
a technique which has some serious limitations. It is, however, important to
be aware of possible pitfalls in any area of application where biomedical sig-
nal processing is of interest. In this case it has been demonstrated that great
care must be exercised before the assumption of stationarity is incorporated
into a signal model.

4.5 Single-Trial Analysis Using Basis Functions

The tracking of transient changes in EP amplitude and latency is important
in monitoring during neurosurgical procedures. Such tracking can, at an
early stage, detect changes indicative of injury to the central nervous sys-
tem. Previously described techniques for noise reduction usually require a
substantial number of EPs for satisfactory performance and should there-
fore be replaced by signal processing techniques operating on a single-trial
or, possibly, a few-trial basis.

Another application of single-trial noise reduction is the processing of
EPs elicited when a subject performs a mental task. For example, brain
function can be studied by asking a subject to verify the content of different
sentences; following each verification, the single EP is analyzed and classi-
fied [116]. The accuracy in classifying each of the EPs is likely to improve
once the data has been subjected to noise reduction.

Yet another reason for studying single-trial analysis is the recent ob-
servation that EPs are composed of a reproducible stimulus response and
a dynamically changing background EEG activity, likely to reflect varying
brain states, see, e.g., [117]. Thus, the background activity is likely to influ-
ence EP morphology to a larger extent than was initially believed when the
“fixed signal-plus-noise” hypothesis was developed. The assumption that
the background EEG can be modeled as additive noise may therefore have
to be revised.

Noise reduction in a single trial can be achieved by introducing certain
prior information on EP morphology which constrains the morphologic de-
grees of freedom, for example, by requiring the EP to be pulse shaped. In this
section, we will describe single-trial techniques for estimating EP morphology
that rely on a set of orthonormal basis functions for signal representation.
The orthonormality property is very attractive since the components of the
EP associated with a certain basis function do not interfere with the other
basis functions. A straightforward approach is to apply sines/cosines as basis
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functions—the well-known Fourier series representation of a signal—followed
by truncation of the series expansion so that only lower frequencies are al-
lowed to model the EPs. In this case, noise is considered to be concentrated
to the basis functions representing higher frequencies. Another approach is
to design the basis functions so that the truncated expansion provides the
most efficient representation, in the MSE sense, to an ensemble of different
EP morphologies; this approach is known as the discrete Karhunen–Loève
expansion.

In certain situations, it is acceptable to make use of the most recently ac-
quired trials to achieve better noise reduction—a property which has already
been mentioned in relation to exponential averaging. Adaptive filtering tech-
niques, in combination with a basis function representation, have been found
useful when tracking time-varying changes in EP morphology in noisy signals
(Section 4.6).

Single-trial analysis is, of course, not limited to techniques relying on
basis functions, although this approach represents the main focus in this
section, but other techniques have been investigated incorporating prior in-
formation through parametric modeling of the EP and the background ac-
tivity. For example, it has been suggested that each EP can be modeled as
a filtered version of the ensemble average, while the background activity is
modeled as an AR process [118, 119], cf. EEG modeling on page 65. The
filter parameters that model the EP, as well as the AR model parameters,
are estimated from each individual trial and are used to produce a noise-
reduced estimate of the EP. Several other single-trial approaches can also be
found in the literature [120–123].

4.5.1 Orthogonal Expansions

An EP xi, composed of both signal and noise, is modeled as a stochastic
process which can be represented by a linear combination (series expansion)
of basis functions ϕk,

xi =
N∑

k=1

wi,kϕk, (4.187)

where each basis function is represented by a vector with N elements

ϕk =

⎡⎢⎢⎢⎣
ϕk(0)
ϕk(1)

...
ϕk(N − 1)

⎤⎥⎥⎥⎦ , k = 1, . . . , N. (4.188)
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The signal xi is said to be an element of the space X spanned by the N basis
functions ϕk. The space X is defined by the set of all vectors which can be
represented by linear combinations of the basis {ϕ1,ϕ2, . . . ,ϕN}, denoted

X = span{ϕ1,ϕ2, . . . ,ϕN}. (4.189)

The coefficient (weight) vector wi is the representation of xi in terms of the
basis {ϕ1,ϕ2, . . . ,ϕN},

wi =

⎡⎢⎢⎢⎣
wi,1

wi,2
...

wi,N

⎤⎥⎥⎥⎦ . (4.190)

Introducing the matrix notation Φ to represent the set of basis functions,

Φ =
[
ϕ1 ϕ2 · · · ϕN

]
, (4.191)

we can write the series expansion in (4.187) more compactly as

xi = Φwi. (4.192)

The orthonormality property implies that the basis functions are mutually
orthogonal, and with their energy normalized to one,

ϕT
k ϕl =

{
1, k = l;
0, k �= l.

(4.193)

Since the columns of Φ are orthogonal, we have ΦΦT = ΦTΦ = I; such a
matrix is said to be orthogonal (see Appendix A). By premultiplying both
sides of (4.192) by ΦT , the coefficient vector wi can be calculated from xi

using the relation

wi = ΦTxi. (4.194)

Thus, each weight wi,k results from a correlation operation between xi and
the basis function ϕk—the inner product :

wi,k = ϕT
k xi =

N−1∑
n=0

ϕk(n)xi(n). (4.195)

The calculation of wi can be treated from an estimation point of view in
which wi is chosen such that the MSE is minimized. Each EP xi is modeled
by

xi = si + vi, (4.196)
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where E [xi] = si since the noise vi is assumed to be zero-mean. The corre-
lation matrix for the ith EP is

Rxi = E
[
xixT

i

]
. (4.197)

The modeling assumptions are now more general than those presented in
(4.4) because si is allowed to change from EP to EP.

A suitable criterion to minimize would be the following MSE,

E
[
‖si − Φwi‖2

]
= E

[
(si − Φwi)T (si − Φwi)

]
, (4.198)

but since si is unknown it is not useful. However, it is easily shown that the
minimization of the MSE Ewi between xi and the series expansion represen-
tation Φwi,

Ewi = E
[
‖xi − Φwi‖2

]
, (4.199)

is equivalent to the minimization of (4.198) since

Ewi = E
[
‖si − Φwi‖2

]
+ E

[
‖vi‖2

]
, (4.200)

where the noise term can be neglected since it is independent of wi. In order
to minimize Ewi , it is expanded,

Ewi = E
[
xT

i xi

]
− 2E

[
xT

i

]
Φwi + wT

i ΦTΦwi,

and differentiated with respect to wi (see Appendix A for vector differenti-
ation rules), resulting in

∇wiEwi = −2ΦT E [xi] + 2ΦTΦwi, (4.201)

which, when set to zero, yields the MMSE estimator

wi = (ΦTΦ)−1ΦT E [xi] = ΦT si. (4.202)

This estimator is, however, not very practical since si is exactly the infor-
mation we are looking for in single-trial analysis. Our best guess of si is
simply to replace it with the observed signal xi, yielding the approximate
MSE estimator

ŵi = ΦTxi, (4.203)

an expression which turns out to be identical to the one in (4.194). This
particular type of estimation is sometimes referred to as inner product es-
timation since each coefficient is obtained as the inner product of the basis
functions ϕk and xi.

The approximate estimator in (4.203) suggests that the estimate of the
coefficient vector wi would exhibit considerable variance since only one trial
xi is involved. By also making use of the most recent EPs xi−1,xi−2, . . .
to estimate wi, the variance can be effectively reduced. This extension of
the method is considered in the next section within the context of adaptive
filtering, where the signal morphology is assumed to change relatively slowly.
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Truncation. So far, the orthogonal series expansion in (4.192) has been
considered to represent the observed signal xi, thus including both signal and
noise. However, the underlying idea of signal estimation through a truncated
series expansion is that a subset of basis functions can provide an adequate
representation of the signal part si. Therefore, the matrix Φ is decomposed
into two matrices, Φs and Φv, whose columns represent the signal and the
noise parts, respectively,

Φ =
[
Φs Φv

]
, (4.204)

where Φs is N × K and Φv is N × (N − K); K denotes the number of
basis functions that approximates the signal (K < N). In terms of the
series expansion in (4.187), we are thus interested in using the first sum on
right-hand side of

xi =
K∑

k=1

wi,kϕk +
N∑

k=K+1

wi,kϕk (4.205)

to estimate si.
It should be emphasized that the decomposition in (4.204), by necessity,

is somewhat arbitrary since, in practice, we rarely have knowledge on which
basis functions represent the signal and noise parts. In fact, these parts often
overlap to a considerable degree. The estimate of the signal is obtained from

ŝi = Φsŵi = ΦsΦT
s xi. (4.206)

It should be pointed out that for truncated expansions ΦsΦT
s �= I, whereas

ΦT
s Φs = I. Note also that the coefficient vector ŵi in (4.206) now contains

only K elements due to truncation. The estimation procedure is illustrated
by the block diagram in Figure 4.27.

In terms of spaces, truncation may be related to what is called direct
decomposition of X into the subspaces Xs and Xv,

X = Xs ⊕Xv, (4.207)

where ⊕ denotes the direct sum of the two subspaces

Xs = span{ϕ1,ϕ2, . . . ,ϕK}, (4.208)
Xv = span{ϕK+1,ϕ2, . . . ,ϕN}. (4.209)

The decomposition into subspaces is used below when wavelets are consid-
ered for multiresolution signal analysis.

A truncated series expansion of two basis functions (K = 2) is illustrated
in Figure 4.28. In this case, the series expansion is completely characterized
by the coefficients wi,1 and wi,2 or, equivalently, by polar coordinates which
sometimes may be preferable.
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xi = si + vi

ϕ1

ϕ2

ϕK

wi,1

wi,2

wi,K

ŝi

ei

Figure 4.27: Estimation of the coefficient vector w, which defines the linear com-
bination of basis functions used to estimate the signal part si. The output error
ei = xi − Φwi is minimized in the mean-square error sense.

Signal-to-noise ratio. A definition of the SNR is helpful when evaluating
the performance of the signal estimation in (4.206). The definition of the
SNR for the input signal is related to the signal and noise energy,

E
[
xT

i xi

]
= sT

i si + E
[
vT

i vi

]
+ 2sT

i E [vi]

= sT
i si + E

[
vT

i vi

]
(4.210)

and

SNRxi =
sT
i si

E
[
vT

i vi

] . (4.211)

The SNR of the resulting estimate ŝi depends on the accuracy of the
coefficients ŵi, estimated from the noisy observations xi. The coefficient
estimate can be decomposed into two components,

ŵi = wi + ∆wi, (4.212)

where the coefficient error vector ∆wi can be viewed as the bias in esti-
mating wi (i.e., ∆wi = ŵi − wi). The energy of the estimate ŝi is given
by

E
[
ŝT
i ŝi

]
= sT

i ΦsΦT
s si + E

[
∆wT

i ∆wi

]
+ 2E

[
∆wT

i

]
ΦT

s si, (4.213)
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wi,2

wi,1

Figure 4.28: Signal morphologies resulting from a linear combination of two or-
thogonal basis functions ϕ1 and ϕ2 with mono- and biphasic morphology, respec-
tively. For signals on the circle, the total energy is fixed, i.e., the radius w2

i,1 + w2
i,2

is equal to a constant.

and, consequently, a general SNR definition of ŝi can be expressed as

SNRŝi
=

sT
i ΦsΦT

s si

E
[
∆wT

i ∆wi

] , (4.214)

since the last term in (4.213) is equal to zero. In order to derive a more
specific expression of the coefficient error vector ∆wi, we note that

ŵi = ΦT
s xi

= ΦT
s (si + vi)

= wi + ΦT
s vi, (4.215)

and thus

∆wi = ΦT
s vi. (4.216)

Inserting this expression into (4.214), the SNR definition becomes

SNRŝi
=

sT
i ΦsΦT

s si

E
[
vT

i ΦsΦT
s vi

] . (4.217)
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For the special case when the noise vi is white, i.e., for Rvi = σ2
vi
I, we

obtain

SNRŝi
=

sT
i ΦsΦT

s si

tr
(
ΦT

s E
[
vivT

i

]
Φs

)
=

sT
i ΦsΦT

s si

tr
(
ΦT

s σ2
vi
IΦs

)
=

sT
i ΦsΦT

s si

Kσ2
vi

. (4.218)

It is important to realize that not only does the noise part of SNRŝi
depend

on K, but so does the signal part in the numerator. Hence, the truncation
value K that produces the highest SNR is determined by choosing that value
of K which maximizes SNRŝi

.

4.5.2 Sets of Basis Functions

The complex exponential functions represent the most well-known set of
complete orthonormal basis functions since they constitute the cornerstone
of Fourier analysis. The basis functions are defined by

ϕk =
1√
N

⎡⎢⎢⎢⎣
1

ejωk

...
ejωk(N−1)

⎤⎥⎥⎥⎦ , k = 1, . . . , N.

The frequencies (ωk = 2πfk) must be harmonically related to the funda-
mental f1 = 1/N by fk = k/N , otherwise orthogonality does not apply to
this set of basis functions. Since we have, in general, avoided describing the
complex-valued version of a method, we will consider the closely related, but
real-valued, representation in which sines and cosines define the set of basis
functions, i.e.,

ϕ2k+1 =

√
2
N

⎡⎢⎢⎢⎢⎣
1

cos
(

2πk
N

)
...

cos
(

2πk(N−1)
N

)
⎤⎥⎥⎥⎥⎦ , k = 0, . . . , N/2 − 1, (4.219)

ϕ2k =

√
2
N

⎡⎢⎢⎢⎢⎣
0

sin
(

2πk
N

)
...

sin
(

2πk(N−1)
N

)
⎤⎥⎥⎥⎥⎦ , k = 1, . . . , N/2, (4.220)
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(a)

(b)

Figure 4.29: (a) Sine and cosine basis functions and (b) the Walsh sal and cal
basis functions. Although these sequences are discrete-time, they are, for ease of
interpretation, presented as continuous-time curves.

where N is an integer assumed to be even. It can be verified that the basis
functions in (4.219) and (4.220) constitute an orthonormal set since

ϕT
k ϕl =

{
1, k = l;
0, k �= l.

The sinusoidal basis functions with the lowest frequencies are shown in Fig-
ure 4.29(a). The coefficients of the series expansion are calculated by the
following two inner products,

w2k+1 = xT ϕ2k+1

=

√
2
N

N−1∑
n=0

x(n) cos
(

2πkn

N

)
, k = 0, . . . , N/2 − 1, (4.221)

and

w2k = xT ϕ2k

=

√
2
N

N−1∑
n=0

x(n) sin
(

2πkn

N

)
, k = 1, . . . , N/2. (4.222)

These two expressions are well-known since they yield the coefficients of the
Fourier series representation of x(n).

Estimation of EP morphology can be considered in terms of lowpass
modeling using the truncated Fourier series [124–126]. Higher harmonics are
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Figure 4.30: Truncated Fourier series modeling of EPs using different numbers of
basis functions: (a) K = 3, (b) K = 7, (c) K = 12 (found to produce the smallest
error, see Figure 4.31(b)), (d) K = 500, i.e., the complete set of basis functions and
thus identical to the observed signal with noise, and (e) the simulated EP waveform
before the recorded background EEG activity was added.

discarded since these are considered to contain negligible information for rep-
resentation of latency and amplitude features with diagnostic significance.
Figure 4.30 presents an example in which a simulated EP, disturbed by
recorded background EEG activity, is estimated by the expression in (4.206)
using the sine/cosine basis functions for different truncation values K. For
this particular example, it is evident that K should be chosen to be at least 10
in order to give an acceptable representation of the EP morphology while, at
the same time, providing suppression of high-frequency noise. Although the
main deflection at 100 ms (P100) is relatively well-represented by K = 12,
the subsequent, much slower wave components are poorly modeled. There-
fore, this example illustrates the fact that periodic basis functions are rather
ill-suited for modeling of transient waveforms. After all, the sine/cosine ba-
sis functions are highly localized in the frequency domain, but not localized
at all in the time domain.

The P100 amplitude of the EP estimate is presented in Figure 4.31(a) for
different values of K. The amplitude is accurate for values of K ranging from
10 to around 30, whereas larger values of K make the P100 amplitude biased;
this behavior is caused by noise included in the EP estimate for large values
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Figure 4.31: (a) The P100 amplitude shown as a function of the number of basis
functions for the EP in Figure 4.30. The true P100 amplitude, taken from the EP
without added noise, is indicated by the dotted line. (b) The error power reaches
its minimum for K = 12 basis functions, cf. the corresponding signal estimate in
Figure 4.30(c).

of K. Since the EP signal is simulated, it is possible to compute the power of
the error e between the noise-free signal s, shown in Figure 4.30(e), and its
estimate ŝ. For this example, the error power is found to have its minimum
for K = 12, see Figure 4.31. However, the minimum is relatively flat, and
additional basis functions do not significantly increase the error power. The
optimal value of K will, in general, vary from morphology to morphology,
and, therefore, the choice of K usually involves compromise. The necessity
of a compromise choice is even further emphasized by recalling the basic fact
that a noise-free EP is unavailable in practice.

The discrete Walsh functions constitute another set of basis functions of
rectangular shape, assuming only the values one and zero and with different
periodicities [127, Ch. 5]. The Walsh functions can be divided into odd
functions, denoted sal, and even functions, denoted cal, in analogy with
the sine and cosine functions. The first four of the sal and cal functions
are displayed in Figure 4.29(b), excluding the function representing the DC
level. The Walsh functions are primarily of interest when the computational
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aspects are critical, since these functions can be implemented very efficiently.
On the downside, even more basis functions are required to adequately model
EPs than when sine/cosine functions are used [128].

4.5.3 Karhunen–Loève Expansion—Optimal Basis Functions

A powerful alternative to the sets of basis functions just described is the
Karhunen–Loève expansion which offers the property of optimal represen-
tation of a random process by a truncated, orthonormal series expansion:
no other expansion yields a lower approximation error in the MSE sense.
This property assumes that the correlation matrix Rx, characterizing the
ensemble of signals, is either known or can be estimated from available data
(not necessarily stationary). The Karhunen–Loève expansion does not pro-
duce basis functions which are already labeled as belonging to the signal or
the noise part. However, certain basis functions are, as we will see later,
well-suited for representing the signal part when this part is consistently
present in the ensemble of data employed for determining the basis func-
tions. In contrast to the previous section, the basis functions that constitute
the Karhunen–Loève expansion do not have an analytical description.

How should the basis functions ϕk be designed so that the signal part
is efficiently represented with a small number of functions? Again, we start
our derivation by decomposing the series expansion of x into two sums (for
clarity of presentation, we will temporarily omit the index i),

x =
K∑

k=1

wkϕk +
N∑

k=K+1

wkϕk = ŝ + v̂, (4.223)

where the K first basis functions produce an estimate of s, and the remaining
(N −K) terms produce the noise estimate v̂. Our aim is now to find the set
of ϕk’s that makes ŝ resemble s as closely as possible. This objective can be
achieved by minimizing the noise power estimate in the MSE sense,

E = E
[
v̂T v̂

]
= E

[
(x − ŝ)T (x − ŝ)

]
, (4.224)

which, with the model that the observed signal is composed of

x = s + v,

becomes

E = E
[
(s − ŝ)T (s − ŝ)

]
+ 2E

[
(s − ŝ)Tv

]
+ E

[
vTv

]
. (4.225)

In order to proceed, we will make use of the assumptions that the signal and
noise are uncorrelated and that the noise is white, i.e., characterized by the
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correlation matrix

Rv = E[vvT ] = σ2
vI. (4.226)

The cross-terms in (4.225) can then be expressed as

E
[
(s − ŝ)Tv

]
= 0 − E

⎡⎣(
K∑

k=1

wkϕk

)T

v

⎤⎦
= −E

⎡⎣(
K∑

k=1

(ϕT
k x)ϕk

)T

v

⎤⎦
= −E

⎡⎣(
K∑

k=1

ϕT
k (s + v)ϕk

)T

v

⎤⎦ , (4.227)

which, by use of (4.226), becomes

E
[
(s − ŝ)Tv

]
= −

K∑
k=1

ϕT
k E

[
vvT

]
ϕk

= −Kσ2
v . (4.228)

As a result, E can be expressed as

E = E
[
v̂T v̂

]
= E

[
(s − ŝ)T (s − ŝ)

]
+ (N − 2K)σ2

v , (4.229)

from which we conclude that the noise power term can be neglected since
it does not depend on ϕk (this is only possible for the white noise situa-
tion). Consequently, minimization of E in (4.224) is equivalent to making ŝ
resemble s. Thus, we have

E = E
[
v̂T v̂

]
= E

⎡⎣(
N∑

k=K+1

wkϕk

)T (
N∑

l=K+1

wlϕl

)⎤⎦ , (4.230)

which, due to orthonormality of the basis functions ϕk, can be concisely
expressed as

E =
N∑

k=K+1

E
[
w2

k

]
. (4.231)

Furthermore, since each coefficient wk is obtained as the inner product ϕT
k x

in (4.194), we have

E
[
w2

k

]
= E

[
ϕT

k xxT ϕk

]
= ϕT

k Rxϕk, (4.232)
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and the error can be written as

E =
N∑

k=K+1

ϕT
k Rxϕk. (4.233)

Minimization of the error E must be performed subject to the constraints
that ϕK+1, . . . ,ϕN are orthonormal. Similar to the SNR maximization prob-
lem dealt with in connection with weighted averaging, see page 209, we can
solve the minimization problem by using the Lagrange multiplier technique.
The function to be minimized is defined by

L =
N∑

k=K+1

ϕT
k Rxϕk +

N∑
k=K+1

λk(1 − ϕT
k ϕk), (4.234)

where the λk’s are Lagrange multipliers related to each of the constraints.
Taking the gradient of L with respect to ϕk and setting the result to zero
yields

∇ϕ
k
L = Rxϕk − λkϕk = 0,

or

Rxϕk = λkϕk, k = K + 1, . . . , N, (4.235)

recognized as the ordinary eigenvalue problem which is solved when a square
matrix is diagonalized (its solution is briefly described in Appendix A).
Equation (4.235) establishes the very important finding that the basis func-
tions ϕk should be chosen as the eigenvectors of Rx. Since Rx is a correlation
matrix, we recall that all of its eigenvalues λk are positive-valued, or possibly
equal to zero. The eigenvalues are arranged in decreasing order

λ1 > λ2 > · · · > λM . (4.236)

Inserting (4.235) into (4.233) allows the MSE to be expressed as

E =
N∑

k=K+1

ϕT
k Rxϕk

=
N∑

k=K+1

ϕT
k (λkϕk)

=
N∑

k=K+1

λk, (4.237)
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and thus E is minimized when the N − K smallest eigenvalues are chosen
since the sum of the eigenvalues then reaches its minimum value. More
importantly, this choice implies that the eigenvectors corresponding to the
K largest eigenvalues should be used as the basis functions in the truncated
series expansion in order to achieve the optimal representation property in
the MMSE sense [55].

The average energy of the coefficients wk is related to the eigenvalues λk

of Rx, a relationship established by first expressing the system of equations
in (4.235) in a compact matrix form,

RxΦ = ΦΛ, (4.238)

where Φ is defined in (4.191), and Λ is a diagonal matrix whose diagonal
elements equal the eigenvalues λ1, . . . , λN ; all N equations in (4.235) are
included. Since Φ is orthogonal, we can express Rx as

Rx = ΦΛΦT . (4.239)

Next, we express the correlation matrix of w in terms of Rx, making use of
(4.192),

E
[
wwT

]
= ΦT E

[
xxT

]
Φ = ΦTRxΦ, (4.240)

which becomes

E
[
wwT

]
= ΦTΦΛΦTΦ = Λ (4.241)

after use of (4.238), i.e., the equation which is crucial for the optimal repre-
sentation property. The average energy associated with each coefficient wk

thus equals λk,

E[wkwl] =
{

λk, k = l;
0, k �= l,

(4.242)

whereas the coefficients wk and wl for k �= l are uncorrelated. The impor-
tant implication of the result in (4.242) is that the set of basis functions
associated with Karhunen–Loève expansion produces mutually uncorrelated
coefficients.

Given an ensemble of signals characterized by Rx, a performance index
RK can be defined which reflects how well the truncated series expansion
approximates the ensemble in energy terms,

RK =

K∑
k=1

λk

N∑
k=1

λk

. (4.243)



268 Chapter 4. Evoked Potentials

The performance index RK is normalized to the interval [0, 1], because all
eigenvalues are positive-valued, and therefore approaches one as the number
of basis functions increases.

In practice, the correlation matrix Rx cannot be estimated from a single
potential but must be estimated from the ensemble x1,x2, . . . ,xM . The es-
timation of Rx is commonly achieved by simply replacing the expected value
in the definition of Rx (cf. (3.6)) by averaging the M rank-one correlation
matrices xixT

i for each of the EPs,

R̂x =
1
M

M∑
i=1

xixT
i . (4.244)

The estimation of Rx from the entire ensemble implies that the resulting
basis functions will not be matched to the statistics of individual EPs si,
but to a random process that characterizes the variations found within the
ensemble. The basis functions can be determined either from the data for
each individual subject or from a database consisting of several subjects; in
the latter case, the EPs of all subjects are merged into the computation of
R̂x in (4.244).

The signal concentration property of the Karhunen–Loève expansion, as
well as the related noise-reducing property, can be illustrated by studying
the properties of the well-known model

xi = s + vi (4.245)

and by finding the related basis functions. In this model, the signal s is de-
terministic with energy sT s = Es, whereas the noise vi is a white, stationary
process that is fully characterized by

Rvi = Rv = σ2
vI, i = 1, . . . , M.

The correlation matrix of the observed signals xi is given by

Rx = ssT + σ2
vI. (4.246)

The eigenvalues and eigenvectors of Rx are found by solving the equations
in (4.235),

(ssT + σ2
vI)ϕk = λkϕk. (4.247)

The signal s is proportional to one of the eigenvectors because

Rxs = ssT s + σ2
vs = (Es + σ2

v)s, (4.248)
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and the corresponding eigenvalue is equal to Es + σ2
v . The remaining eigen-

vectors ϕk, which must be orthonormal to s as well as mutually orthonormal,
are determined by

Rxϕk = ssT ϕk + σ2
vϕk = σ2

vϕk, (4.249)

where sT ϕk = 0 is used to arrive at the last step. The corresponding eigen-
values are all equal to σ2

v and are thus smaller than Es + σ2
v . The remaining

eigenvectors can be chosen arbitrarily. However, there is no need to com-
pute these eigenvectors because they are only needed for representation of
the noise.

For the model in (4.245), it can thus be concluded that the signal infor-
mation is concentrated to one single eigenvector corresponding to the largest
eigenvalue,

ϕ1 =
1√
Es

s (4.250)

and

λ1 = λmax = Es + σ2
v . (4.251)

For the more general case of a stochastic signal s disturbed by colored noise,
several basis functions are typically required to achieve adequate signal rep-
resentation.

Noise reduction by a truncated series expansion using the Karhunen–
Loève basis functions is illustrated in Figure 4.32. In this example, the
basis functions were determined from an ensemble of EPs acquired during
an experiment on one subject. The basis functions corresponding to the
five largest eigenvalues are presented in Figure 4.32(a); however, only the
first two eigenvectors are essential to obtain a good representation of the
EPs because λ3, λ4, and λ5 are very small, see Figure 4.32(c). Three EPs
are plotted together with the corresponding signal estimates, based on two
basis functions, in Figure 4.32(b). These basis functions yield a considerable
reduction in the noise level, while still not obscuring the delay in latency
that occurs from x1 to x3.

Viewing the signal model in (4.245) in light of the results shown in Fig-
ure 4.32(c), the distribution of the eigenvalues, as reflected by RK , indicates
that the assumption of a fixed signal s is inappropriate for this particular
data set. Such an assumption would, apart from the eigenvalue λ1 of the
signal, have implied a straight line in Figure 4.32(c). Since the energy is
unevenly spread over several eigenvalues, this indicates either that there is
considerable morphologic variability within the data ensemble or, possibly,
that the noise is colored.
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Figure 4.32: Noise reduction in EPs and the Karhunen–Loève expansion. (a) The
five most significant basis functions, (b) three different EPs xi and their correspond-
ing estimates ŝi reconstructed from the basis functions ϕ1 and ϕ2 displayed in (a),
and (c) the performance index RK as a function of the number of eigenvalues K.
(Reprinted from Lange and Inbar [129] with permission.)
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4.5.4 Interpretation as Linear, Time-Variant Filtering

Signal modeling based on a truncated orthonormal series expansion can be
interpreted in terms of linear, time-variant filtering [130]. This is an attrac-
tive property which allows us to compute the frequency response at different
instants, thereby providing valuable information on how the different waves
of xi are spectrally shaped when si is estimated by basis functions. The
derivation of the time-variant impulse response h(l, n) begins by rewriting
the relationship in (4.206),

ŝi = ΦsΦT
s xi,

and realizing that each row of the matrix ΦsΦT
s can be interpreted as a

noncausal impulse response that differs from row to row. Consequently, we
can express this relationship as a function of time n,

ŝi(n) =
K∑

k=1

N−1∑
l=0

ϕk(n)ϕk(l)xi(l)

=
N−1∑
l=0

g(l, n)xi(l), n = 0, . . . , N − 1, (4.252)

where

g(l, n) =
K∑

k=1

ϕk(l)ϕk(n), l, n = 0, . . . , N − 1. (4.253)

In order to express (4.252) as a convolution sum, we have to extend the
definition of the basis functions so that these become periodic,

ϕk(n + N) = ϕk(n), (4.254)

and thus

g(l + N, n) = g(l, n + N) = g(l, n). (4.255)

This extension is straightforward since the basis functions are deterministic.
The following definition of a finite duration impulse response h(l, n) is then
introduced,

h(l, n) =
{

g(n − l, n), l = 0, . . . , N − 1;
0, otherwise,

(4.256)

where n = 0, . . . , N − 1; the index l denotes local time within the impulse
response, while the index n denotes the time at which the impulse response
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is valid. With h(l, n), we are now in a position to express the input/output
relationship as a convolution,

ŝi(n) =
N−1∑
l=0

h(n − l, n)xi(l), n = 0, . . . , N − 1. (4.257)

The instantaneous frequency response H(ejω, n) is obtained as the Fourier
transform of h(l, n) at time n,

H(ejω, n) =
∞∑

l=−∞
h(l, n)e−jωl

=
N−1∑
l=0

g(n − l, n)e−jωl

= e−jωnG∗(ejω, n). (4.258)

Hence, the frequency response depends on the basis functions in a simple
way through the Fourier transform of g(l, n).

The interpretation of signal modeling by a truncated series expansion
in terms of a linear, time-variant filter is demonstrated by the example pre-
sented in Figure 4.33. The basis functions were determined from an ensemble
of pulse-shaped waveforms using the Karhunen–Loève expansion; only the
basis functions corresponding to the ten largest eigenvalues are displayed.
The instantaneous frequency response H(ejω, n) is presented for three dif-
ferent times, n = 25, 100, and 150, and is based on either K = 4 or 10 basis
functions. The characteristics of the frequency responses show that the low-
pass filtering effect is more pronounced during the flatter parts of the signal
(i.e., around n = 25) than during the transient ones. The bandwidth of the
time-varying filter increases as the number of basis functions increases. In
the limit, the signal will, of course, be left unaffected when the complete set
of basis functions is applied, i.e., for K = N .

4.5.5 Modeling with Damped Sinusoids

By expanding the sinusoidal basis function model described on page 260 to
include exponential damping, a wider variety of transient waveform mor-
phologies can be modeled more efficiently. Such an approach takes its start-
ing point in a deterministic signal model defined by the following expansion
of damped complex exponentials,

x(n) =
K∑

k=1

wke
ρknej(ωkn+φk), (4.259)
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Figure 4.33: Orthonormal basis functions and their interpretation as a linear,
time-varying filter with an instantaneous frequency response. The frequency re-
sponse is presented for three different times, indicated by the dotted lines in the left
panel. For each time, the response is computed for K = 4 (solid line) or 10 basis
functions (dashed line). The sampling rate is 1000 Hz.



274 Chapter 4. Evoked Potentials

for n = 0, . . . , N − 1. Each term of the expansion is characterized by its
amplitude wk, frequency ωk, phase φk, and a damping factor ρk (ρk < 0)
which determines the decay in amplitude. In contrast to the other signal
models considered in this textbook, the observed signal x(n) in (4.259) is
assumed to be noise-free. This apparent oversimplification facilitates the
development of the quintessential ideas of the method for estimating the
model parameters wk, ωk, φk, and ρk. Similar methods modified to deal with
the presence of additive noise have been suggested but will not be described
here due to their much more involved structure, see instead [131].

Since x(n) is a real-valued signal in our context, it is necessary that the
complex exponentials in (4.259) occur in complex-conjugate pairs of equal
amplitude so that the model can be written

x(n) =
K/2∑
k=1

2wke
ρkn cos(ωkn + φk). (4.260)

We note that x(n) contains K/2 damped cosines when K is even, while it
contains (K−1)/2 damped cosines and one purely damped exponential when
K is odd.

The power of modeling EPs with damped sinusoids is illustrated in Fig-
ure 4.34, where a variant of the method presented below is used to decom-
pose the signal [132]. From this example, it is evident that damping, as an
additional degree of freedom, makes it possible to model EPs with much
fewer basis functions than required with sine/cosine basis functions, see Fig-
ure 4.30. Other studies which make use of the damped-sinusoid model for
the analysis of single-trial EPs can be found in [133, 134].

Although the model in (4.259) can be expressed in terms of basis func-
tions, the resulting basis functions do not constitute an orthonormal set.
Accordingly, they do not lend themselves to the simple inner product calcu-
lation of the coefficient wk in (4.194). Another approach would be to fit the
model to x(n) by jointly minimizing the related least-squares error with re-
spect to the parameters wk, φk, ρk, and ωk. Unfortunately, the resulting set
of equations is nonlinear in nature, and their solution is difficult. Therefore,
suboptimal approaches are presented below.

The original Prony method. The original solution to this problem was
provided by Prony who recognized that the model in (4.259) can be viewed
as the homogeneous solution to a linear difference equation with fixed pa-
rameters [131]; the method is therefore referred to as the original Prony
method. This solution is more easily perceived by rewriting (4.259) so that
each term in the expansion is composed of two parameters, either dependent
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Figure 4.34: Decomposition of EPs into damped sinusoids using Prony’s method.
The EPs were recorded from two different subjects during auditory stimulation and
an oddball task. The EP estimate (“Prony estimate”) was obtained by summing
the five damped sinusoids shown in the upper panel. The duration of the signals
is 500 ms, and the damped sinusoids are displayed with different amplitude gains.
(Reprinted from Demiralp et al. [132] with permission.)
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on time n or independent,

x(n) =
K∑

k=1

hkz
n
k , (4.261)

where

hk = wke
jφk , (4.262)

zk = eρk+jωk . (4.263)

Based on this model formulation, Prony’s method comprises a three-step
procedure in which the complex parameters z1, . . . , zK are first estimated,
then the complex parameters h1, . . . , hK are estimated, and finally the 4K
real parameters wk, φk, ρk, and ωk are determined from the 2K complex pa-
rameter estimates. Thus, the estimates do not result from the optimization
of a performance criterion.

The expression in (4.261) can be viewed as the solution to the homoge-
neous linear difference equation [135]

x(n) + a1x(n − 1) + . . . + aKx(n − K) = 0. (4.264)

In Prony’s original method, it was assumed that the number of samples
available is equal to the number of unknown parameters, i.e., N = 2K, and,
therefore, the difference equation is valid for n = K, . . . , 2K−1. The related
characteristic polynomial A(z) is given by

A(z) =
K∑

l=0

alz
K−l, (4.265)

where a0 = 1. In order to find the roots z1, . . . , zK of the polynomial A(z),
defined by

A(z) =
K∏

k=1

(z − zk), (4.266)

we first need to determine the coefficients a1, . . . , aK from the 2K sam-
ples x(n). This can be done by expressing the difference equation at different
times as a K × K matrix equation:⎡⎢⎢⎢⎣

x(K − 1) x(K − 2) · · · x(0)
x(K) x(K − 1) · · · x(1)

...
...

. . .
...

x(2K − 2) x(2K − 3) · · · x(K − 1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a1

a2
...

aK

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
x(K)

x(K + 1)
...

x(2K − 1)

⎤⎥⎥⎥⎦ .

(4.267)
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Once the coefficients a1, . . . , aK are available, the roots of the character-
istic polynomial in (4.265) can be computed. The unknown parameters
h1, . . . , hK are determined from the model equation in (4.261) for the times
n = 0, . . . , K − 1,⎡⎢⎢⎢⎣

z0
1 z0

2 · · · z0
K

z1
1 z1

2 · · · z1
K

...
...

...
zK−1
1 zK−1

2 · · · zK−1
K

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

h1

h2
...

hK

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
x(0)
x(1)

...
x(K − 1)

⎤⎥⎥⎥⎦ . (4.268)

Finally, the real parameters ρk and ωk are computed from zk by

ρk = ln |zk|, (4.269)

ωk = arctan
(�(zk)

(zk)

)
. (4.270)

The two remaining real parameters wk and φk are computed from hk by

wk = |hk|, (4.271)

φk = arctan
(�(hk)

(hk)

)
. (4.272)

While the parameters wk, φk, ρk, and ωk are determined for k = 1, . . . , K,
only K/2 values are required for real signals since hk and zk occur in complex-
conjugate pairs.

The least-squares Prony method. For practical use, it is necessary to
modify the above procedure to deal with the situation when N > 2K. Since
finding z1, . . . , zK now becomes part of an overdetermined problem (i.e.,
more equations than unknowns), it is necessary to relax the requirement
that the difference equation in (4.264) be exactly zero and to introduce an
error e(n) such that

x(n) + a1x(n − 1) + . . . + aKx(n − K) = e(n), (4.273)

now valid for n = K, . . . , N−1. Then, the problem is to minimize a quadratic
function of the error e(n) with respect to the parameters a1, . . . , aK : a prob-
lem which we have actually already encountered in the context of AR-based
spectral analysis when solving the forward linear prediction problem. Thus,
we can make use of the solution to the normal equation in (3.126) in combi-
nation with the covariance method for finding a1, . . . , aK .
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In cases of N > 2K, (4.268), yielding the parameters h1, . . . , hK , has an
overdetermined solution since⎡⎢⎢⎢⎢⎢⎣

z0
1 z0

2 · · · z0
K

z1
1 z1

2 · · · z1
K

...
...

...
zN−2
1 zN−2

2 · · · zN−2
K

zN−1
1 zN−1

2 · · · zN−1
K

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

h1

h2
...

hK

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
x(0)
x(1)

...
x(N − 2)
x(N − 1)

⎤⎥⎥⎥⎥⎥⎦ . (4.274)

The commonly used approach to handle this situation is to find the least-
squares solution, i.e., those values of hk which minimize the Euclidean norm
of the error

‖xN − ZNhK‖2
2 = (xN − ZNhK)H(xN − ZNhK), (4.275)

where ZN ,hK , and xN denote the matrix and the two vectors in (4.274),
respectively. The definition of the Euclidean norm is given in (A.32). The
least-squares solution is (see (A.52))

hK = (ZH
NZN )−1ZH

NxN , (4.276)

where ZH
N denotes the Hermitian transpose of the complex matrix ZN , i.e.,

the complex-conjugate of the transpose of ZN . Once estimates of the com-
plex parameters are available, we can, as before, compute the desired pa-
rameters wk, φk, ρk, and ωk with (4.269)–(4.272).

Certain additional issues need to be addressed before the least-squares
Prony method becomes really useful. Most importantly, it has been found
that the above procedure is sensitive to noise, and, therefore, the model
in (4.260) needs to be modified to incorporate additive noise. More robust
methods have been developed for estimating the damped sinusoids in the
presence of white [131] or colored noise [133]. Another issue is that the model
order K is not known a priori, but must be estimated from the observed
signal, for example, using techniques similar to AR model order estimation,
see page 118.

4.6 Adaptive Analysis Using Basis Functions

We will present two different approaches to adaptive analysis of EPs, both
relying on the use of basis functions.

• The instantaneous LMS algorithm, in which the weights of the se-
ries expansion are adapted at every time instant, thereby producing a
weight vector w(n) [124, 136–140].
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• The block LMS algorithm, in which the weights are adapted only once
for each EP (“block”), thereby producing a weight vector wi that
corresponds to the ith potential [141].

The instantaneous LMS algorithm is the deterministic reference input
counterpart of the adaptive algorithm described in Section 3.2.5 for EOG
artifact cancellation, since now the reference input is given by a set of basis
functions Φs rather than by input signals modeled as stochastic processes.10

The block LMS algorithm can be viewed as a marriage of single-trial analysis,
relying on the inner product computation in (4.203), and the LMS algorithm.
In the following two subsections, we will describe these two algorithms and
provide some insight into their relative performance.

4.6.1 The Instantaneous LMS Algorithm

Since the instantaneous LMS algorithm operates on a sample-by-sample ba-
sis, we assume that the observed signal x(n) results from concatenation of
successive EPs such that

x(n) = x� n
N �+1

(
n −

⌊ n

N

⌋
N

)
.

In the same way, the signal s(n) and the noise v(n) are obtained by con-
catenation. The LMS algorithm is derived along the same lines as in Sec-
tion 3.2.5, i.e., by minimization of the time-dependent MSE criterion

Ew(n) = E
[
(x(n) − ϕT

s (n)w(n))2
]
. (4.277)

As before, the desired signal estimate ŝ(n) is calculated as the linear combi-
nation of the truncated series expansion ϕs(n) and the time-varying weight
vector w(n),

ŝ(n) = ϕT
s (n)w(n), (4.278)

where ϕs(n) contains the values of the K basis functions at time n,

ϕs(n) =

⎡⎢⎢⎢⎣
ϕ1(n)
ϕ2(n)

...
ϕK(n)

⎤⎥⎥⎥⎦ (4.279)

10The stochastic input case has also been considered for noise reduction of EPs, see,
e.g., [142–146].
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and, consequently,

Φs =

⎡⎢⎢⎢⎢⎢⎢⎣
ϕT

s (0)
...

ϕT
s (n)
...

ϕT
s (N − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ .

Since the adaptive algorithm tries to estimate s(n) at every instant, not only
in the interval [0, N −1] over which the basis functions ϕk(n) were originally
defined (see (4.188)), it is necessary to make use of the periodic extension
of ϕk(n), defined in (4.254).

The method of steepest descent requires the gradient of the error Ew(n),
easily found to be

∇wEw(n) = −2E[e(n)ϕs(n)], (4.280)

where

e(n) = x(n) − ŝ(n).

Replacing the expected value in (4.280) with its instantaneous estimate
(cf. page 85), we obtain the update equation for the LMS algorithm,

w(n + 1) = w(n) + µe(n)ϕs(n). (4.281)

The block diagram in Figure 4.35 illustrates how the time-varying weights of
the truncated series expansion are updated adaptively by the instantaneous
LMS algorithm.

The stability of the LMS algorithm can be investigated by rewriting the
recursion in (4.281) such that w(n) is expressed in terms of the initial weight
vector w(0) and the input signal x(n). To do this, we rewrite the recursion
so that the influence of x(n) becomes evident,

w(n + 1) = w(n) + µ(x(n) − ϕT
s (n)w(n))ϕs(n)

= (I − µϕs(n)ϕT
s (n))w(n) + µx(n)ϕs(n).

For n = 0, we have

w(1) = (I − µϕs(0)ϕT
s (0))w(0) + µx(0)ϕs(0),

which is used to express w(2) in terms of w(0), x(0), and x(1),

w(2) = (I − µϕs(1)ϕT
s (1))w(1) + µx(1)ϕs(1)

= (I − µϕs(1)ϕT
s (1))(I − µϕs(0)ϕT

s (0))w(0)

+ (I − µϕs(1)ϕT
s (1))µx(0)ϕs(0) + µx(1)ϕs(1),
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Figure 4.35: Adaptive linear combination of basis functions for the estimation of
the weight vector w(n), using the observed signal x(n).

and so on. The general expression for w(n) is given by [147]

w(n) = F0(n − 1)w(0) + µ
n−1∑
m=0

x(m)Fm+1(n − 1)ϕs(m), (4.282)

where

Fm(n) =

⎧⎪⎨⎪⎩
n∏

j=m

(
I − µϕs(j)ϕ

T
s (j)

)
, n ≥ m;

I, n < m.

(4.283)

In order to assure stability, the step size µ must be chosen such that the
matrix F0(n − 1), being related to the initial condition w(0), approaches
zero as n increases. In order to establish bounds on µ, we consider a matrix
norm which assigns a number to the matrix characterizing its magnitude.
The Frobenius norm of a matrix A is defined by

‖A‖F =
√

tr(ATA).

It can be shown that each of the matrices in the product Fm(n) has a norm
that is less than that of the unit matrix,

‖I − µϕs(j)ϕ
T
s (j)‖F < ‖I‖F , (4.284)
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if

0 < µ < 2, (4.285)

and thus stability is assured.
It is of interest to study the weight behavior in the mean for the steady-

state situation in which the signal morphology is fixed, i.e., when si = s
for all i. The result, obtained by taking the expected value of (4.282) and
performing the limit as n goes to infinity, has been shown to converge to a
biased solution [147],

lim
n→∞

E[w(n)] = wo + ∆wb, (4.286)

where wo denotes the optimal MMSE solution in (4.202). The exact expres-
sion of the bias ∆wb is omitted since it is relatively complicated; instead we
will confine ourselves to merely mentioning that the bias is increasingly in-
significant for small values of µ, i.e., when the LMS algorithm is less capable
of tracking dynamic signal changes.

Another important performance measure is the excess MSE Eex(n) which
quantifies the increase in Emin due to the fluctuations ∆w(n) resulting from
the adaptation process, cf. page 87. Assuming that a steady-state situation
has been reached and that s is corrupted by white noise with a variance σ2

v ,
the excess MSE can be approximated by the expression [148]

Eex(∞) ≈ µK

(2 − µ)N

(
σ2

v +
sTΦvΦT

v s
N

)
. (4.287)

This expression demonstrates that the selection of a suitable set of basis
functions—usually associated with a small value of K—produces a smaller
excess MSE and, accordingly, a better estimate of the signal. It should also
be noted from (4.287) that the truncation error influences the excess MSE
through the quadratic term sTΦvΦT

v s/N so that a large value of K makes
this term smaller.

The performance of the instantaneous LMS algorithm is illustrated by an
example in which a signal with fixed morphology is subjected to estimation
using either sine/cosine or Karhunen–Loève basis functions, see Figures 4.36
and 4.37, respectively. In this example, the signal’s maximum negative am-
plitude is the quantity of interest, and its estimate is presented as a function
of the EP number. Comparing Figures 4.36 and 4.37, it is clear that the
estimates based on the Karhunen–Loève basis functions are more accurate
than those based on sines/cosines in spite of the fact that only 4 functions
are used instead of 16. The superior performance of the Karhunen–Loève
approach is, of course, explained by the fact that the basis functions are
determined from the data ensemble itself so that the approximation error is
minimized in the MSE sense, see page 264.



Section 4.6. Adaptive Analysis Using Basis Functions 283

100 200 300 400 500

-12

-8

-4

0

0

A
m

p
li
tu

d
e 

(µ
V

)

µ = 0.0001

µ = 0.001

µ = 0.01

Potential#

K = 16

Figure 4.36: Signal estimation using the instantaneous LMS algorithm in combi-
nation with sine/cosine basis functions—the adaptive Fourier linear combiner. The
top panel displays the maximum negative amplitude measured from successive EP
estimates for three different values of µ; the dashed line indicates the true ampli-
tude. The estimated EPs are shown in the bottom panels for some instants (the
noise-free signal is shown in Figure 4.30(e)). The number of basis functions K is
equal to 16.
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Figure 4.37: Signal estimation using the instantaneous LMS algorithm in combi-
nation with Karhunen–Loève basis functions, estimated from the ensemble of data.
The top panel displays the maximum negative amplitude measured from successive
EP estimates for three different values of µ; the dashed line indicates the true am-
plitude. The estimated EPs are shown in the bottom panels for some instants (the
noise-free signal is shown in Figure 4.30(e)). The number of basis functions K is
equal to 4.
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4.6.2 The Block LMS Algorithm

Historically, the instantaneous LMS algorithm is the adaptive technique for
noise reduction that has almost exclusively been considered in EP analysis.
However, the block LMS algorithm represents a natural extension of single-
trial analysis based on a truncated series expansion and is therefore discussed
below [141]. In addition, the block LMS algorithm offers certain theoretical
advantages over the instantaneous LMS algorithm, notably with respect to
bias and excess MSE, making its use particularly attractive.

The MSE criterion in (4.277), constituting the starting point for the
derivation of the instantaneous LMS algorithm, is replaced by an MSE cri-
terion defined in vector terms:

Ewi−1 = E
[
(xi − Φswi−1)T (xi − Φswi−1)

]
. (4.288)

This criterion resembles the MSE criterion in (4.199) introduced for single-
trial analysis, except that the weight vector wi−1, rather than wi, is used to
define the error for the EP with index i. With this slight change of definition,
it is straightforward to relate the recursive algorithm derived below to the
inner product estimator in (4.203).

The block LMS algorithm iteratively finds the weight vector by making
use of the steepest decent algorithm,

wi = wi−1 −
1
2
µ∇wi−1Ewi−1 . (4.289)

Recalling from (4.201) that the gradient is given by

∇wi−1Ewi−1 = −2ΦT
s E [xi] + 2ΦT

s Φswi−1,

and then replacing the expected value with its instantaneous estimate, we
obtain the block LMS algorithm

wi = (1 − µ)wi−1 + µΦT
s xi, (4.290)

initialized by

w0 = 0. (4.291)

This initialization seems natural since, apart from the step size µ, it leads
to the inner product estimator of w1, i.e., w1 = µΦT

s x1. With the error
notation

ei = xi − Φswi−1, (4.292)
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the block LMS algorithm can alternatively be expressed as

wi = wi−1 + µΦT
s ei. (4.293)

Similar to the instantaneous LMS algorithm, the block LMS algorithm re-
mains stable for 0 < µ < 2.

It may be worthwhile to point out certain relationships between the block
LMS algorithm and the previously described algorithms for EP analysis.
The block LMS algorithm reduces to single-trial analysis when µ = 1, since
(4.290) then becomes identical to (4.203). Moreover, when a complete series
expansion is considered, i.e., ΦΦT = I, the block LMS algorithm becomes
identical to exponential averaging as defined in (4.33); this result is realized
from

ŝi = Φwi

= Φ
(
(1 − µ)wi−1 + µΦTxi

)
= ŝi−1 + µ (xi − ŝi−1) .

For the case of most practical interest, i.e., when a truncated expansion is
considered, the block LMS algorithm performs exponential averaging of the
weight vector: an operation which produces an estimate of the weight vector
which is less noisy but also less capable of tracking dynamic signal changes.

For the steady-state condition when si = s, the block LMS algorithm
can, in contrast to the instantaneous LMS algorithm, be shown to produce a
steady-state weight vector w∞ which is an unbiased estimate of the optimal
solution in (4.202) [141],

lim
i→∞

E[wi] = wo. (4.294)

Another attractive property of the block LMS algorithm is that its excess
MSE is given by [141],

Eex(∞) =
µK

(2 − µ)N
σ2

v , (4.295)

which does not involve any term due to the truncation error as did the
excess MSE in (4.287) for the instantaneous LMS algorithm, i.e., the term
sTΦvΦT

v s/N . Hence, the block LMS algorithm is always associated with a
lower excess MSE—a result which becomes particularly advantageous when
the signal energy is concentrated to a few basis functions.

4.7 Wavelets

Due to the highly transient nature of EPs, their frequency content varies
considerably over time. As a result, sines and cosines as basis functions are
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not well-suited for modeling EPs because these functions cannot account for
information localized in time; sines and cosines are appropriate for signals
which are periodic. A relatively large number of series expansion coefficients
are required to achieve acceptable modeling, thereby also increasing the risk
of modeling noise components.

Since the basis functions of the Karhunen–Loève expansion are derived
from an ensemble of transient data, they are, by necessity, well-matched to
signals with transient properties. As was shown in Section 4.5.4, noise re-
duction through truncation of a series expansion can be interpreted as linear,
time-variant filtering, with frequency characteristics being more adjustable
for Karhunen–Loève basis functions than for sines/cosines. However, the
Karhunen–Loève functions are signal-dependent and, therefore, their use is
associated with a considerable amount of computation. No fast algorithm is
available which corresponds to the FFT for computing the discrete Fourier
transform.

Since tracking of latency changes is a crucial aspect of EP analysis, it is
important that the selected basis functions appropriately accommodate such
temporal information. Although both sines/cosines and Karhunen–Loève
functions, to various degrees, allow this, they lack flexibility for efficient
tracking. We will in this section describe a very general and powerful class
of basis functions, known as wavelets, which involve two parameters: one
for translation in time and another for scaling in time. A wavelet is an
oscillating function whose energy is concentrated in time in order to better
represent transient, nonstationary signals. For a function to qualify as a
wavelet, it must exhibit certain mathematical properties, one of which is to
have bandpass filter characteristics.

An important aspect of wavelet analysis is the desire to achieve good
localization in both time and frequency, similar to the motivation for study-
ing time–frequency representations in Section 3.6. With two new degrees
of freedom of the basis functions, scaling and translation, it is possible to
analyze and resolve the joint presence of global waveforms (“large scale”) as
well as fine structures (“small scale”) in signals using wavelet analysis. The
fundamental idea of analyzing signals at different scales, with an increas-
ing level of detail resolution, is referred to as a multiresolution analysis and
will be further considered in Section 4.7.2. Such a representation serves the
analysis of EPs particularly well because interpeak latencies usually increase
with time (see page 185). Hence, waves occurring early with short durations
require better time resolution than do waves with large durations occurring
at later times.

The main reason for considering wavelet analysis is for the purpose of EP
noise reduction, an operation which in the wavelet literature is commonly
referred to as denoising (Section 4.7.6). However, it is important to be aware



288 Chapter 4. Evoked Potentials

that wavelet analysis is equally useful for analyzing the background EEG for
the purpose of detecting transient waveforms such as epileptic spikes and
sleep spindles, extracting features to be used for classifying different signal
components, and displaying information in a more clear-cut fashion than
is possible in the original signal [149]. Yet another important application
of basis functions, and wavelets in particular, is the compression of large
amounts of data for storage or transmission; the data compression issue
will be touched upon later within the context of ECG signal processing in
Section 7.6. While wavelet analysis is certainly not the panacea to all types of
problems, it nonetheless constitutes an extremely powerful tool for analyzing
and processing a wide range of transient, nonstationary biomedical signals.

Comprehensive descriptions of wavelets employing mathematical rigor
can be found in a number of well-written textbooks [150–152]; these books
also cover the closely related topic of filter banks. Good overviews of wavelets
and their application in biomedical signal processing can be found in [153–
155].

4.7.1 The Wavelet Transform

We start our exposition by recalling that the fundamental operation in or-
thonormal basis function analysis is the correlation (inner product) between
the observed signal x(n) and the basis functions ϕk(n) (cf. page 255),

wk =
N−1∑
n=0

x(n)ϕk(n), (4.296)

where the index referring to the EP number has been omitted for conve-
nience. The resulting coefficients wk define the series expansion of basis func-
tions that describe x(n). In wavelet analysis, the two operations of scaling
and translation in time are most simply introduced when the continuous-time
description is adopted. Therefore, we mention the continuous-time version
of the correlation in (4.296),

wk =
∫ ∞

−∞
x(t)ϕk(t)dt. (4.297)

A family of wavelets ψs,τ (t) is defined by scaling and translating the
mother wavelet ψ(t) with the continuous-valued parameters s (> 0) and τ ,

ψs,τ (t) =
1√
s
ψ

(
t − τ

s

)
, (4.298)

where the factor 1/
√

s assures that all scaled functions have equal energy.
Thus, the wavelet is contracted for s < 1, whereas it is expanded for s > 1.
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Figure 4.38: A wavelet shown at three different scales and the corresponding
bandpass frequency responses (the Meyer wavelet). Note that the center frequency
and bandwidth both increase as the wavelet is contracted in time.

The contraction of a wavelet to a smaller scale makes it more localized in
time, while the corresponding frequency response is shifted to higher frequen-
cies and the bandwidth is increased to become less localized in frequency; the
reverse behavior is obtained when the wavelet is expanded in time, see Fig-
ure 4.38. The notation ψ(t) is used here instead of the previously established
ϕ(t) for reasons which will shortly become evident.

The continuous wavelet transform (CWT) w(s, τ) of a continuous-time
signal x(t) is defined by the correlation between x(t) and a scaled and trans-
lated version of ψ(t),

w(s, τ) =
∫ ∞

−∞
x(t)

1√
s
ψ

(
t − τ

s

)
dt, (4.299)

thus constituting two-dimensional mapping onto the time–scale domain. The
CWT can be interpreted as a linear filtering operation since (4.299) defines
the convolution between the signal x(t) and a filter whose impulse response
is ψ(−t/s)/

√
s.

The function x(t) can be exactly recovered from w(s, τ) using the recon-
struction equation [152]

x(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

0
w(s, τ)

1√
s
ψ

(
t − τ

s

)
dτds

s2
, (4.300)

where

Cψ =
∫ ∞

0

|Ψ(Ω)|2
|Ω| dΩ < ∞, (4.301)
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and Ψ(Ω) denotes the Fourier transform of ψ(t). For the integral in (4.301)
to exist, Ψ(0) must equal zero, i.e., the DC gain must be zero,

Ψ(0) =
∫ ∞

−∞
ψ(t)dt = 0. (4.302)

Another requirement is that |Ψ(Ω)| must decrease to zero for |Ω| → ∞.
These two requirements imply that the wavelet function ψ(t) must have
bandpass characteristics. Consequently, the CWT can be viewed as a type
of bandpass analysis where the scaling parameter s modifies the center fre-
quency and the bandwidth in the way illustrated in Figure 4.38.

Since the above requirements on the mother wavelet are relatively mod-
est, it turns out to be a highly adjustable function which can be designed
to suit various signal problems (this stands in sharp contrast to the Fourier
transform where the basis functions are fixed once and for all). The simplest
wavelet example is the Haar wavelet which is defined as

ψ(t) =

⎧⎨⎩
1, 0 ≤ t < 1

2 ;
−1, 1

2 ≤ t < 1;
0, otherwise,

(4.303)

and is related to the Walsh basis functions considered earlier on page 263.
Another popular wavelet is the Mexican hat,

ψ(t) = (1 − t2)e−t2/2, −∞ < t < ∞, (4.304)

being identical to the second derivative of a Gaussian function, apart from a
normalization factor. The CWT is presented in Figure 4.39 for a composite
signal using the Mexican hat wavelet. An essential difference between the
above two wavelets is that the Haar wavelet has a duration which is limited
in time (compact support), while the Mexican hat wavelet does not; in most
situations, the former type of wavelet is preferred because of its superior
time localization. Another significant difference is that the Haar wavelet
has discontinuities while the Mexican hat is a smooth function. A wide
variety of wavelets have been suggested, each one possessing some feature
particularly suitable for certain applications. For example, the Haar wavelet
does not resemble the shape of EPs, and, therefore, other, smoother types of
wavelets are desirable; the problem of designing wavelets is briefly considered
in Section 4.7.5.

The CWT is a two-dimensional function w(s, τ) which is highly redun-
dant. It is, therefore, necessary to discretize the scaling and translation
parameters s and τ according to a suitably chosen sampling grid. The most
popular approach is to use dyadic sampling of the two parameters,

s = 2−j , τ = k2−j , (4.305)
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Figure 4.39: An example of (a) a composite signal and (b) the corresponding
squared magnitude of the continuous-time wavelet transform |w(s, τ)|2—the scalo-
gram; the mother wavelet is the Mexican hat. Note that the low-frequency wave-
forms are mostly reflected at coarser scales (large values of s) while transient wave-
forms are at finer scales. In comparison with the spectrogram, the scalogram offers
better frequency resolution at low frequencies and better time resolution at high fre-
quencies, but also poorer time resolution at low frequencies and poorer frequency
resolution at high frequencies.

where j and k are both integers. Accordingly, the discretized wavelet func-
tion is defined by

ψj,k(t) = 2j/2ψ(2jt − k). (4.306)

Inserting (4.306) into the CWT in (4.299), we obtain the discrete wavelet
transform (DWT)

wj,k =
∫ ∞

−∞
x(t)ψj,k(t)dt. (4.307)

It can be shown that with dyadic sampling it is still possible to exactly
reconstruct x(t) from the coefficients wj,k resulting from discretization of the
CWT; a coarser sampling grid cannot reconstruct x(t) [152]. The original
signal is retrieved by the inverse DWT, or the wavelet series expansion

x(t) =
∞∑

j=−∞

∞∑
k=−∞

wj,kψj,k(t), (4.308)



292 Chapter 4. Evoked Potentials

where ψj,k(t) is a set of orthonormal basis functions. In contrast to the series
expansion of basis functions in (4.187), defined as the sum over one index, the
wavelet series expansion is more flexible since it is the sum over two indices
which are related to scaling and translation of the basis functions ψj,k(t).

4.7.2 Multiresolution Signal Analysis

A signal can be viewed as the sum of a smooth (“coarse”) part and a de-
tailed (“fine”) part: the smooth part reflects the main features of the signal,
therefore called the approximation signal, whereas the faster fluctuations
represent the details of the signal. The separation of a signal into two parts
is determined by the resolution with which the signal is analyzed, i.e., by
the scale below which no details can be discerned. A progressively better
approximation of the signal is obtained by increasing the resolution so that
finer and finer details are included in the smooth part.

The approximation of a signal x(t) at scale (resolution level) j is de-
noted xj(t). At the next scale j + 1, the approximation signal xj+1(t) is
composed of xj(t) and the details yj(t) at that level such that

xj+1(t) = xj(t) + yj(t). (4.309)

By adding more and more detail to xj(t) we arrive, as the resolution ap-
proaches infinity, at a dyadic multiresolution representation of the original
signal x(t) which involves a smooth part and the sum of different details,

x(t) = xj(t) +
∞∑
l=j

yl(t). (4.310)

In the following, we will describe the means that will allow us to perform the
multiresolution signal analysis suggested by (4.310) and which implements
the DWT [152].

The scaling function. The scaling function ϕ(t) is introduced for the
purpose of efficiently representing the approximation signal xj(t) at differ-
ent resolution. This function, being related to a unique wavelet function
ψ(t), can be used to generate a set of scaling functions defined by different
translations,

ϕ0,k(t) = ϕ(t − k), (4.311)

where the index “0” indicates that no time scaling is performed. The design
of a scaling function ϕ(t), being a complicated issue only briefly touched upon
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below, must be such that translations of ϕ(t) constitute an orthonormal set
of functions,∫ ∞

−∞
ϕ0,k(t)ϕ0,n(t)dt =

∫ ∞

−∞
ϕ(t − k)ϕ(t − n)dt =

{
1, k = n;
0, k �= n.

(4.312)

Therefore, the scaling functions ϕ0,k(t) are said to span a subspace V0 of the
whole space of square integrable functions denoted L2(R),

V0 = span
k

{ϕ0,k(t)}. (4.313)

This subspace allows us to approximate x(t) to a signal x0(t) described as a
linear combination of ϕ(t) at different translations ϕ(t − n),11

x0(t) =
∞∑

n=−∞
c0(n)ϕ(t − n). (4.314)

As before, the coefficients of the series expansion result from computing the
inner product

c0(k) =
∫ ∞

−∞
x(t)ϕ0,k(t)dt. (4.315)

Analogously to dyadic sampling of the wavelet function ψ(t), the scaling
function in (4.311) can be generalized through dyadic sampling to gener-
ate a set of orthonormal scaling functions for approximations at different
resolution,

ϕj,k(t) = 2j/2ϕ(2jt − k), (4.316)

where the factor 2j/2 assures that the norm of ϕj,k(t) is one for all indices j
and k, √∫ ∞

−∞
|ϕj,k(t)|2dt = 1. (4.317)

Orthonormality applies only to different translation indices k for a fixed scale
j, and the scaling functions are thus not required to be orthonormal between

11The scaling coefficients are indexed c0(k) rather than c0,k in order to indicate that k
refers to time. The variable name c refers to coefficients that describe the coarse part of a
signal (an approximation), whereas the variable name d, used later on, refers to coefficients
that describe detail.
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different scales. With these basis functions, the approximation signal xj(t)
is given by

xj(t) =
∞∑

n=−∞
cj(n)ϕj,n(t)

= 2j/2
∞∑

n=−∞
cj(n)ϕ(2jt − n), (4.318)

where

cj(k) =
∫ ∞

−∞
x(t)ϕj,k(t)dt. (4.319)

It is important to realize that, for j > 0, the span increases since ϕj,k(t)
contracts in time, thereby allowing details of x(t) to be better represented
by the approximation signal xj(t). On the other hand, only the coarser
information can be represented for j < 0 since ϕj,k(t) then expands.

The subspace Vj is spanned by ϕj,k(t),

Vj = span
k

{ϕj,k(t)}, (4.320)

which has a time resolution only half as good as that of Vj+1 since the scaling
function in Vj+1 is contracted by a factor of two, i.e., ϕ(2j+1t) in relation
to ϕ(2jt). As a result, the orthonormal basis functions that span Vj are also
part of Vj+1, and the multiresolution property is consequently described by
a set of nested signal subspaces,

. . .V−2 ⊂ V−1 ⊂V0 ⊂ V1 ⊂ V2 ⊂ . . . . (4.321)
← coarser finer →

Each subspace is spanned by a different set of basis functions ϕj,k(t), offering
progressively better approximations such that xj(t) approaches x(t) in the
limit as j → ∞,

lim
j→∞

xj(t) = x(t), (4.322)

where x(t) belongs to the space L2(R).
An important relation is the refinement equation which relates ϕ(t), span-

ning V0, to ϕ(2t), spanning V1. Since these two signal subspaces are such
that V0 ⊂ V1, it is possible to express ϕ(t) as a linear combination of the
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shifted versions of ϕ(2t),

ϕ(t) =
∞∑

n=−∞
hϕ(n)ϕ1,n(t)

=
√

2
∞∑

n=−∞
hϕ(n)ϕ(2t − n), (4.323)

where hϕ(n) is a sequence of scaling coefficients. As we will see later, the
design of a wavelet function is synonymous with the selection of the coeffi-
cients hϕ(n). The relation between scaling functions at different scales, as
expressed by the refinement equation, will be used to develop a technique
with which the series expansion coefficients can be calculated.

The wavelet function. It is desirable to introduce the function ψ(t)
which complements the scaling function by accounting for the details of a sig-
nal, rather than its approximations. For this purpose, a set of orthonormal
basis functions at scale j is given by

ψj,k(t) = 2j/2ψ(2jt − k), (4.324)

which spans the difference between the two subspaces Vj and Vj+1. The
functions ψj,k(t) are related to the mother wavelet, introduced in (4.298),
and subjected to dyadic sampling. At scale j + 1, the subspace describing
signal detail is given by

Wj = span
k

{ψj,k(t)}, (4.325)

where the wavelet functions that span Wj are required to be orthonormal to
the scaling functions of Vj ,∫ ∞

−∞
ϕj,k(t)ψj,l(t)dt = 0, (4.326)

for all indices j and k. As before, orthonormality is advantageous since it
simplifies the calculation of the series expansion coefficients.

In the subspace Vj+1, Wj is said to constitute an orthogonal complement
to Vj which is denoted

Vj+1 = Vj ⊕Wj , (4.327)

where ⊕ denotes the direct sum between two subspaces. Since (4.327) is
valid for an arbitrary value of j, we also have that

Vj = Vj−1 ⊕Wj−1, (4.328)
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which, when continued until a certain value j0 (≤ j) is reached, yields the
decomposition

Vj+1 = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ . . . ⊕Wj . (4.329)

As j approaches infinity, the subspace decomposition can be expressed as

x(t) = xj0(t) +
∞∑

j=j0

yj(t), (4.330)

where the detail signal yj(t) is determined by the detail coefficients dj(k),
calculated as the inner product of x(t) and ψj,k(t),

yj(t) =
∞∑

n=−∞
dj(n)ψj,n(t)

= 2j/2
∞∑

n=−∞
dj(n)ψ(2jt − n), (4.331)

where

dj(k) =
∫ ∞

−∞
x(t)ψj,k(t)dt. (4.332)

It should be noted that the coefficients dj(k) are the same as the wj,k of
the DWT in (4.307); however, dj(k) is the preferred notation for expressing
detail at different scales. At the scale j0, the signal x(t) can be expressed as
a wavelet series expansion in terms of the scaling coefficients cj0(k) and the
wavelet coefficients dj(k),

x(t) =
∞∑

n=−∞
cj0(n)ϕj0,n(t) +

∞∑
j=j0

∞∑
n=−∞

dj(n)ψj,n(t). (4.333)

Hence, x(t) can be decomposed into a signal xj0(t), being a lowpass approx-
imation of x(t), and a set of signals yj(t) which gives varying degrees of
high-resolution details of x(t). Furthermore, since the series expansion in
(4.333) is expressed in terms of basis functions being mutually orthonormal,
the coefficients cj0(k) and dj(k) are easily calculated by their corresponding
inner products in (4.319) and (4.332), respectively.

Just as the scaling function ϕ(t) can be expressed as a linear combination
of the shifted scaling functions with half the width, i.e., using the refinement
equation in (4.323), the wavelet function ψ(t) can be similarly expressed by
the wavelet equation

ψ(t) =
∞∑

n=−∞
hψ(n)

√
2ϕ(2t − n). (4.334)
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The wavelet equation results from the property that Wj ⊂ Vj+1, which
allows us to express ψ(t) in terms of shifted versions of ϕ(2t) similar to
the procedure applied to ϕ(t) in (4.323). The coefficients hψ(n) constitute a
sequence of wavelet coefficients that differ from the scaling coefficients hϕ(n).
However, it can be shown that hψ(n) can be determined from hϕ(n) such
that when the number of coefficients Nϕ is finite and even [151],

hψ(n) = (−1)nhϕ(Nϕ − 1 − n) n = 0, . . . , Nϕ − 1. (4.335)

The two types of coefficients are thus the same except that every other
coefficient has the opposite sign.

We conclude this subsection by stating that the DWT is defined by the
coefficients of the wavelet series expansion in (4.333). These coefficients can
be viewed as the counterpart of the Fourier series coefficients, although their
interpretation is no longer equally simple (i.e., no frequency interpretation)
and the basis functions remain to be specified before the DWT can be cal-
culated.

4.7.3 Multiresolution Signal Analysis—A Classical Example

Multiresolution signal analysis is illustrated by considering the classical Haar
functions which constitute a set of shifted and scaled square wave functions,
suitable for defining scaling and wavelet functions [156]. The Haar scaling
function is defined as

ϕ(t) =
{

1, 0 ≤ t < 1;
0, otherwise.

(4.336)

It is easily verified that this function satisfies the orthonormality condition
in (4.312). Furthermore, the Haar scaling function is a solution of the re-
finement equation with two nonzero coefficients,[

hϕ(0) hϕ(1)
]

=
[

1√
2

1√
2

]
. (4.337)

Due to (4.334) and (4.335), the related Haar wavelet function is required to
be

ψ(t) =

⎧⎨⎩
1, 0 ≤ t < 1

2 ;
−1, 1

2 ≤ t < 1;
0, otherwise,

(4.338)

with two nonzero coefficients[
hψ(0) hψ(1)

]
=

[
1√
2

− 1√
2

]
. (4.339)



298 Chapter 4. Evoked Potentials

j 0 1 2 3
k

0

1

2

3

4

5

6

7

ϕ(2jt − k)

V0 V1 V2 V3

Figure 4.40: The Haar scaling functions that span the subspaces V0,V1,V2, and V3.

The scaling and wavelet functions are orthonormal.
Haar scaling functions that span different subspaces are shown in Fig-

ure 4.40. Using these functions, the EP shown at the top of Figure 4.41(a),
which has appeared previously in other examples, is subjected to multireso-
lution analysis and approximated at different time resolutions. At the coars-
est scale, defined to be j = 0, no signal detail is included since x0(t) is
simply a constant equal to the mean of the original signal x(t). However,
the piecewise constant approximation signal xj(t) becomes increasingly bet-
ter as more and more scales are included. In the limit as j → ∞, the width
of each “staircase” in xj(t) becomes so narrow so that xj(t) approaches x(t).

The decomposition of the subspace V1 into its coarser approximation
space V0 and detail space W0, i.e., V1 = V0 ⊕W0, is graphically presented in
Figure 4.42 for the Haar scaling and wavelet functions. With this decompo-
sition, we can calculate the detail signals yj(t) at increasing time resolution
as illustrated in Figure 4.41(b). Moreover, the original signal x(t) is returned
by adding the detail signals y0(t), . . . , y8(t) to the approximation signal x0(t)
as described by the decomposition in (4.330) (but now with the lower and
upper summation limits equal to j0 = 0 and 8, respectively). It is clear from
Figure 4.41(b) that the noise is primarily found at the finest scales, while
the EP waveform is at the coarser scales.

It should be noted that, for this example, we have focused on the two
different signal representations—approximation and detail—while the prop-
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Figure 4.41: Multiresolution analysis of an evoked potential using the Haar func-
tions. (a) The approximation signals xi(t) and (b) the detail signals yi(t) at different
scales; the original signal x(t) is shown at the top left of the figure.
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j = 1 j = 0

V1 ϕ(2t − k)

ϕ(t − k) V0

ψ(t − k) W0

Figure 4.42: Decomposition of the subspace V1 = V0 ⊕ W0 by the Haar scaling
and wavelet functions.

erties of the associated coefficients cj(k) and dj(k) have not yet been looked
at; this will be done in the following subsection.

4.7.4 Implementation of the Discrete Wavelet Transform
Using Filter Banks

Analysis filter bank. An important reason for the popularity of multi-
resolution analysis is the efficient calculation of the scaling and wavelet coef-
ficients. This can be done with a set of recursive equations whose implemen-
tation involves well-known, basic signal processing operations (i.e., filtering
and down- or upsampling). Starting with the refinement equation in (4.323),

ϕ(t) =
√

2
∞∑

n=−∞
hϕ(n)ϕ(2t − n),

we have for an arbitrary scale j,

ϕ(2jt − k) =
√

2
∞∑

n=−∞
hϕ(n)ϕ(2(2jt − k) − n)

=
√

2
∞∑

n=−∞
hϕ(n)ϕ(2j+1t − 2k − n). (4.340)

Making the substitution l = 2k + n, we obtain a relation between two time
resolutions, taking us from finer to coarser resolution,

ϕ(2jt − k) =
√

2
∞∑

n=−∞
hϕ(n − 2k)ϕ(2j+1t − n), (4.341)
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and

ϕj,k(t) =
∞∑

n=−∞
hϕ(n − 2k)ϕj+1,n(t). (4.342)

A recursive relation can be derived for the scaling coefficients cj(k) by mul-
tiplying both sides of (4.342) by x(t) and integrating to obtain the inner
products,∫ ∞

−∞
x(t)ϕj,k(t)dt =

∫ ∞

−∞
x(t)

∞∑
n=−∞

hϕ(n − 2k)ϕj+1,n(t)dt, (4.343)

which yield the convolution,

cj(k) =
∞∑

n=−∞
hϕ(n − 2k)cj+1(n)

= hϕ(−n) ∗ cj+1(n)|n=2k. (4.344)

In an analogous manner, the wavelet coefficients dj(k) can be calculated by
convolving the time-reversed coefficients hψ(−n) with cj+1(n) and subse-
quent downsampling of the filtered output by a factor of two:

dj(k) =
∞∑

n=−∞
hψ(n − 2k)cj+1(n)

= hψ(−n) ∗ cj+1(n)|n=2k. (4.345)

The calculation of the coefficients cj(k) and dj(k) can be implemented
using the two-channel analysis filter bank shown in Figure 4.43(a), with
which the coefficients at scale j are calculated from those at scale j + 1.
By repeatedly combining two-channel analysis filter banks to the output
of hϕ(−n), we obtain a dyadic tree structure which efficiently implements
the DWT, see Figure 4.43(b). It is important to realize that the scaling and
wavelet functions do not explicitly appear in the calculation of the DWT, but
only the scaling and wavelet coefficients are required. As a result, the output
of the filter bank is a set of coefficients used to calculate the approximation
and detail signals with (4.318) and (4.331), respectively.

A frequency domain interpretation comes naturally for the filter parts
of (4.344) and (4.345), which are defined by the scaling and wavelet coeffi-
cients, respectively. For the case of Haar functions, it is easily shown that
the filter hϕ(n) in (4.337) is lowpass because the average of two adjacent
samples is calculated. The filter hψ(n) in (4.339) is highpass because the
difference between two samples is calculated. Both these filters have FIR
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Figure 4.43: (a) A two-channel analysis filter bank for calculating the coefficients
of the wavelet series expansion in (4.333). (b) The discrete wavelet transform based
on the filter bank in (a), which, in this case, produces the coefficients that decompose
the space V3 into V0,W0,W1, and W2.

structures. Having established these two filter characteristics, we realize
that the analysis filter bank with its dyadic tree structure produces output
signals which range from being highpass (the output of the bottom branch
in Figure 4.43(b)) to lowpass (the output of the top branch), with vari-
ous degrees of bandpass in between (the remaining branches). The detail
coefficients that result from bandpass filtering involve filters, whose center
frequency gradually decreases due to the increasing number of lowpass filters
hϕ(n) being cascaded to the highpass filter to form the overall filter. The
coefficients c0(k) which describe the approximation signal in subspace V0 are
obtained by cascaded lowpass filters only.

It can be shown that the characteristics of the filters that implement the
Haar coefficients are equally valid for any filter hϕ(n) and hψ(n); the filter
defined by the scaling coefficients hϕ(n) must be lowpass, and hψ(n) must be
highpass [151]. With the requirement of hϕ(n) being lowpass, the relation
between the scaling and wavelet coefficients in (4.335) leads to the frequency
function Hϕ(ejω) of hϕ(n) being translated by π in order to yield Hψ(ejω),

|Hψ(ejω)| = |Hϕ(ej(ω+π))|, (4.346)

and is thus a highpass filter.
Before the set of recursive equations can be used to produce cj(k) and

dj(k), we must devise a technique for their initialization. It is, of course,
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necessary that x(t) enters the calculations; this applies in particular to its
sampled counterpart x(n), invariably constituting the signal to be analyzed.
For a fine enough scale j, one may argue that the scaling function has become
so very narrow that the coefficients cj(k), which initialize the recursion, result
from an inner product in which x(t) is multiplied by a delta function,

cj(k) ≈
∫ ∞

−∞
x(t)δ(t − k)dt = x(k). (4.347)

Consequently, the signal samples x(n) themselves would serve as good ap-
proximations of the coefficients cj(k), provided that the signal x(t) has been
sampled well above the Nyquist rate. Although this initialization procedure
is the one which is normally used, other procedures exist which offer certain
advantages [150, 151].

Hence, the recursion is initialized with the sampled signal x(n), whose
length is finite and given by N . Due to the very dyadic nature of the algo-
rithm, it is natural to assume that the length is a power of two, i.e., N = 2J .
Accordingly, J + 1 different scales can be analyzed, of which the finest scale
is j = J and described by N coefficients (i.e., the signal itself), while the
coarsest scale is j = 0 with only one coefficient.12

The calculation of the DWT through successive decomposition of the
approximation coefficients is illustrated in Figure 4.44, where the finest res-
olution is given by the scale j = 3. The procedure is initialized by setting
the approximation coefficients c3(k) equal to the signal samples x(n). In
this example where x(n) has a length of N = 8, the DWT is given by the
coefficients c0(0), d0(0), d1(0), d1(1), d2(0), d2(1), d2(2), and d2(3). Thus, the
resulting number of coefficients is identical to the length of the signal.

Synthesis filter bank. While the analysis filter bank decomposes the
signal into a set of coefficients at different resolution, the purpose here is to
perform the reverse operation of merging the coefficient sequences so as to
implement the inverse DWT. The inverse transform can also be implemented
with a filter bank, but with a structure that differs slightly from the one
which implements the DWT.

In order to derive a set of equations which recursively determine cj+1(k)
from cj(k) and dj(k), we start by expressing the approximation signal xj+1(t)
as a linear expansion of the scaling function at scale j + 1,

xj+1(t) = 2(j+1)/2
∞∑

n=−∞
cj+1(n)ϕ(2j+1t − n). (4.348)

12The reader should be aware that other conventions exist for enumerating scales where
an increase in j implies a coarser scale, rather than a finer one as is assumed in this
presentation.
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Scale

j = 3

j = 2

j = 1

j = 0

c3(0), c3(1), c3(2), c3(3), c3(4), c3(5), c3(6), c3(7)

c2(0), c2(1), c2(2), c2(3) d2(0), d2(1), d2(2), d2(3)

d2(0), d2(1), d2(2), d2(3)

d2(0), d2(1), d2(2), d2(3)

c1(0), c1(1) d1(0), d1(1)

d1(0), d1(1)c0(0) d0(0)

Figure 4.44: Calculation of the DWT for a signal of length N = 8. The final result
is given by the coefficients at the bottom for j = 0. The vertical arrows indicate that
the coefficients are simply copied down from the previous scale. The calculation is
initialized by setting the coefficients c3(k) equal to the signal samples x(k).

Relying on the decomposition in (4.327), stating that Vj+1 = Vj ⊕ Wj , we
can alternatively express xj+1(t) at scale j,

xj+1(t) = 2j/2
∞∑

n=−∞
cj(n)ϕ(2jt − n) + 2j/2

∞∑
n=−∞

dj(n)ψ(2jt − n). (4.349)

Now, making use of the scaling and wavelet equations in (4.323) and (4.334),
respectively, we obtain

xj+1(t) =
∞∑

n=−∞
cj(n)

∞∑
l=−∞

hϕ(l)2(j+1)/2ϕ(2j+1t − 2n − l)

+
∞∑

n=−∞
dj(n)

∞∑
l=−∞

hψ(l)2(j+1)/2ϕ(2j+1t − 2n − l). (4.350)

By multiplying both sides of (4.350) by ϕj+1,k(t) and integrating to obtain
the inner products, the following recursion is obtained for cj+1(k),

cj+1(k) =
∞∑

n=−∞
cj(n)hϕ(k − 2n) +

∞∑
n=−∞

dj(n)hψ(k − 2n). (4.351)

Alternatively, this equation can be expressed as

cj+1(k) = cu
j (k) ∗ hϕ(k) + du

j (k) ∗ hψ(k), (4.352)
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Figure 4.45: (a) A two-channel synthesis filter bank. (b) The inverse discrete
wavelet transform based on the filter bank in (a) which, in this case, produces the
coefficients of the space V3 based on V0,W0,W1, and W2.

where

cu
j (k) =

{
cj(k), k even;
0, k odd,

(4.353)

and du
j (k) is defined analogously to cu

j (k). Hence, the two sums in (4.351)
can be interpreted in terms of upsampling by a factor of two, i.e., by inserting
zeros as every other input sample, and filtering so that the calculation of the
coefficients cj+1(k) is implemented by the two-channel synthesis filter bank
shown in Figure 4.45(a). By repeatedly combining two-channel synthesis
filter banks to merge signals at different resolutions, we obtain a dyadic tree
structure which implements the inverse DWT, see Figure 4.45(b). The filters
involved in the synthesis filter bank are the same as those used in the analysis
filter bank, but with their impulse response reversed in time.

In practice, there is always a maximum scale J with a resolution so fine
that the wavelet (detail) coefficients can be neglected. Therefore, the wavelet
series expansion in (4.333) may be replaced by

x(t) =
∞∑

n=−∞
cj0(n)ϕj0,n(t) +

J∑
j=j0

∞∑
n=−∞

dj(n)ψj,n(t), (4.354)

thus indicating the coefficients that must be calculated with (4.351) to ob-
tain x(t) (recall from (4.347) that x(k) ≈ cj(k) for a sufficiently fine scale).
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In certain situations, signal denoising can be achieved by selecting a lower
maximum scale so that noise concentrated to the finest scales is removed;
the same idea was actually introduced already on page 257, where the series
expansion of basis functions was truncated for the purpose of improving the
SNR.

Finally, we note that x(t) can be expressed as a series expansion solely
in terms of the wavelet functions when cj0(n) → −∞ for j0 → −∞,

x(t) =
J∑

j=−∞

∞∑
n=−∞

dj(n)ψj,n(t), (4.355)

which becomes the definition of the inverse DWT in (4.308), but with trun-
cation of scales with negligible coefficients.

4.7.5 Wavelet Examples

The Haar wavelets offer the advantage of being very well-localized in time
(compact support). However, these functions are discontinuous and, accord-
ingly, introduce undesired high-frequency content. The sinc scaling function,
defined by

ϕ(t) =
sinπt

πt
, (4.356)

is, in a sense, dual to the Haar scaling function since its Fourier transform
Φ(Ω) is a box function, i.e., an ideal lowpass filter with a cut-off radian
frequency at about π. Hence, the sinc scaling function is continuous (smooth)
with excellent frequency resolution, but comes with poor time resolution due
to its slow decay to zero. The orthonormality of the sinc scaling function to
translations of itself is easily established by making use of Parseval’s relation,∫ ∞

−∞
ϕ(t − k)ϕ∗(t − n)dt =

1
2π

∫ ∞

−∞
Φ(Ω)e−jΩkΦ∗(Ω)ejΩndΩ

=
1
2π

∫ π

−π
e−jΩ(k−n)dΩ

=
{

1, k = n;
0, k �= n.

(4.357)

The wavelet that belongs to the sinc scaling function is given by

ψ(t) =
sin π

2 t
π
2 t

cos
3π

2
t, (4.358)

whose Fourier transform is the ideal bandpass filter with lower and upper
cut-off radian frequencies at about π and 2π, respectively. Again, Parseval’s
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relation can be used to show that the sinc scaling and wavelet functions are
orthogonal to each other.

While both the Haar and sinc wavelets serve as comprehensible exam-
ples, these wavelets are rarely used in practice due to the disadvantages of
either poor frequency or time localization. Fortunately, methods are avail-
able for designing wavelets with compact support, while also offering good
localization properties in frequency. Since a detailed presentation of such
design methods is well beyond the scope of this text, we will only provide a
sketch of how hϕ(n) can be determined; the wavelet coefficients hψ(n) are
then obtained from (4.335).

For the refinement equation to be valid, it can be shown, by integrating
both sides of (4.323), that hϕ(n) must fulfil the requirements

Nϕ−1∑
n=0

hϕ(n) =
√

2, (4.359)

and, due to the orthonormality of ϕ(t) and its translates, we have

Nϕ−1∑
n=0

hϕ(n)hϕ(n − 2k) = δ(k), (4.360)

where δ(k) denotes the delta function, and Nϕ is the even-valued length of
the filter hϕ(n) [151]. For the case Nϕ = 2, we obtain the following two
equations,

hϕ(0) + hϕ(1) =
√

2,

h2
ϕ(0) + h2

ϕ(1) = 1,

whose solution is [
hϕ(0) hϕ(1)

]
=

[
1√
2

1√
2

]
. (4.361)

These coefficients were encountered already in connection with the Haar
functions. By increasing Nϕ to 4, the following three equations determine
the scaling coefficients

hϕ(0) + hϕ(1) + hϕ(2) + hϕ(3) =
√

2,

h2
ϕ(0) + h2

ϕ(1) + h2
ϕ(2) + h2

ϕ(3) = 1,

hϕ(0)hϕ(2) + hϕ(1)hϕ(3) = 0.

These equations have several solutions of which one is given by[
hϕ(0) hϕ(1) hϕ(2) hϕ(3)

]
=

[
1+

√
3

4
√

2
3+

√
3

4
√

2
3−

√
3

4
√

2
1−

√
3

4
√

2

]
. (4.362)
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For larger values of Nϕ, numerical techniques are almost always needed to
find the solution.

Although the scaling function ϕ(t) is not explicitly required for calcula-
tion of the DWT, it is nevertheless important to assess whether its properties
are suitable or not. One approach to calculating ϕ(t) from hϕ(n) is to insert
the scaling coefficients into the refinement equation, but now modified into
an iterative algorithm,

ϕ(i+1)(t) =
√

2
Nϕ−1∑
n=0

hϕ(n)ϕ(i)(2t − n), (4.363)

where i denotes the iteration index. This algorithm, known as the cascade
algorithm, produces successive approximations of ϕ(t) so that ϕ(i)(t) ap-
proaches ϕ(t) as the iteration index i increases. If the algorithm converges,
the Fourier transform Φ(Ω) of ϕ(t) can be related to the scaling coefficients
hϕ(n) by iteratively applying the Fourier transform to (4.363),

Φ(Ω) = Φ(0)
∞∏
l=1

1√
2
Hϕ

(
ejΩ/2l

)
, (4.364)

where Hϕ(ejΩ) denotes the discrete-time Fourier transform of hϕ(n) and
is a periodic function. Using the wavelet equation in (4.334), the Fourier
transform Ψ(Ω) of the wavelet ψ(t) can be expressed as

Ψ(Ω) = Φ(0)
1√
2
Hψ(ejΩ/2)

∞∏
l=2

1√
2
Hϕ(ejΩ/2l

). (4.365)

Since ϕ(t) is assumed to have lowpass characteristics, the factor Φ(0) can be
normalized such that

Φ(0) =
∫ ∞

−∞
ϕ(t)dt = 1. (4.366)

Hence, the outcome of the cascade algorithm in (4.363) depends only on
the properties of the scaling coefficients and not on the shape of the initial
ϕ(0)(t), except the factor Φ(0) which is invariant over the iterations.

To exemplify the calculation of ϕ(t) when the cascade algorithm is em-
ployed, the four scaling coefficients in (4.362) are chosen. The algorithm con-
verges to the scaling function, and related wavelet, shown in Figure 4.46(a).
Both functions fulfil the requirement of orthonormality and have compact
support. However, their shapes are relatively unsmooth and may therefore
be less suitable for modeling and analysis of physiological signals. It is there-
fore desirable to introduce additional requirements which, as the degrees of
freedom increase with Nϕ, assure that the functions are smooth.
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Figure 4.46: The scaling function (dotted line) and wavelet function (solid line) for
(a) Daubechies–2, (b) Daubechies–5, (c) Daubechies–10, (d) Coiflet–1, (e) Coiflet–2,
and (f) Coiflet–4. Note that the timescale differs between the diagrams.

A useful approach to designing smooth wavelets is to require that their
moments mk, defined by

mk =
∫ ∞

−∞
tkψ(t)dt, (4.367)

vanish up to a certain value k = Kψ. Alternatively, the moment definition
in (4.367) can be expressed in terms of its Fourier transform

mk = (−j)−k ∂kΨ(Ω)
∂Ωk

∣∣∣
Ω=0

, (4.368)

which establishes that vanishing moments are synonymous with Kψ deriva-
tives of Ψ(Ω) at DC, i.e., Ω = 0, being equal to zero. This requirement
implies that ψ(t) is smooth and may, if desired, be extended to embrace
ϕ(t) as well. Another consequence of vanishing wavelet moments is that the
inner product between a polynomial signal x(t) =

∑
k akt

k and ψ(t) is zero,
and thus the detail coefficients are zero. As a result, polynomial signals are
well-represented by the approximation coefficients, and the detail coefficients
can be discarded.
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The expressions given for Φ(Ω) and Ψ(Ω) in (4.364) and (4.365), respec-
tively, suggest that smooth wavelets are directly connected to the behavior
of the filters hϕ(n) and hψ(n): if hϕ(n) is lowpass, then ψ(t) will be smooth.
Therefore, another approach to designing smooth wavelets is the one which
requires the moments µk of the wavelet coefficients,

µk =
Nψ−1∑
n=0

nkhψ(n), (4.369)

to vanish.
The Daubechies wavelets are a family of wavelets designed so that the

maximum number of moments µk is equal to zero, which is Kψ = Nψ/2
moments [157]. The wavelet corresponding to Kψ = 2 is actually one we have
already studied in Figure 4.46(a), whose scaling coefficients were given in
(4.362). As Kψ increases, both the wavelet function and the scaling function
become increasingly smooth, as illustrated in Figures 4.46(b) and (c), where
the cases Kψ = 5 and 10 are presented. A disadvantage of the members of
this family is their highly asymmetric shape.

The Coiflets constitute another wavelet family with compact support,
but designed such that Nψ/3 − 1 moments of the scaling function and
Kψ = Nψ/3 of the wavelet vanish. Figures 4.46(d)–(f) show Coiflets with
Kψ = 1, 2, and 4 vanishing moments, respectively. The Coiflets are more
symmetric than are the Daubechies wavelets, a property that comes at the
price of an increased filter length. Multiresolution analysis using Coiflets is
exemplified in Figure 4.47; it is obvious that Coiflets are superior in pro-
ducing smooth approximations when compared to the results of the Haar
functions in Figure 4.41.

There are many other types of wavelets available in addition to those
mentioned here, with each exhibiting its particular advantages. In biomedi-
cal signal processing, it is often desirable to have symmetric wavelets. How-
ever, scaling functions and wavelets cannot, in general, accommodate this
property since they are required to be orthogonal (exceptions are the Haar
and the sinc wavelets). By softening the orthogonality requirement between
analysis and synthesis filters to, what is called, bi-orthogonality [150], it is
possible to design symmetric wavelets which still implement the DWT and
its inverse.

In EP analysis, work has been undertaken to design wavelets matched
specifically to the shape of the expected waveforms [149]. While such a design
approach may be highly appropriate in certain situations, it does not always
guarantee a successful outcome of the multiresolution signal analysis. In fact,
promising results have been achieved in EP analysis using a wide variety of
wavelets, ranging from smooth to discontinuous, see, e.g., [158–162].
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scales; the original signal x(t) is shown at the top left of the figure.
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Figure 4.48: (a) An evoked potential and the related DWT using the Daubechies–
4 wavelet. (b) The same signal as in (a), but with noise added. Note that the noise
is concentrated in the detail coefficients of the finest scales.

4.7.6 Denoising

The detail coefficients of a noisy signal are often such that the coefficients
of the signal are confined to coarser scales, while those of the noise are
observed in finer scales. The separation of coefficients is illustrated by the
example in Figure 4.48, where the detail coefficients dj(k) are shown for
both a clean and a noisy signal. Denoising can be viewed as a nonlinear
filtering operation in which the pattern of detail coefficients is exploited
in order to produce a smoother signal. This operation involves three main
steps, namely, calculating the DWT for the noisy signal, zeroing or modifying
certain coefficients by a suitable rule, and reconstructing the signal from the
modified coefficients.

A straightforward way to implement denoising is to simply set all coef-
ficients equal to zero for scales with index larger (finer) than JT ,

ďj(k) =
{

dj(k), j ≤ JT ;
0, j > JT ,

(4.370)
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for all appropriate values of k. The denoised signal results from calculating
the inverse DWT using the modified detail coefficients ďj(k) and the coarse
coefficients; the denoising operation is equivalent to using the wavelet series
expansion in (4.354) with J = JT .

The truncation defined by (4.370) is, of course, a kindred spirit to the
truncation earlier introduced in the context of basis function analysis, de-
fined by (4.206)—both types of truncation are bound to produce smooth
signal estimates. Truncation of the Fourier series expansion naturally ex-
cludes higher frequencies, while truncation of the Karhunen–Loève expan-
sion in (4.223) usually leads to the signal energy being concentrated to a few
(smooth) basis functions. While the Karhunen–Loève approach is optimal in
the MSE sense for a specific ensemble of signals, it lacks some of the DWT’s
flexibility: in its capacity as a two-indices series expansion, the DWT offers
good resolution in both time and frequency.

It was shown in Section 4.5.4 that a truncated series expansion of ba-
sis functions can be interpreted in terms of linear, time-variant filtering.
A limitation on linear techniques, however, is that for noisy signals with
fast changes (jumps), noise reduction can only be achieved at the price of
considerable smoothing of the fast changes. On the other hand, the detail
coefficients of the DWT can be subjected to nonlinear processing so that de-
noising is achieved without having to sacrifice too much of the fast changes
in the signal.

Two common, nonlinear techniques remove coefficients of the DWT be-
low a certain threshold. The inverse DWT of the thresholded coefficients is
then performed to produce a denoised signal. To proceed, we introduce the
wavelet transform vector wN containing both the approximation and detail
coefficients (i.e., the vector given by the bottom row in Figure 4.44):

wN =
[
w1 w2 · · · wN

]T

=
[
c0(0) d0(0) d1(0) d1(1) d2(0) · · · d(log2 N−1)(log2 N)

]T
,

(4.371)

where the finest details are described by the elements with the highest indices
of wN , and so on. Denoising by hard thresholding is defined by

w̌i =
{

wi, |wi| ≥ ηT ;
0, |wi| < ηT ,

(4.372)

where ηT is a threshold.
Denoising by soft thresholding is performed by thresholding the coeffi-

cients and shrinking them by the same amount as the threshold ηT [163],

w̌i =
{

sign(wi)(|wi| − ηT ), |wi| ≥ ηT ;
0, |wi| < ηT .

(4.373)
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The threshold ηT may be chosen as fixed, with a value based on some prior
information that may exist on the signal. When a model of the signal and
noise is available, one can also determine the particular ηT that produces the
“best agreement” between the original and denoised signal. Best agreement
is usually identical to the MSE criterion, computed for different values of
ηT until the lowest MSE is obtained. The MSE as a performance measure
should, however, be used with caution in biomedical signal processing since
important physiological information may be lost or distorted, although a
very low MSE has been achieved. Different aspects of signal distortion and
performance measures are further considered in Section 7.6.7 in the context
of ECG data compression.

Another approach is to relate ηT to the dispersion of the coefficients of
the DWT vector wN . One such threshold, derived under the assumption
that the noise is white with variance σ2

v , is given by [152]

ηT = σv

√
2 lnN, (4.374)

where the factor
√

2 lnN is the expected maximum value of a white noise
sequence of length N and unit standard deviation. Since σv is unknown in
practice, it is often estimated using the median of the absolute deviation,

σ̂v = 1.483 · median(|dJ−1(0)|, . . . , |dJ−1(N/2)|), (4.375)

which avoids the influence of outlier values. The factor 1.483 is introduced
to calibrate the median estimator with the standard deviation of a Gaussian
PDF. Although ηT is applied to all scales, the estimation of σv in (4.375)
typically involves only the coefficients of the finest scale J − 1, since this
scale is the least influenced by the signal.

Denoising techniques can be made more sophisticated by introducing
thresholds which are scale-dependent [164]. Moreover, the thresholds can be
made dependent on time within each scale so that coefficients are thresholded
in certain time intervals, while consistently set to zero in others; this tech-
nique is sometimes referred to as time windowing. Such windowing allows
us to introduce information in the denoising process where certain signal
components are more likely to occur in time. Figure 4.49 presents a number
of single-trial EPs, acquired during visual stimulation with a checkerboard
light pattern, and their denoised counterparts. Denoising is implemented
using scale-dependent time intervals, whose locations are determined from
the properties of the wavelet coefficients of the ensemble average [165, 166].
This procedure is motivated by the fact that EPs are time-locked to stimuli
so that certain waveform components are expected to occur in certain time
intervals. Rather than relating the time intervals to the properties of the
ensemble average, scale-dependent time windowing can instead be related
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Figure 4.49: Fifteen single-trial VEPs, obtained from one subject, shown before
(light line) and after (dark line) denoising. The ensemble averages, obtained without
and with denoising, are shown in the top left diagram. (Reprinted from Quian
Quiroga [165] with permission.)
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to the ensemble correlation function, i.e., the correlation existing within the
ensemble of signals, see Section 4.3.8 [167].

Signal denoising is usually employed for the purpose of producing ac-
curate measurements of latency and amplitude and is of particular value
when analyzing single-trial EPs. Denoising may also be helpful in uncov-
ering signal patterns that are difficult to perceive directly from single-trial
EPs, but which nevertheless are consistent within a certain group of sub-
jects. This latter aspect of denoising has been explored in a study where
VEPs were acquired from normal subjects during pattern reversal and from
elderly patients suffering from dementia, see Figure 4.50(a) [168]. For the
normal subjects, one would expect the VEP to exhibit peaks at latencies
of 70, 100, and 130 ms (denoted N70–P100–N130), whereas these latencies
are not expected for the pathological group. To check whether a normal
latency pattern was present or not, the signals were subjected to multireso-
lution analysis using a so-called quadratic B-spline wavelet, having compact
support, see Figure 4.51.

Each VEP was acquired at a sampling rate of 1 kHz during the 512 ms
the pattern was presented. The VEP obtained from ensemble averaging
of 60 responses was then decomposed into detail subspaces Wj which cov-
ered the frequency bands 250–500 Hz (W8), 125–250 Hz (W7), 62.5–125 Hz
(W6), 31.3–62.5 Hz (W5), 15.6–31.3 Hz (W4), and 7.8–15.6 Hz (W3) and the
approximation subspace which covered 0–7.8 Hz (V3). With this decompo-
sition, the frequency bands related to W3 and V3 roughly correspond to the
alpha and delta–theta activities of the EEG, respectively.

Following truncation of all the detail scales W3–W8, only the approxima-
tion scale V3 was used for reconstructing the signal, and, therefore, a very
smooth signal resulted from denoising. Figure 4.50(b) presents the results
of all normal subjects whose VEPs are superimposed in one diagram, while
those of the patients are superimposed in another. It is striking that the nor-
mal VEPs have a strong phase coherence in the region of N70–P100–N130,
whereas this phase coherence is absent for the pathological VEPs.

Another interesting prospect of signal denoising is its use in combination
with the Woody method for latency correction, a technique which was de-
scribed in Section 4.3.7. By denoising each EP of the ensemble prior to the
estimation of latency shifts, improved alignment performance of the Woody
method has been observed in the sense that the latency-corrected waveform
is more reliable thanks to the improved SNR [166], see also [169]. It is also
possible to modify the alignment method as such by replacing the filtering
operation in (4.126) by a set of filters which operates at different scales [170].
In this case, the latency estimate is obtained from the combined output of
the filters.
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(a)

(b)

Figure 4.50: (a) Visual evoked potentials from two normal subjects and two
patients with dementia, the coefficients of W3 and the reconstructed waveform,
and the coefficients of V3 and the reconstructed waveform are shown from top to
bottom. (b) Waveforms reconstructed from V3 and superimposed for 24 normal
subjects (upper panel) and for 16 patients with dementia (lower panel). (Reprinted
from Ademoglu et al. [168] with permission.)
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Figure 4.51: (a) The quadratic B-spline wavelet and (b) the corresponding fre-
quency bands which describe the detail subspaces W8, . . . ,W3, assuming that the
signal is sampled at a rate of 1 kHz [168].

We conclude this section by reiterating the fact that wavelet analysis has
been found very useful, not only for signal denoising but for analysis and
characterization of EPs [171–180]. This also applies to many other types of
biomedical signals.
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[52] B. Lütkenhöner and C. Pantev, “Possibilities and limitations of weighted averaging,”
Biol. Cybern., vol. 52, pp. 409–416, 1985.

[53] E. Bataillou, E. Thierry, H. Rix, and O. Meste, “Weighted averaging using adaptive
estimation of the weights,” Signal Proc., vol. 44, pp. 51–66, 1995.

[54] C. Davila and M. Mobin, “Weighted averaging of evoked potentials,” IEEE Trans.
Biomed. Eng., vol. 39, pp. 338–345, 1992.

[55] C. W. Therrien, Discrete Random Signals and Statistical Signal Processing. New
Jersey: Prentice-Hall, 1992.

[56] S. M. Kay, Fundamentals of Statistical Signal Processing. Estimation Theory. New
Jersey: Prentice-Hall, 1993.

[57] R. P. Borda and J. D. Frost, “Error reduction in small sample averaging through
the use of the median rather than the mean,” Electroencephal. Clin. Neurophysiol.,
vol. 25, pp. 391–392, 1968.

[58] D. S. Ruchkin, “Comparison of statistical errors of the median and average evoked
responses,” IEEE Trans. Biomed. Eng., vol. 21, pp. 54–56, 1974.

[59] J. L. Rosenberger and M. Gasko, “Comparing location estimators: trimmed means,
medians and trimeans,” in Understanding Robust and Exploratory Data Analysis,
ch. 10, pp. 297–338, New York: Wiley–Interscience, 1983.



322 Chapter 4. Evoked Potentials

[60] R. V. Hogg, “Adaptive robust procedures,” J. Am. Stat. Assoc., vol. 69, pp. 909–927,
1974.

[61] D. O. Walter, “Two approximations to the median evoked response,” Electroen-
cephal. Clin. Neurophysiol., vol. 30, pp. 246–247, 1971.

[62] A. Papoulis, Probability, Random Variables, and Stochastic Processes. New York:
McGraw–Hill, 3rd ed., 1991.

[63] O. Meste and H. Rix, “Jitter statistics estimation in alignment processes,” Signal
Proc., vol. 51, pp. 41–53, 1996.
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Problems

4.1 In a BAEP investigation, the EPs are assumed to be modeled by (4.4) and
related assumptions on statistical properties. The SNR of the first potential
x1 is defined by

SNR = 10 · log
sT s

E[vT
1 v1]

and is assumed to be equal to –5 dB. All other EPs in the ensemble have
identical SNRs. How many EPs need to be averaged, using (4.12), in order
to increase the SNR to 10 dB?

4.2 The difference between two subaverages ŝa0(n) and ŝa1(n) is denoted

∆ŝa(n) = ŝa0(n) − ŝa1(n).

The two subaverages have been obtained by splitting the ensemble in a
suitable way.

a. Explain why it is of interest to study the quantity ∆ŝa(n) during the
acquisition of EPs.

b. Show that the variance of ∆ŝa(n) is equal to 4σ2
v/M by making use of

the common assumptions associated with ensemble averaging.

4.3 Determine the impulse response of the exponential averager in (4.35). The
answer should be expressed as a function of the weight factor α and the
length N of the EP. Assume that ŝe,0(n) = 0, and recall that all EPs are
concatenated. Sketch the impulse response.

4.4 Computation of the ensemble variance estimate σ̂2
v(n) in (4.17) has the dis-

advantage of requiring that the entire ensemble must be available before
σ̂2

v(n) can be computed. However, it may by desirable to monitor how the
ensemble variance evolves as the number of EPs increases. Derive an approx-
imate estimator which recursively computes the estimate of σ̂2

v,M (n). It can
be assumed that the ensemble average ŝa,M (n) has been stabilized to such a
degree that it can be approximated by its preceding estimate ŝa,M−1(n).

4.5 Determine the mean of the exponential averager ŝe,M (n) when ŝe,0(n) =
x1(n). Discuss the fact that E[ŝe,M (n)] is unbiased, whereas it is asymptot-
ically unbiased when ŝe,0(n) = 0.

4.6 a. The exponential averager is usually initialized by either ŝe,0(n) = 0 or
ŝe,0(n) = x1(n). However, both these initializations suffer from certain
disadvantages. What are these disadvantages?
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b. Find that value of α of the exponential averager which makes the vari-
ance of ŝe,M (n) equal to the variance of the ensemble averager ŝa,M (n).

4.7 Derive the expression of the variance V [ŝe,M (n)] in (4.38).

4.8 Determine the width of the frequency lobes of the comb filter at the –3 dB
point corresponding to:

a. the ensemble averager as a function of M and N , and

b. the exponential averager as a function of α.

In both these cases, it is assumed that the poles are well-separated such that
the influence of neighboring poles can be neglected. Compare the role of M
and α of the respective estimators.

4.9 Determine a closed-form expression for the –3 dB bandwidth of the peaks in
the exponential averager, expressed in terms of the parameters α and N .

4.10 In addition to determining the magnitude function of the ensemble averager,
cf. page 202, it is also of interest to determine its phase function.

a. Derive an expression for the phase function of the ensemble averager
and plot it.

b. Discuss how the phase function influences the repetitive signal and the
noise, respectively.

4.11 An anesthetized patient is periodically stimulated by short sound pulses to
continuously monitor the BAEP. The resulting waveforms first stabilize at an
amplitude of 0.6 µV in peak IV, but then suddenly decrease to an amplitude
of 0.2 µV.

a. For ensemble averaging, determine the delay in terms of the number of
stimuli until the amplitude (in the mean) has dropped below 0.3 µV?

b. Repeat the exercise in (a) for exponential averaging.

4.12 The ensemble average ŝa,M (n) is often used to estimate the signal s(n) in
the observation model xi(n) = s(n) + vi(n), where vi(n) is zero-mean noise
with variance σ2

v . The ensemble average can be computed recursively using
the following expression

ŝa,M (n) = ŝa,M−1(n) + gM (xM (n) − ŝa,M−1(n)),
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where gM = 1/M . Analogously, the weighted average ŝw,M (n) can be com-
puted recursively but using another expression of gM . Determine gM for
weighted averaging under the assumption that the noise variance is σ2

vi
, and

then determine the recursion for σ2
vi
≡ σ2

v .

4.13 In the interval preceding the stimulus elicited at time n = 0, we want to
estimate the variance σ2

v from the background EEG signal, e.g., for later use
in the computation of the weighted average. It is assumed that the samples
x(−N), . . . , x(−1), are modeled as uncorrelated, Gaussian noise with mean
mv and variance σ2

v . Determine the ML estimator of σ2
v .

4.14 Determine the expression with which the variance of the weighted average
V [ŝw,M (n)] can be recursively computed from V [ŝw,M−1(n)]. The variance
V [ŝw,M (n)] is given in (4.68).

4.15 Determine E[ŝw(n)] and V [ŝw(n)] for weighted averaging under the assump-
tion that the signal amplitude varies and the noise variance remains fixed
for all EPs. Comment on bias and consistency.

4.16 Derive the optimal weights ŵi of the weighted average that minimizes the
following MSE criterion,

E

⎡⎣(
s(n) −

M∑
i=1

wixi(n)

)2
⎤⎦ .

Each EP is described by xi(n) = s(n) + vi(n), where s(n) is deterministic
and vi(n) is random with variance σ2

vi
.

a. Determine the optimal weights, and comment on their dependence on
the signal and noise.

b. Show that the optimal weights approach those in (4.67) when the con-
straint

M∑
i=1

wi = 1

is introduced; this constraint assures that the ensemble average is un-
biased.

4.17 Two cases of weighted averaging have been described in the text—either
varying signal amplitude or varying noise variance. In this problem, a third
case is examined where both amplitude and noise variance are allowed to
vary. Find the optimal weight vector for this case.
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4.18 Weighted averaging requires that the noise variance of each EP be estimated.
Although the estimator in (4.73) is adequate for certain applications such
as BAEP and SEP, it is less suitable for VEPs where the SNR is relatively
good. Suggest a variance estimator for the latter case which draws upon the
better SNR.

4.19 The weights required in weighted averaging can be adaptively estimated
by taking advantage of the assumption that signal and noise are uncorre-
lated [53]. The estimation is based on the adaptive linear combiner, shown
in Figure 3.13, but now with the primary input (i.e., the upper branch of
the block diagram) given by the ensemble average ŝa(n) and the M reference
inputs given by xi(n) = s(n) + vi(n) for i = 1, . . . , M .

a. Assuming a steady-state situation, show that the LMS algorithm con-
verges in the mean to the optimum weight vector wo(n), cf. (3.55),

wo(n) =
s2(n)

1 +
M∑
i=1

s2(n)
σ2

i

[ 1
σ2

1

1
σ2

2

. . . 1
σ2

M

]T

.

b. Unfortunately, the weight vector that results in (a) is time-varying
through s(n) despite the fact that the noise is assumed to be stationary.
As a result, the weight vector obtained by the LMS algorithm is biased.
By introducing the constraint

wT1 = 1, (4.376)

which assures that the estimate is unbiased, a constrained LMS algo-
rithm can be developed which minimizes the MSE,

Ew = E
[(

ŝa(n) − wTx(n)
)2

]
− λ(wT1 − 1),

where the constraint is multiplied by the Lagrange multiplier λ. Derive
the constrained LMS algorithm.

4.20 Another estimate of the normalization constant in (4.78) is given by

âTa = tr(XTX).

Explain why this estimate is less suitable than the one given in the text.
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4.21 The ML estimator of a signal corrupted by stationary (i.e., σ2
vi

≡ σ2
v),

Laplacian noise is the ensemble median. Determine the ML estimator—
the weighted median—when the Laplacian noise has a variance which varies
from potential to potential.

4.22 Show that the recursive, robust averager with outlier rejection in (4.104),
whose influence function is given by the sgn function, tends to converge to
the median.

4.23 Determine an approximate expression for the –3 dB cut-off frequency Fc of
the lowpass filter in Figure 4.20(b), assuming that the latency shifts τ are
uniformly distributed. In other words, determine that Ωc (= 2πFc) for which

Pτ (Ωc) =
sin 1

2ΩcT
1
2ΩcT

=
1√
2
.

4.24 For discrete-time jitter, show that the characteristic function Pθ(ejω) of the
“discretized” Gaussian PDF,

pθ(θ) =
1√
2πσ2

θ

e
− θ2

2σ2
θ ,

where θ is an integer, is given by

Pθ(ejω) =
∞∑

n=−∞
e−σ2

θ(ω−2πn)2/2.

For Gaussian jitter, the resulting effect is lowpass filtering with a cut-off
frequency ωc of

ωc =
0.83
σθ

.

4.25 Latency estimation based on cross-correlation of x(n) of length N and a
deterministic waveform s(n) of length M < N may be formulated as

τ̂ = arg max
n0∈[0,N−M ]

n0+M−1∑
n=n0

x(n)s(n − n0),

where τ̂ is the estimated latency, i.e., the argument which maximizes the
above cross-correlation. Suggest two different techniques for latency estima-
tion with better time resolution than that offered by the sampling interval
of the original signal.
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4.26 Derive a filter h(n) of length N that maximizes the SNR at n = N − 1 for
the model

x(n) = s(n) + v(n), n = 0, 1, . . . , N − 1,

where s(n) is deterministic and v(n) is stationary, colored, zero-mean, Gaus-
sian noise with correlation matrix Rv.

4.27 Derive the ML estimator of the delay θi when the EP is corrupted by station-
ary, colored, zero-mean, Gaussian noise with correlation matrix Rv. Assum-
ing that the signal length N is much larger than the correlation time d for
the noise v(n) and rv(k) = 0 for |k| ≥ d (the so-called asymptotic Gaussian
PDF assumption), it can be shown that the inverse of the noise correlation
matrix R−1

v is given by [181, p. 33]

R−1
v =

N−1∑
i=0

1
λi

ϕiϕ
T
i ,

where λi is an eigenvalue of Rv for which the corresponding eigenvectors are
given by the discrete Fourier transform vector,

ϕi =
1√
N

[ 1 ej2πfi ej4πfi · · · ej2π(N−1)fi ]T .

Make use of this result in the derivation of the ML estimator.

4.28 A multichannel variant of the Woody method may be used in which each
channel xi(l) is first processed by its corresponding matched filter hi(l),
followed by a weighted summation of the filter outputs which is used for
time delay estimation, i.e.,

y(n) =
P∑

i=1

βi

(
K∑

l=0

hi(l)xi(n − l)

)
,

where P denotes the number of channels. Discuss, in general terms, how to
choose the channel weights βi.

4.29 The inverse of the correlation matrix Rx in (4.149) is required for weighting
of the samples in the averaged EPs with the ML estimate of the ensemble
correlation. The correlation matrix Rx can be expressed as

Rx = (1 − ρ(n))I + ρ(n)11T ,

where, for simplicity, it is assumed that the power of the observed signal is
normalized to unity, i.e., σ2

s(n) + σ2
v = 1. Find the inverse R−1

x expressed
in terms of ρ(n) and the number M of EPs. Hint: Use the matrix inversion
lemma in (A.31).
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4.30 In weighting an averaged EP with the ensemble correlation, we have assumed
that s(n) is random. An alternative approach is to assume that s(n) is
deterministic (once the ensemble has been fixed).

a. Show that the weight minimizing the MSE criterion is given by

w(n) =
s2(n)

s2(n) + σ2
v

M

.

b. Propose estimators of s(n) and σ2
v in order to determine the weight

w(n) in (a).

4.31 When performing single-trial analysis, it may be of interest to minimize the
following MSE criterion:

Ew = E
[
||xi − Φwi||2

]
.

In the text, it was tacitly assumed that the obtained solution in (4.202)
corresponded to the minimum of the MSE. Show that this solution really
corresponds to the minimum.

4.32 An estimate of the signal correlation matrix Rs is required for implemen-
tation of the a posteriori FIR Wiener filter in (4.184). One approach to
develop an estimator is based on the model xi = s+vi, where it is assumed
that s is stationary and vi is uncorrelated from EP to EP.

a. Suggest an estimator which involves the summation of all cross-products
xixT

j for i, j = 1, . . . , M , while excluding i = j.

b. For this estimator, evaluate its behavior in terms of mean and variance.

4.33 Rather than minimizing the squared error over all possible realizations, as
done in (4.199), we can minimize the “instantaneous” error

E(wi) = ‖xi − Φwi‖2

for one particular realization of xi. Proceeding in a way similar to the
minimization of (4.199), the solution to this problem is found to be

ŵi = ΦTxi,

which is identical to the right-hand side of (4.203).
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4.34 When adaptive estimation is performed with the instantaneous LMS algo-
rithm for a complete set of basis functions, i.e., K = N , it can be shown
that the mean of the weights is asymptotically unbiased,

lim
n→∞

E[w(n)] = w.

This result can be obtained from addressing the following three issues.

a. Show that the Fm(n) factor in (4.283) reduces to

Fm(n) = I − µ

n∑
j=m

ϕs(j)ϕ
T
s (j).

b. Show that the recursion in (4.282) for time iN can be expressed as

w(iN) = (1 − µ)iw(0) + µ

i−1∑
l=0

(1 − µ)i
N−1∑
m=0

x(lN + m)ϕs(m).

c. Show that the expression in (b) is unbiased as n → ∞.

4.35 Multiresolution signal analysis with the wavelet transform is efficiently im-
plemented with an analysis filter bank where the detail coefficients at scale
j are computed by

dj(k) = hψ(−n) ∗ cj+1(n)|n=2k

cj(k) = hϕ(−n) ∗ cj+1(n)|n=2k

and involve filtering and decimation by a factor of two. The recursion is
commonly initiated by cJ(n) = x(n), where N = 2J and N is the signal
length, and thus it is inviting to view the analysis filter bank in terms of
filtering of x(n).

Since decimation is a time-varying operation, each state of the cascaded
filter in Figure 4.43 can be implemented without decimation by interpolating
the filter impulse response of the previous stage, so that time resolution is
maintained from scale to scale. This algorithm is known as algoritme à trous,
i.e., insertion of zeros (“holes”) in the signal [152]. Find the filter transfer
function Dj(ejω) of the detail coefficients dj(n).

4.36 Starting from the refinement equation in (4.323), derive the iterative cas-
cade algorithm in (4.363) which is used to produce the scaling and wavelet
functions.



Chapter 5

The Electromyogram

The EMG signal reflects the electrical activity of skeletal muscles and con-
tains information about the structure and function of muscles which make
different parts of the body move. The EMG signal conveys information about
the controller function of the central and peripheral nervous systems on the
muscles. As such, the EMG signal provides a highly useful characterization
of the neuromuscular system since many pathological processes, whether
arising in the nervous system or the muscle, are manifested by alterations in
the signal properties.

Although it has been known for centuries that muscles generate electric-
ity, it is only since the 1960s that electromyography has come into widespread
clinical use. During the last few decades, the accuracy of EMG signal inter-
pretation has been considerably improved thanks to advances in recording
technology and computer-based signal analysis and interpretation. Invasive
electrodes are now available which can record localized activity of individual
muscle fibers, as well as arrays of noninvasive electrodes which provide a two-
dimensional spatial characterization of the electrical potential distribution.
With the development of novel signal processing techniques, it has become
possible to look deeper into the electrophysiology of muscles, for example,
by decomposing the EMG signal into different components reflecting the
activity of individual muscle units. Advances in engineering have extended
electromyography beyond the traditional diagnostic applications to also in-
clude applications in diverse areas such as ergonomics, exercise physiology,
rehabilitation, movement analysis, biofeedback, and myoelectric control of
prosthesis.

This chapter begins with a brief description of the electrical activity of
muscles and its manifestations in EMG signal recordings, acquired invasively
or noninvasively. Then, a number of applications are listed which incorporate
analysis of myoelectric information (Section 5.1). The remaining sections of
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this chapter focus on issues of central importance to EMG signal processing,
namely, amplitude estimation, muscle fiber conduction velocity estimation,
and decomposition of the intramuscular EMG. In most cases, the signal
processing methods are derived from a phenomenological model of the EMG
signal to which optimal estimation techniques are applied. Sections 5.2–
5.4 deal with methods suitable for use in surface EMG analysis, while the
model and the methods in Sections 5.5 and 5.6 are intended for analysis of
intramuscular EMGs.

Readers wishing to learn more about electromyography and its applica-
tions should consult the excellent textbook by Merletti and Parker [1].

5.1 The Electrical Activity of Muscles

5.1.1 Action Potentials and Motor Units

The contraction of muscle tissue makes it possible to move different parts
of the body such as the eyes and limbs, as well as to move fluid within the
body. Depending on its purpose, the muscle may be categorized as either
skeletal, smooth, or cardiac. Skeletal muscle is attached to the skeleton and
facilitates movement and position of the body, whereas smooth muscle is
found within the intestines and blood vessels. Skeletal muscle is the type of
interest in this chapter. Cardiac muscle builds the heart walls and produces
the contraction of the heart, creating a heartbeat; the function of the heart
is described separately in Chapter 6.

In skeletal muscle, contraction is controlled by electrical impulses, i.e.,
action potentials, which propagate between the central and peripheral ner-
vous systems and the muscles. The action potentials are transmitted down
the axons of the motor neurons, originating in the brain or the spinal cord, to
the muscle fibers. Each motor neuron is connected to muscle fibers through
a specialized synapse called the neuromuscular junction which allows the
action potentials to stimulate contraction. Taken together, a motor neuron
and the fibers to which it connects (innervates) comprise a motor unit and
represent a functional unit of contraction. Depending on the purpose of the
muscle, a single motor unit may comprise just a few muscle fibers or more
than a thousand muscle fibers [1, 2]. Muscles which control fine movements,
for example, of an eye or a finger, have fewer muscle fibers per motor unit
than muscles which control gross movements, for example, activated during
running and jumping.

The contraction of a muscle fiber is initiated when neuronal action po-
tentials reach the neuromuscular junction and fire action potentials which
spread along the excitable membranes of the muscle fiber. A motor unit
action potential (MUAP) results from spatial and temporal summation of
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muscle fiber

motor neuron

recording
site

electrode
MUAP

Figure 5.1: The generation of a MUAP of a single motor unit with four muscle
fibers. The recorded MUAP results from the summation of the four single fiber
action potentials, whose amplitudes decrease as the fibers become more distant
from the electrode (in this case a concentric needle).

individual action potentials as they spread through the different muscle fibers
of a single motor unit, see Figure 5.1. The EMG signal results, in turn, from
summation of the different MUAPs which are sufficiently near the recording
electrode. The number of MUAPs within the pick-up (detection) area of
the electrode depends on the selected type of electrode (described in Sec-
tion 5.1.2) and is typically larger than one because fibers of different motor
units are interspersed throughout the entire muscle. In fact, a muscle cross-
section of a few square millimeters may contain fibers belonging to as many
as 50 motor units.

Motor unit recruitment is a fundamental muscular process in which the
force exerted by muscle contraction is controlled by the central nervous sys-
tem through spatial and temporal recruitment of motor units. Spatial re-
cruitment means that force is increased by recruiting more motor units,
whereas temporal recruitment means that force is increased by firing of ac-
tion potentials at faster rates. Although both types of recruitment can occur
at the same time, spatial recruitment dominates from lower levels of muscle
contraction until most motor units have been recruited. At high levels of
muscle contraction, temporal recruitment dominates and drives the motor
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(a)

(b)

(c)

Figure 5.2: Normal motor unit recruitment pattern observed in the intramuscular
EMG. (a) A single motor unit is firing at 8 Hz at a low level of muscle contraction.
(b) Recruitment of a second motor unit results in a gradual increase in strength
and firing rate and is (c) further increased by the recruitment of a third motor unit.
Each motor unit has its own particular MUAP morphology and firing rate.

units with firing rates at about 50 Hz and faster. A high firing rate implies
that individual MUAP waveforms no longer can be discerned due to tem-
poral superimposition, and the resulting EMG signal exhibits a noise-like,
random appearance, referred to as an interference pattern.

Motor units are usually recruited in order of their size, starting with the
smallest motor units, with larger units progressively recruited for increasing
strength of muscle contraction. As a result, initial activation is weak and
followed by a smooth increase in strength through the successive addition of
larger and stronger motor units. Figure 5.2 illustrates motor unit recruit-
ment at different levels of muscle strength in a normal subject, involving up
to three different motor units.

Examination of motor unit recruitment at low levels of muscle contrac-
tion is important for diagnosing disorders related to the nervous system
(neuropathy) and muscle tissue (myopathy). The recruitment pattern is
usually evaluated in terms of the firing rate of the first motor unit when the
second motor unit is recruited. The recruitment rate is easily discerned due
to the presence of few active motor units. A neuropathic recruitment pattern
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is characterized by a firing rate of the first motor unit which exceeds 20 Hz
before the second motor unit appears. On the other hand, a myopathic mus-
cle is characterized by a recruitment pattern in which several motor units
are active already at minimal voluntary contraction in order to produce the
necessary force; thus, a myopathic recruitment pattern is associated with
several MUAPs of different shapes.

The information in an intramuscular EMG signal can be grouped into
the two basic categories, namely, morphology and firing pattern—a most
useful decomposition to be pursued when we later develop models of, and
processing algorithms for, the EMG signal. Some important properties of
each category are now summarized.

Morphology. A morphologic description of the MUAP waveform is es-
sential when performing the standard clinical examination and includes the
following parameters derived from the intramuscular EMG [3].

• Amplitude is the peak-to-peak amplitude of the MUAP and ranges
from 0.25 to 5 mV for a normal subject. The amplitude is determined
by the number of active muscle fibers within the immediate vicinity
of the electrode. In general, large amplitudes are associated with neu-
ropathies and small amplitudes with myopathies.

• The number of phases of a MUAP waveform reflects the degree of
misalignment of action potentials propagating in different single fibers.
While the action potential of a single fiber has only one or two phases,
the recording electrode detects the summation of action potentials of
many fibers which, due to varying degrees of misalignment, can result
in a MUAP with multiple phases. Polyphasic MUAPs have more than
four phases, and are mostly observed in neuropathic and myopathic
conditions.

• Duration is defined by the onset and end of the MUAP waveform,
usually taken as the first and the last time instant when the signal
deviates from the baseline level by a certain fixed amplitude. The
duration depends on the number of muscle fibers within the motor unit
and increases as the number of fibers increases. The normal MUAP
duration is 2–10 ms.

Motor unit action potential morphology is exemplified in Figure 5.3 for sig-
nals recorded by a needle electrode inserted into the muscle; signals recorded
with other types of electrodes may exhibit different MUAP morphology with,
for example, altered duration.

In a normal subject, MUAP morphology usually remains stable from dis-
charge to discharge [4]. Unstable morphology may, however, arise when the



342 Chapter 5. The Electromyogram

Figure 5.3: Examples of MUAPs with varying amplitude, number of phases, and
duration. The EMG signals were recorded using a concentric needle electrode.

neuromuscular junction is impaired, causing certain nerve action potentials
to be blocked from transmission. Consequently, not all muscle fibers of the
motor unit are activated. In such cases, MUAP amplitude may actually dou-
ble from one discharge to next and, sometimes, may also be accompanied by
changes in the number of phases. Gradual changes in MUAP morphology
are observed when the biochemical properties of a motor unit change, for
example, occurring during muscle fatigue, or when the relative location of
the electrode versus the motor unit changes.

Firing pattern. A muscle contraction is sustained through repeated ac-
tivation of the motor units, with each motor unit being associated with a
particular train of MUAPs (Figure 5.2). As the number of active motor units
increases, the recording electrode detects an increasing number of simulta-
neous MUAP trains, and individual MUAP trains become more difficult to
discern from each another. The timing with which MUAPs are repeated
defines the firing pattern and conveys information on how the central ner-
vous system controls the motor unit. The firing pattern is normally regular
(rhythmic) with relatively small variability of successive interfiring intervals,
i.e., the times between successive MUAPs of the same origin, during con-
traction. For regular firing patterns, it is often adequate to characterize the
pattern by its average firing rate, defined as the inverse of the average length
of the interfiring intervals. During voluntary muscle control, a motor unit
normally begins firing at a rate of 4–5 Hz, although lower rates may be ob-
served due to spontaneous activity beyond voluntary control, and increases
its rate as force increases.

The average firing rate for normal muscle can be exemplified by those of
the biceps brachii where the motor units have a rate of 7–12 Hz at the lowest
level of muscle contraction; this level is commonly expressed as a percentage
of maximal voluntary contraction (MVC), which defines a subject-specific
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scale of contraction. With increasing isometric1 force, the average firing
rate of the biceps brachii increases to reach a maximum of approximately
20 Hz at 100% MVC [5, 6]. When assessing motor unit abnormalities in
general, it is necessary to take into account that different muscles have their
own specific firing rates, as well as rates at which additional motor units are
recruited.

While the average firing rate is an essential parameter for analysis of
intramuscular EMGs, it is unsuitable for characterizing irregular firing pat-
terns observed during dynamic contractions with rapid changes in force level.
The same limitation also applies to the characterization of firing patterns
associated with impaired neuromuscular transmission, where the interfiring
intervals exhibit increased variability. Hence, alternative rhythm parameters
are warranted which more appropriately reflect the transient properties of a
firing pattern.

5.1.2 Recording of Myoelectric Signals

Myoelectric activity is measured invasively using a needle electrode or non-
invasively by placing a surface electrode on the skin overlying the muscle.
The needle EMG is a standard clinical tool used for diagnostic purposes,
whereas the surface EMG is analyzed and processed in a variety of applica-
tions including prosthesis control, ergonomics, movement and gait analysis,
and sports medicine.

The needle EMG is measured by inserting a needle electrode through the
skin directly into the muscle. This technique provides a high-resolution, lo-
calized description of the muscle’s electrical activity, albeit relatively painful
for the patient. The pick-up area of the needle electrode depends on its
specific design and may include as few as one or two muscle fibers. The
monopolar needle electrode requires a reference electrode placed away from
the needle insertion point at an electrically neutral site such as over a bone.
The concentric needle electrode avoids the reference electrode by referencing
the active surface of the electrode to the cannula of the needle (exemplified
by the electrode in Figure 5.1). Both types of needle electrodes are used in
clinical recordings of the EMG signal. By placing several needle electrodes at
different locations, a more detailed description of a large muscle’s electrical
activity can be obtained.

The surface EMG (often abbreviated to sEMG) reflects the gross ac-
tivity produced by a large number of motor units. Its spatial resolution is
more limited than that of the needle EMG, and the high-frequency content

1A muscle contraction is said to be isometric when performed against resistance but
without movement. The length of the muscle remains almost unchanged during isometric
contraction.
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of a MUAP is smoothed. The placement of surface electrodes depends on
the muscle of interest and involves factors such as muscle fiber orientation,
anatomical landmarks, and minimization of electrical cross-talk from other
muscles.2 The surface EMG is primarily used when the time of activation
and the amplitude of the signal contain the desired information, for exam-
ple, in connection with studies of motor behavior or myoelectric prosthesis
control. The surface EMG does not generally allow the detection of indi-
vidual MUAPs, although MUAP trains may be detected at low levels of
muscle contraction [2]. A further development of the surface electrode tech-
nique is the linear electrode array, designed to provide a spatial description
of the myoelectric activity. The multichannel EMG signal—resulting from
several electrodes equidistantly placed along the muscle’s direction—makes
it possible to study the generation and extinction of action potentials and
to estimate the velocity by which action potentials propagate in the muscle
fiber (conduction velocity) [7].

The surface EMG can be recorded at lower sampling rates than the needle
EMG since the intervening tissue between the motor units and the surface
electrode acts as a lowpass filter of the electrical signal. The surface EMG
has most of its spectral power below 400–500 Hz, implying that a sampling
rate of 1 kHz or higher is required [8, 9]. For the needle EMG, the sampling
rate should be chosen such that different MUAP waveforms, which may
contain frequencies in the range up to 10 kHz, are accurately reproduced;
therefore, a sampling rate of 50 kHz is often used.

The recording of an EMG is associated with different types of noise and
artifacts which, to various degrees, hamper signal quality [9]. In the surface
EMG, electrode motion artifact is caused by relative movement between the
skin and the electrode and by deformation of the skin under the electrode:
cf. the discussion on ECG noise and artifacts on page 441. Since this type
of artifact is low-frequency in nature with most of its spectral components
below 20 Hz, it may be reduced by highpass filtering without significantly
altering the spectral content of the EMG signal [10, 11].

Similar to the situations when an EEG or ECG signal is recorded (see
page 76), insufficient shielding of the EMG electrode cable makes it suscepti-
ble to electromagnetic fields caused by currents flowing in nearby powerlines
or electrical devices. As a result, the recorded EMG signal will contain pow-
erline interference at 50/60 Hz. Filtering techniques suitable for removing
such a narrowband noise component are described in detail in Section 7.2
in the context of ECG signal processing. However, these filtering techniques
are equally applicable to the processing of EMG signals, see also [12].

2The presence of cross-talk makes it more difficult to identify the origin of the electri-
cal signal when two or more muscles, being in close proximity to each other, are active
simultaneously.
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Electrocardiographic activity may contaminate the surface EMG signal
when electrodes are positioned on the trunk and neck so that the character-
istic rhythmic ECG pattern is superimposed on the EMG signal. Since the
spectral characteristics of the EMG and ECG signals overlap, straightfor-
ward application of linear, time-invariant filtering leads to loss of desirable
signal information, thus calling for more advanced noise cancellation tech-
niques [9, 13–15].

5.1.3 EMG Applications

Diagnostic EMG. The needle EMG is the standard clinical recording
technique used for diagnosing neuromuscular pathology. When, for exam-
ple, a patient consults a doctor for muscle weakness, she or he is examined
by recording the needle EMG during contraction of specific muscles. The
morphology of individual MUAP waveforms provides essential clinical infor-
mation about the muscle’s ability to respond to the central nervous system.
This information may help to detect abnormal activity that can occur in
conditions such as inflammation of muscles, damage to nerves in the arms
and legs, pinched nerves, and muscular dystrophy. The needle EMG is also
studied in connection with nerve injury and may be used to determine if
the injury heals and returns to normal with full reinnervation of the muscle,
for example, by examining changes in motor unit recruitment over a certain
time span.

The diagnostic EMG includes examination of spontaneous motor activ-
ity which may occur during muscle relaxation. In normal conditions, the
muscle is electrically silent at relaxation; however, abnormal spontaneous
waveforms and waveform patterns may be generated which are associated
with involuntary muscular movement and spasms.

Kinesiology. Kinesiology is the study of body movement and is aimed at
understanding the processes that control movement. The surface EMG is es-
sential to several aspects of kinesiology, including the study of motor control
strategies, mechanics of muscle contraction, and gait [16]. As an example,
the EMG pattern recorded during gait is characterized by successive bursts
which reflect intervals of muscle activation (see Figure 5.4). Delineation of
the times for each burst’s onset and end, accompanied by an analysis of the
resulting onset/end timing pattern, is an essential task for clinical assessment
of various movement disorders. The EMG pattern analysis is facilitated by
signal processing techniques which automate the delineation of bursts and
characterize the onset/end timing pattern.
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Figure 5.4: Six-channel surface EMG recorded during walking at natural speed.
The electrodes were positioned on the leg over the tibialis anterior muscle.
(Reprinted from Frigo and Shiavi [16] with permission.)

Ergonomics. The amplitude of the surface EMG signal provides a valu-
able, quantitative measure of muscle load, often used to assess physical load
during work. In ergonomic analysis, the EMG signal is often recorded during
light, repetitive work with particular interest to assess the activity of specific
muscles at certain work positions. When combined with other ergonomic in-
formation, the outcome of the myoelectric signal analysis may ultimately
help to avoid work-related disorders, design better workplaces, and improve
productivity.

The study of muscle fatigue is central in ergonomics due to the natu-
ral wish to avoid fatigue in work situations. A useful definition of muscle
fatigue is the condition when a subject no longer is able to maintain a re-
quired force [17]. From a signal processing perspective, a fatiguing muscle
contraction is manifested by a gradual increase in amplitude of the surface
EMG signal and significant changes in its power spectrum. Methods which
quantify these two signal properties are described in Sections 5.2 and 5.3,
respectively.

Prosthesis control. Myoelectric control of battery-powered prostheses is
used by individuals with amputations or congenitally deficient upper limbs.
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The control signal is derived with surface electrodes placed over muscles
or muscle groups under voluntary control within the residual limb, i.e., the
remaining portion of the limb. The control signal is fed to the prosthe-
sis, where its characteristics are analyzed and translated such that the in-
tended function can be performed. Depending on the type of prosthesis,
the control information ranges from simple on/off commands generated by
a single muscle to complex multifunction commands by a group of mus-
cles. The single-muscle controller is usually based on the EMG amplitude
so that muscle contractions of different strengths, as reflected by different
amplitudes, can differentiate between hand closing and opening or elbow
flexion and extension. In practice, such controllers can reliably perform only
three functions [18]. By contrast, a multifunction prosthesis combines the
use of several electrodes over different muscle groups with advanced signal
processing algorithms in order to increase the amount of information that
can be extracted about the active muscle state. The multifunction prosthe-
sis achieves better accuracy of the user’s intent by, for example, analyzing
transient signal patterns occurring at the onset of rapid contractions, using
wavelets or some other time–frequency technique. It is important to realize
that the development of algorithms for prosthetic control is associated with
a real-time constraint, requiring the response time to not exceed 300 ms;
otherwise the user will perceive an unacceptable delay in operation. A re-
cent review of schemes for control of powered upper limb prostheses can be
found in [18], see also, e.g., [19–27].

5.2 Amplitude Estimation in the Surface EMG

5.2.1 Signal Model and ML Estimation

The amplitude of the surface EMG is a fundamental quantity which increases
monotonically with the force developed in the muscle (Figure 5.5). The
amplitude is frequently studied in both clinical routine and scientific studies,
for example, in relation to muscle fatigue and muscle coordination. Another
important application of EMG amplitude is as control input to a myoelectric
prosthesis. Since the operation of the prosthesis requires amplitude estimates
of high accuracy, optimal estimation techniques should be employed [18].

Since the surface EMG represents a stochastic signal, its amplitude is
given by the standard deviation of the observed signal or by a similar disper-
sion estimate. A time-varying estimate of the EMG amplitude can be deter-
mined by successively processing the samples in a window sliding through
the signal. The derivation of an amplitude estimator can take its starting
point in a phenomenological model of the surface EMG in which the ob-
served signal is modeled as the output of a linear, time-invariant filter h(n)
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Figure 5.5: (a) The EMG signal and (b) the force curve during force-varying
isometric muscle contraction, expressed as a percentage of maximal voluntary con-
traction. (Reprinted from Moritani et al. [28] with permission.)

fed by random noise [29], i.e., the well-known linear, filtered-noise model
introduced in Section 3.1.3. The signal model is defined by

x = Hv, (5.1)

where

x =

⎡⎢⎢⎢⎣
x(0)
x(1)

...
x(N − 1)

⎤⎥⎥⎥⎦ , v =

⎡⎢⎢⎢⎣
v(0)
v(1)

...
v(N − 1)

⎤⎥⎥⎥⎦ . (5.2)

The noise v is assumed to be white, Gaussian with variance σ2
v . The matrix

H defines a causal, linear filtering operation from the impulse response h(n)
and is lower triangular and Toeplitz,

H =

⎡⎢⎢⎢⎢⎢⎣
h(0) 0 0 . . . 0
h(1) h(0) 0 . . . 0
h(2) h(1) h(0) . . . 0

...
...

...
. . .

...
h(N − 1) h(N − 2) h(N − 3) . . . h(0)

⎤⎥⎥⎥⎥⎥⎦ . (5.3)

Evidently, the signal model in (5.1) accounts neither for the influence of
the firing pattern nor for the influence of individual MUAPs on the surface
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EMG, but assumes that the spectral properties of the surface EMG signal
are suitably shaped by the filter h(n). Since the filtered signal x exhibits
an initial transient without physiological counterpart, the transient should
be omitted from subsequent analysis. The exact number of samples to be
omitted depends on the properties of h(n).

In order to assure that changes in the estimate of σv, occurring from
one window to another, are not attributed to changes in filter gain, h(n) is
always subjected to normalization such that the variance σ2

x of the observed
signal,

σ2
x = rx(0) =

1
2π

∫ π

−π
Sx(ejω)dω,

=
1
2π

∫ π

−π
|H(ejω)|2σ2

vdω, (5.4)

is identical to σ2
v ; here, the Fourier transform of h(n) is denoted H(ejω).

Hence, we must require that

1
2π

∫ π

−π
|H(ejω)|2dω = 1. (5.5)

Although h(n) is initially treated as being a priori known, it is later estimated
from the observed signal.

With the assumption that the input noise v is Gaussian, the observed
signal x is completely characterized by the PDF

pv(x) =
1

(2π)
N
2 |Rx|

1
2

exp
[
−1

2
xTR−1

x x
]

. (5.6)

Since the correlation matrix can be expressed as

Rx = E
[
xxT

]
= HE

[
vvT

]
HT

= σ2
vHHT , (5.7)

its inverse equals

R−1
x =

1
σ2

v

(H−1)TH−1, (5.8)

and, accordingly, the PDF of x can be written as

pv(x;σv) =
1

(2π)
N
2 |σ2

vHHT | 12
exp

[
− 1

2σ2
v

(H−1x)T (H−1x)
]

. (5.9)
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It should be noted that the Gaussian signal assumption has been found
adequate in various surface EMG applications, including the present one on
amplitude estimation [30, 31] (although inadequate in certain situations, see
Section 5.2.2).

We will now derive the ML estimator of the standard deviation σv,
determined from maximization of the logarithm of the likelihood function
(cf. page 217),

σ̂v = arg max
σv

ln pv(x;σv). (5.10)

Taking the logarithm of pv(x;σv) in (5.9) and differentiating with respect to
σv yields

∂ ln pv(x;σv)
∂σv

=
∂

∂σv

[
−N ln 2π

2
− N lnσv −

ln |HHT |
2

− (H−1x)T (H−1x)
2σ2

v

]
= −N

σv
+

1
σ3

v

(H−1x)T (H−1x), (5.11)

where we have made use of the result on determinants given in (A.26).
Setting the result in (5.11) equal to zero, we obtain the following expression,

σ̂2
v =

1
N

(H−1x)T (H−1x), (5.12)

which, considering that σv is the desired quantity, becomes

σ̂v =

√
1
N

(H−1x)T (H−1x). (5.13)

Filtering of the observed signal x with H−1,

y = H−1x, (5.14)

has the interpretation of decorrelating (“whitening”) the samples of x be-
cause the correlation matrix of y is diagonal,

Ry = E
[
yyT

]
= E

[
H−1xxT (H−1)T

]
= E

[
H−1HvvTHT (H−1)T

]
= σ2

vI. (5.15)

Since H is lower triangular and Toeplitz, it can be shown that its inverse
is also lower triangular and Toeplitz and, therefore, corresponds to a causal
operation. The columns of H−1 correspond to another linear, time-invariant
filter whose impulse response is shifted downwards as the column index in-
creases, in the same way as h(n) was shifted downwards in (5.3) [32].
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Before the ML estimator in (5.13) can be used in practice, we must
first determine the matrix H from the observed signal. Since the power
spectrum of the surface EMG usually exhibits a few pronounced peaks, the
impulse response h(n) is often modeled by an all-pole filter of low order,
and thus the observed signal is modeled by a low-order AR process [29,
33–37]. From Section 3.4 we know that the coefficients of an all-pole filter
are obtained as the solution of the normal equations in (3.126) and that
the related whitening filter is always stable due to its FIR structure. The
matrix H can be determined from an initial calibration phase in which the
subject is instructed to perform a constant-force, isometric contraction [9].3

Following the calibration phase, which typically lasts for a few seconds, the
subsequent parts of the EMG recording are processed with the determined
whitening filter. This filter remains appropriate to employ as long as the
spectral properties of the recording remain unaltered. The estimate Ĥ is
substituted into (5.13) to yield the amplitude estimate

σ̂v =

√
1
N

(Ĥ−1x)T (Ĥ−1x). (5.16)

It should be noted that this estimator assumes that x is zero-mean; if this
is not the case, the amplitude will be overestimated. Hence, it is essential
to estimate and subtract the DC level from x prior to computation of σ̂v.
Figure 5.6 summarizes the main blocks of the signal model and the ML
amplitude estimator, respectively.

Although whitening of the observed signal is inherent to the ML estima-
tor, it is essential to realize that the amplitude estimator that results from
the assumption of a white observed signal,

H = I, (5.17)

is the standard technique for analyzing the surface EMG in the time domain.
Since the impulse response is given by h(n) = δ(n), the root mean-square
(RMS) value of the observed signal,

σ̂v =

√
1
N

xTx =

√√√√ 1
N

N−1∑
n=0

x2(n), (5.18)

is the amplitude estimate.
Since the amplitude estimate is influenced by a number of physiologi-

cal factors, it is difficult to make a direct comparison of amplitude values
3During the calibration phase, the variance of the whitened signal directly results from

solving the set of normal equations in (3.126), and, accordingly, the desired EMG amplitude
estimate is the square-root of σ2

e in (3.128).
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Figure 5.6: Amplitude estimation in EMG signal processing. (a) The linear,
filtered-noise signal model and (b) the related ML estimator of the amplitude σv.

between subjects. This problem is usually handled by normalizing the am-
plitude estimate σ̂v relative to the amplitude estimate at MVC. The nor-
malized amplitude estimate reflects the degree of muscular activation and is
expressed as a percentage of MVC.

5.2.2 Modifications of the ML Amplitude Estimator

Sliding window. In many situations, the EMG amplitude is changing
during muscle contraction, and, therefore, the single-amplitude estimator in
(5.16) must be replaced by another which is capable of producing a time-
varying estimate. The common approach to track changes in EMG ampli-
tude is through repeated estimation of σv in a sliding window, i.e., the same
processing technique as was employed when computing the Hjorth parame-
ter H0(n) in (3.105). The estimator in Figure 5.6(b) can be easily extended
to produce a time-varying estimate from the whitened signal y(n), resulting
from filtering of x(n) using the first column of the whitening matrix H−1

as the impulse response. The time-varying amplitude estimate σ̂v(n) is ob-
tained by

σ̂v(n) =

√√√√ 1
N

n∑
m=n−N+1

y2(m). (5.19)

For a short window length N , the estimator σ̂v(n) tracks rapid changes in
amplitude at the expense of estimates with larger variance, whereas longer
windows result in slower tracking but with smoother amplitude estimates.

The length of the sliding window may be selected with reference to the
application of interest and the degree with which the amplitude is expected
to vary. For example, the window length has been adapted to the walking
speed during human locomotion [38], see also [39, 40]. Another approach is
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to adapt the window length to the local characteristics of the EMG signal
so that a short window is used during rapid changes in amplitude, and vice
versa. The function which maps signal characteristics into window lengths
may involve the signal’s amplitude and its first derivative [41, 42], as well as
its second derivative [43].

The performance of the RMS amplitude estimator, when combined with
the sliding window technique, is illustrated by the simulation example in Fig-
ure 5.7. The observed signal x(n) was generated by passing white, Gaussian
noise v(n) through a linear, time-invariant filter h(n), designed to produce
the power spectrum displayed in Figure 5.7(b) [44].4 The standard deviation
of the noise was increased by a factor of two halfway into the observation
interval in order to mimic a sudden change in EMG amplitude. The RMS
amplitude estimate was computed either directly from the observed signal
(Figure 5.7(c)) or from the whitened signal (Figure 5.7(e)). Assuming that
the observed signal derives from an AR model, the coefficients of the whiten-
ing filter were estimated using Burg’s method. It can be concluded from
this simulation example that the whitening operation leads to amplitude es-
timates with variance considerably lower than estimates obtained directly
from the observed signal, see Figures 5.7(d) and (f), respectively.

Laplacian PDF. In situations when the surface EMG is recorded at low
contraction levels, the number of MUAPs is relatively sparse so that gaps in
time between different MUAPs are occurring more frequently. As a result,
the PDF which models the signal amplitude should be more sharply peaked
at values around zero than what the above-mentioned Gaussian PDF ac-
counts for; at higher contraction levels, the amplitude histogram has been
found to become increasingly Gaussian [31, 46]. The Laplacian PDF has
been suggested as a model of the EMG amplitude when recorded at low
contraction levels [31]. Assuming that the samples x(n) are statistically
independent, Laplacian random variables, their joint PDF is given by

pv(x;σv) =
N−1∏
n=0

pv(x(n);σv)

=
N−1∏
n=0

1√
2σ2

v

exp

[
−

√
2
σ2

v

|x(n)|
]

, (5.20)

from which it is straightforward to derive the ML estimator of σv. Performing
the same operations as was done in (5.10) and (5.11), we obtain the following

4This simulation model has been found useful for the purpose of comparing algorithmic
performance during voluntary, isometric contractions [45], where the idea was to study the
influence of whitening on different amplitude estimates.
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Figure 5.7: Amplitude estimation and the effect of signal whitening. (a) The input
white, Gaussian noise whose variance increases by a factor of two at second 1.25,
(b) the power spectrum of the filtered-noise signal, (c) the observed signal, (d) the
amplitude computed by the estimator in (5.18), (e) the whitened signal, and (f) the
amplitude computed by the estimator in (5.16). The sampling rate was set to 5 kHz,
and the length of the sliding window was 100 ms. The parameters of the whitening
filter were estimated from the first 500 ms of the observed signal.



Section 5.2. Amplitude Estimation in the Surface EMG 355

estimator,

σ̂v =
√

2
N

N−1∑
n=0

|x(n)|, (5.21)

commonly referred to as the average rectified value (ARV). Together with
the RMS estimator in (5.18), the ARV estimator represents the most popular
amplitude estimator in EMG analysis.

In contrast to the multivariate Gaussian PDF in (5.6) which accounts for
correlated samples, the multivariate Laplacian PDF unfortunately has no
manageable expression which lends itself to the derivation of a closed-form
ML estimator. As a result, the implications of a Laplacian model in EMG
analysis have, so far, been restricted to the case in (5.20) with statistically
independent samples. While the whitening filter H−1 is inherent to the ML
estimator when samples are Gaussian, the whitening operation has been
found advantageous when used in conjunction with the ARV estimator. The
improvement in performance achieved by the RMS estimator with signal
prewhitening (Figure 5.7) is paralleled by a similar improvement when the
ARV estimator makes use of a prewhitened signal [47].

Despite the fact that signals characterized by Gaussian and Laplacian
PDFs are distinctly different (cf. the signals displayed in Figure 4.17), the
difference in performance of the RMS and ARV estimators is practically
negligible. This finding has been established experimentally in several EMG
applications as well as in simulation studies [31, 48, 49].

Adaptive whitening. The use of a fixed whitening filter H−1, determined
from a calibration phase, assumes that the spectral properties of the EMG
signal remain the same throughout the recording. However, the spectral
properties change with the task performed as different motor units are re-
cruited within the muscle, thus implying that a fixed whitening filter cannot
fulfil its original purpose. As long as the spectral changes are relatively
slow, we may employ an adaptive technique to estimate the parameters of
the whitening filter, for example, using the LMS or the GAL algorithm
described in Section 3.6.5 which are both based on the assumption of an
underlying AR signal model.

Another reason for considering an adaptive approach to signal whitening
is the fact that the SNR changes with contraction level. Since a large number
of motor units are active during stronger contractions, the muscular activity
dominates relative to the noise of nonmuscular origin so that the SNR of the
EMG signal is high. However, at weaker contractions (about 10% MVC and
less) the presence of nonmuscular noise can no longer be neglected, as was
done in the model in (5.1), but an additive, random noise term w should be
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included in the model,

x = Hv + w. (5.22)

Accordingly, the observed signal x can no longer be treated as deriving
entirely from an AR process, calling for adaptive estimation techniques which
produce an estimate of the signal part Hv in the presence of additive noise.
Such adaptive techniques have been developed from the theory of Wiener
filters, cf. Section 4.4 [50].

5.2.3 Multiple Electrode Sites

A major modification of the above ML amplitude estimator is to make it
incorporate spatial information from multiple electrodes positioned about
the muscle of interest. While the single electrode setup only views the ad-
jacent area, the introduction of spatial sampling provides a more complete
description of a muscle’s electrical activity and can therefore be expected to
produce improved amplitude estimates.

Figure 5.8(a) presents a multichannel model of the surface EMG when
multiple electrode sites are employed. In this model, each of the M observed
signals, denoted x1(n), . . . , xM (n), are assumed to exhibit not only tempo-
ral correlation, but also varying degrees of spatial correlation with the other
M − 1 observed signals [49, 51, 52]. Spatial correlation is introduced by the
M ×M “mixing” matrix S that linearly combines the mutually uncorrelated
input noise processes v1(n), . . . , vM (n) and is assumed to be independent
of time. Each noise process vm(n) is assumed to be white, Gaussian with
channel-independent, identical variances σ2

v . Temporal correlation is intro-
duced in each of the signals that results from mixing by S through the use
of a channel-dependent filter whose impulse response is hm(n). Hence, the
observed signals xm(n) are Gaussian because the Gaussian input noise vm(n)
is modified by linear transformations. Since the EMG amplitude σv is com-
mon to all M channels, its estimation can be based on more information
than what is available in the single-channel situation.

The whitening operation of the single-channel ML estimator in (5.13)
turns out to be equally crucial to the multichannel ML estimator, although
whitening should now be performed simultaneously in time and space. How-
ever, the derivation of the optimal multichannel ML estimator is exceedingly
complicated, and, therefore, we restrict ourselves to describe the following
three-step estimation procedure [52]:

1. Temporal whitening using a channel-dependent filter H−1
m , determined

in the same way as the estimate Ĥ−1 in (5.16), followed by
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Figure 5.8: (a) A multichannel, linear, filtered-noise model of the surface EMG
signal with identical input noise variances σ2

v and (b) the related ML amplitude
estimator of σv.

2. spatial whitening which removes the channel-to-channel correlation in-
troduced by the mixing matrix S, and, finally,

3. the multichannel amplitude estimate σ̂v obtained as a weighted com-
bination of the RMS amplitude estimates of the individual channels,

see the block diagram in Figure 5.8(b). This three-step estimation procedure
is particularly plausible to investigate since the two whitening operations are
performed in reverse to those of the signal model in Figure 5.8(a) which color
the input noise. The order by which whitening is performed is uncritical since
the correlation in space and time are assumed to be uncoupled.

Similar to the single-channel case, each of the M channels xm(n) is
whitened in time using the filter hm(n) so that another signal ym(n) results
whose variance is equal to σ2

v . For the multichannel case, it is advantageous
to make use of the vector representation of the whitened samples at time n,

y(n) =

⎡⎢⎢⎢⎣
y1(n)
y2(n)

...
yM (n)

⎤⎥⎥⎥⎦ , n = 0, 1, . . . , N − 1, (5.23)
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a representation earlier introduced in (3.32). The correlation matrix of y(n)
can be expressed as

Ry = E
[
y(n)y(n)T

]
= σ2

vAy, (5.24)

where the matrix Ay describes spatial correlation. Since whitening of xm(n)
does not alter the Gaussian signal property, the vector y(n) is equally char-
acterized by a Gaussian PDF which, for each time n, is given by

pv(y(n);σv) =
1

(2πσ2
v)

M
2 |Ay|

1
2

exp
[
− 1

2σ2
v

yT (n)A−1
y y(n)

]
, (5.25)

where the unknown parameter σv has been separated from Ry by the in-
troduction of Ay. In order to proceed, the eigenvalue decomposition of a
symmetric matrix is used to express Ay (see (A.37)),

Ay = QΛQT , (5.26)

where the columns of the matrix Q are defined by the eigenvectors of Ay,
and Λ is a diagonal matrix defined by the eigenvalues

Λ = diag(λ1, λ2, . . . , λM ). (5.27)

Introducing the linear transformation,

z(n) = QTy(n), (5.28)

and making use of the fact that

A−1
y = QΛ−1QT , (5.29)

we can write pv(y(n);σv) in (5.25) as

pv(y(n);σv) =
1

(2πσ2
v)

M
2 |Ay|

1
2

exp
[
− 1

2σ2
v

zT (n)Λ−1
y z(n)

]

=
1

(2πσ2
v)

M
2 |Ay|

1
2

exp

[
− 1

2σ2
v

M∑
m=1

z2
m(n)
λm

]
. (5.30)

Since this PDF can be expressed as a product of univariate, Gaussian PDFs
of z1(n), . . . , zM (n), it is evident that linearly transforming y(n) with the
eigenvector matrix Q is synonymous with removing the spatial correlation
that exists between different channels.
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For the Gaussian PDF in (5.30), it is easily shown that the ML estimator
of σv is defined by the following eigenvalue-weighted RMS value,

σ̂v(n) =

√√√√ 1
M

M∑
m=1

z2
m(n)
λm

. (5.31)

The weighting should be interpreted as a normalization of zm(n) with its
variance since

E
[
z2
m(n)

]
= σ2

vλm, (5.32)

which stems from the fact that

E
[
z(n)z(n)T

]
= QT E

[
y(n)y(n)T

]
Q

= σ2
vΛ. (5.33)

In order to develop the multichannel ML estimator, we are interested in the
Gaussian PDF of all available data, i.e., pv(y(0), . . . ,y(N − 1);σv), which,
due to the whitening operation, can be expressed as a product,

pv(y(0), . . . ,y(N − 1);σv) =
N−1∏
n=0

pv(y(n);σv). (5.34)

As a result, the multichannel ML estimator of the amplitude σv is given by
the following expression,

σ̂v =

√√√√ 1
MN

M∑
m=1

N−1∑
n=0

z2
m(n)
λm

. (5.35)

Before the three-step estimator can be used in practice, the spatial corre-
lation matrix Ry has to be determined from the temporally whitened signals
using the estimator

R̂y =
1
N

N−1∑
n=0

y(n)yT (n). (5.36)

This estimator is reasonable to use when it can be assumed that each of the
channels is stationary in time during the observation interval. Decomposition
of R̂y produces an estimate of the rotation matrix Q because Ry and Ay

only differ by a scalar factor, and, consequently, the eigenvalues λm of Ay
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are proportional to the eigenvalues λ′
m of Ry. Since the trace of a matrix

equals the sum of the eigenvalues, we have

tr(Ry) = Mσ2
v = σ2

v

M∑
m=1

λm, (5.37)

and thus

M∑
m=1

λm = M, (5.38)

which, when combined with the fact that λm and λ′
m are proportional, leads

to

λm =
λ′

mM
M∑

m=1

λ′
m

. (5.39)

It should be noted that the eigenvalue decomposition of R̂y will be ill-
conditioned when two channels are almost perfectly correlated, i.e., when
the channels are obtained from very closely spaced electrode sites. In such
cases, certain eigenvalues are almost zero, due to R̂y being rank-deficient,
and create numerical problems when calculating σ̂v in (5.35) since z2

m(n) is
divided by a value close to zero.5

Similar to the single-channel ML estimator, a sliding window approach
may be employed to track changes in the amplitude of a multichannel EMG
recording. It is desirable to update the correlation matrix Ry in each new
window position and to perform the related eigenvalue decomposition so that
spatial whitening remains meaningful over time.

The performance of the three-step, multichannel estimator has been com-
pared to that of the single-channel estimator in terms of SNR of the ampli-
tude estimate, using surface EMGs recorded during nonfatiguing, constant-
force, isometric contractions [52]. The multichannel estimator was found to
produce a considerably higher SNR which improved as the number of elec-
trode sites increased. Simplified structures of the multichannel estimator,
omitting the filter for temporal whitening, have also been studied and found
to produce improved SNRs [33, 49, 51, 53, 54].

5A remedy to this problem may be to use a low-rank approximation of Ry based on
the singular value decomposition (SVD), see page 639 in Appendix A.
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5.3 Spectral Analysis of the Surface EMG

While amplitude characterization conveys important information on the sur-
face EMG signal, expressed in terms of RMS and/or ARV values, additional
information can be extracted by means of power spectral analysis. Such anal-
ysis has found particular significance in the study of muscle fatigue since,
under voluntary, isometric contractions, fatigue is manifested as a shift of
the power spectrum toward lower frequencies [55]; a phenomenon commonly
referred to as spectral compression. Not only is amplitude estimation insus-
ceptible to such a “slowing” behavior of the signal, but time domain analysis
is generally less suitable for its quantification. The fatigue-related spectral
shift to lower frequencies is mainly attributed to a decrease in muscle fiber
conduction velocity, although other physiological factors also have an influ-
ence. Spectral compression is demonstrated by Figure 5.9 with a set of EMG
signals recorded from a healthy subject who performed voluntary, isometric
contraction, sustained during 100 s.

Spectral compression may be better understood by considering a simplis-
tic model in which the (continuous-time, random) signal x1(t) is assumed
to derive from a single motor unit [56]. Slightly later at the time τ , and at
increased fatigue, the same motor unit produces another signal x2(t) related
to x1(t) by6

x2(t) = x1(νt − τ), (5.40)

where the scaling parameter ν models a slower conduction velocity through
widening of x1(t), i.e., for ν < 1. In terms of power spectra, the relationship
in (5.40) corresponds to

Sx2(Ω) =
1
ν

Sx1

(
Ω
ν

)
, (5.41)

which thus establishes that the original power spectrum Sx1(Ω) is subjected
to compression (scaling), as well as an increase in power.

As illustrated by the power spectra in Figure 5.9, the surface EMG sig-
nal is usually associated with a rather unimodal spectral shape, implying
that parameters which describe the dominant frequency are relevant to ap-
ply. The mean frequency (MNF) and the median frequency (MDF) are two
spectral parameters which have become exceedingly popular in EMG analy-
sis. Assuming that the observed signal is discrete-time with power spectrum

6As the reader already may have noted, the continuous-time signal description is pre-
ferred when scaling in time is of interest since the scaling operation is more easily accom-
modated with such a description.
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Figure 5.9: (a) The surface EMG signal recorded during voluntary, isomet-
ric contraction at 60% MVC of a healthy tibialis anterior muscle, sustained for
100 s. The displayed signals are from second 1, 30, 60, and 90 (top to bottom).
(b) The corresponding power spectra were obtained by averaging and smoothing
the periodograms of five contiguous signal segments such as those displayed in (a).
(Reprinted from Merletti et al. [56] with permission.)

Sx(ejω), the mean frequency is defined as the normalized, one-sided, first-
order spectral moment,

ωMNF =

∫ π

0
ωSx(ejω)dω∫ π

0
Sx(ejω)dω

. (5.42)

This definition bears close resemblance with the definition of the Hjorth mo-
bility parameter H1 in (3.97), defined as the square-root of the normalized,
two-sided, first-order spectral moment. However, while the integration inter-
val in (5.42) is one-sided and only includes positive frequencies, the two-sided
definition in (3.95) leads to odd-numbered moments, e.g., for n = 1, that are
identical to zero due to the symmetry of a power spectrum. In comparison,
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Figure 5.10: An example of an EMG power spectrum and the values of the spectral
parameters FMDF and FMNF.

H1 and ωMNF both describe the dominant frequency of a signal, although
the value of H1 is slightly larger than that of ωMNF; both parameters are
useful for characterizing spectral compression since they change in exactly
the same way during compression (Problems 5.7 and 5.9). It should be noted
that higher-order spectral moments have also been considered for obtaining
a more detailed shape characterization of the EMG power spectrum than
what is offered by the dominant frequency [57, 58].

The other popular spectral parameter in EMG analysis is the median
frequency ωMDF, defined as that particular frequency which divides the total
area under Sx(ejω) into two parts of equal size,∫ ωMDF

0
Sx(ejω)dω =

∫ π

ωMDF

Sx(ejω)dω. (5.43)

The median frequency ωMDF is identical to ωMNF when the positive part of
Sx(ejω) is symmetric with respect to a certain frequency, whereas ωMDF is
associated with lower values than ωMNF when Sx(ejω) comes with a high-
frequency tail, see Figure 5.10. The median frequency ωMDF has the advan-
tage of being more robust than ωMNF when the signal has very low SNRs,
whereas it exhibits a larger variance at high SNRs [59–61].

Another way of writing the definition in (5.43) is∫ ωMDF

0
Sx(ejω)dω =

1
2

∫ π

0
Sx(ejω)dω, (5.44)
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a form which lends itself to the generalization of the median frequency into
a “percentile” frequency. Rather than determining the median frequency,
which corresponds to the factor 1

2 on the right-hand side of (5.44), a per-
centile frequency can be determined for any choice of factor contained within
the interval [0, 1] [62].

Similar to the estimation of EMG amplitude, spectral parameters are
commonly computed using the sliding window approach in order to monitor,
for example, muscle fatigue [63]. Returning to the example in Figure 5.9, the
mean frequency is monitored and found to decrease by almost a factor of two,
i.e., from 129 to 68 Hz, as muscle fatigue becomes increasingly pronounced
during the 100 s of sustained voluntary contraction. Besides characterization
of spectral compression during muscle fatigue, ωMDF and ωMNF have been
employed for several other purposes such as the investigation of back and
neck pain and age-induced muscle changes.

From a methodological point of view, spectral analysis of the surface
EMG signal largely parallels that of the EEG signal, earlier presented in
Chapter 3, and involves nonparametric (Fourier) as well as parametric spec-
tral estimation techniques [45, 64]. In a similar way, parametric spectral
analysis has been synonymous with AR modeling and has, in addition to be-
ing part of signal whitening in EMG amplitude estimation, been employed
for prosthesis control [20, 36, 65, 66]. In the latter application, the AR
parameters have been used to define a set of features for discrimination be-
tween different limb functions. Time–frequency analysis (see Section 3.6)
has also found its way into the toolbox of techniques for studying the sur-
face EMG and has been found particularly suitable for characterization of
muscle contraction during dynamic conditions [58, 67–72].

We conclude this section by pointing out that additional aspects on spec-
tral properties of the EMG signal are provided in Section 5.5, where the re-
lationship between a signal model of the intramuscular EMG and its power
spectrum is derived. In that model, it is assumed that the power spectrum
of individual MUAP waveforms and the statistics of the firing pattern are
known. Another mathematical model of the EMG power spectrum has been
developed with which the spectrum can be explained in terms of physiologi-
cal and geometrical parameters accounting for the size of the muscle fibers,
the conduction velocity, the number of fibers per motor unit, the electrode-
to-muscle distance, and the electrode configuration; see [73] for a description
of this model and [74] for a recent refinement with a considerably more de-
tailed account of the spatial filtering properties.
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5.4 Conduction Velocity Estimation

Since certain muscle disorders are associated with a reduction in conduction
velocity of the muscle fiber, it is important to estimate this parameter from
either intramuscular or surface EMG recordings [7, 75]. Conduction velocity
is studied using a recording setup that involves two electrode locations a
certain distance d apart. The time it takes for the action potentials to
propagate along the muscle fiber is reflected by the delay between the two
recorded signals x1(n) and x2(n). Thus, by estimating the time delay θ
between the signals, the conduction velocity ν is obtained from

ν =
d

θ
. (5.45)

Conduction velocity estimation from the intramuscular EMG is made diffi-
cult since the shape of a motor unit waveform is changing between the two
recording locations due to factors such as different conduction velocities of
the active motor units and fiber orientation with respect to the electrodes [7].
Consequently, the estimation of θ requires more sophisticated techniques
than merely determining the time distance between related peaks of the two
signals. The presence of noise is another factor which makes it necessary to
develop more sophisticated techniques than simple peak-picking in order to
produce reliable estimates of θ. The same type of problem is associated with
the surface EMG, even though the signal instead reflects the summation of
many firing motor units and thus an “average” conduction velocity estimate
is obtained for the muscle fiber.

Figure 5.11 displays six simultaneously recorded surface EMG signals,
using a linear array of electrodes with identical inter-electrode distances
(10 mm) positioned along the direction of the muscle fiber. The time delay
between different channels can be clearly discerned by the eye and increases,
as one would expect, for electrodes farther apart. Figure 5.11 also illustrates
the fact that one channel is not a pure delay of another, but the wave shape
changes quite considerably when viewed over the six channels; some of the
changes in shape may be attributed to noise.7

The multichannel EMG signal in Figure 5.11 suggests various approaches
to conduction velocity estimation such as analysis in pairs of the channels
or simultaneous analysis of all channels. Below, we will introduce a simple,
phenomenological model of the time delay between two EMG signals and

7The linear array of electrodes should be located so that all electrodes are placed away
from the innervation zone of the muscle in the same direction. If not, channels 2, 3, and
higher will not be delayed in relation to channel 1, but from the channel being closest
to the innervation zone; as a result, the estimation of the conduction velocity ν becomes
much more difficult to accomplish.
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Figure 5.11: An EMG signal recorded by a linear electrode array from a subject
performing a low-level (10% MVC), voluntary, isometric contraction of the biceps
brachii muscle of the upper arm. Note the increasing time delay of the signals
when reading the plot from top to bottom. (Reprinted from Farina et al. [7] with
permission.)

derive the corresponding ML estimator (Section 5.4.1). In a next step, the
model is extended to account for multichannel signals recorded with a lin-
ear electrode array, and again the corresponding ML estimator is derived
(Section 5.4.2).

Before proceeding with the actual estimation problem, it is of vital im-
portance to realize that the input to the conduction velocity estimator is a
sampled signal with limited temporal resolution. In fact, it can be easily
shown that time delay estimation requires subsample resolution when the
surface EMG is acquired with the typical sampling rate of 1 kHz, i.e., with
a sampling interval of 1 ms [7]. Considering that conduction velocity ranges
from 2 to 5 m/s and the distance between two electrodes may be 5 mm, the
actual time delay between two signals is within the range from 1 to 2.5 ms.
Hence, it is clear that the time delay estimate has insufficient resolution
when the samples have a crude resolution of 1 ms. A number of estimation
techniques are fortunately available which are not limited by the temporal
resolution of the original signal; one of these techniques is presented below.
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5.4.1 Two-Channel Time Delay Estimation

Estimation of the time delay θ can, in its simplest form, be formulated as
a two-channel problem with the following statistical signal model as the
starting point,

x1(n) = s(n) + v1(n), (5.46)
x2(n) = s(n − θ) + v2(n), (5.47)

where n = 0, 1, . . . , N − 1. The observed signal x1(n) is assumed to be
composed of a fixed, deterministic but unknown signal s(n) and additive,
white, Gaussian noise v1(n) with variance σ2

v . The same assumption applies
to the second channel x2(n), except that s(n) is delayed by the unknown
time θ. It assumed that θ is constrained such that s(n) is always completely
contained in the observation interval (cf. the model in (4.120)). Although
it is natural to consider θ to be integer-valued in (5.47), this restriction will
be loosened once the ML estimator of θ has been derived. Furthermore,
the noise components v1(n) and v2(n) are assumed to be uncorrelated with
each other—an assumption which may be questioned when the two electrode
locations are close.

The ML estimator of θ is derived by maximizing the PDF which char-
acterizes the available observations. Since x1(n) does not depend on θ, and
v1(n) and v2(n) are uncorrelated, the joint PDF pv(x1,x2; θ, s) of the model
can be expressed as

pv(x1,x2; θ, s) = pv(x1; s)pv(x2; θ, s), (5.48)

where x1 and x2 are the vector representations of x1(n) and x2(n), respec-
tively. From before we know that the ML estimator results from the following
maximization,

[θ̂, ŝ] = arg max
θ,s

ln pv(x1,x2; θ, s). (5.49)

Making use of the assumption that pv(x1,x2; θ, s) is Gaussian, we have

pv(x1,x2; θ, s)

=
N−1∏
n=0

1
2πσ2

v

exp
[
−(x1(n) − s(n))2

2σ2
v

]
exp

[
−(x2(n) − s(n − θ))2

2σ2
v

]
.

(5.50)

Taking the logarithm and grouping factors independent of θ or s, we obtain

ln pv(x1,x2; θ, s) = constant +

1
2σ2

v

N−1∑
n=0

(
2x1(n)s(n) + 2x2(n)s(n − θ) − s2(n) − s2(n − θ)

)
. (5.51)
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Maximization of the log-likelihood function in (5.51) is done by first differ-
entiating it with respect to the continuous-valued parameter s(n) for a given
value of θ,

∂ ln pv(x1,x2; θ, s)
∂s(n)

= 2x1(n) + 2x2(n + θ) − 2s(n) − 2s(n), (5.52)

which, when set to zero, becomes

ŝ(n; θ) =
1
2

(x1(n) + x2(n + θ)) . (5.53)

Inserting ŝ(n; θ) into the log-likelihood function in (5.51) and maximizing
with respect to the other parameter θ, we obtain

θ̂ = arg max
θ

(
1
2

N−1∑
n=0

(x1(n)x2(n + θ) + x2(n)x1(n − θ)) − 1
4
Ex

)
, (5.54)

where Ex denotes the total energy of the observed signals,

Ex =
N−1∑
n=0

(
x2

1(n − θ) + x2
2(n + θ)

)
. (5.55)

Making use of the assumption that s(n) is completely contained in the ob-
servation interval, the ML estimator of θ can be written as

θ̂ = arg max
θ

(
N−1∑
n=0

x2(n)x1(n − θ)

)
. (5.56)

Hence, the time delay estimate θ̂ is given by that integer value which maxi-
mizes the cross-correlation between x1(n) and x2(n).

In order to bypass the limited temporal resolution imposed by the sam-
pling rate, we can interpolate x1(n) and x2(n) to a sampling rate which is
sufficiently high. However, half of the computations required for such inter-
polation can be circumvented by instead interpolating the cross-correlation
function

y(θ) =
N−1∑
n=0

x2(n)x1(n − θ) (5.57)

before the location of its maximum value is determined [45]. In practice,
it is usually sufficient to only interpolate y(θ) in a short interval centered
around its main peak so that the location may be determined from the
ML estimator defined in (5.56). Since the cross-correlation function often
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exhibits smooth behavior, the peak location can be found from fitting a
second-order polynomial that passes through the peak sample and its two
surrounding samples (parabolic interpolation).

Another approach to improve the temporal resolution of θ involves the
frequency domain expression of the cross-correlation operation in (5.57). By
virtue of Parseval’s theorem, the ML estimator in (5.56) can be written as

θ̂ = arg max
θ

(
1
2π

∫ π

−π
X2(ejω)X∗

1 (ejω)ejθωdω

)
, (5.58)

where X1(ejω) and X2(ejω) denote the Fourier transform of x1(n) and x2(n),
respectively, which are continuous-valued functions of ω. The crucial obser-
vation to be made from (5.58) is that θ no longer needs to be constrained to
integer values but can be treated as continuous-valued. Thus, θ̂ can either
be determined by evaluating the integral in (5.58) on a sufficiently fine fre-
quency grid or by adopting a gradient-based optimization technique which
finds the maximum of the integral [76]; the details of the gradient-based
technique are developed in Problem 5.11.

5.4.2 Multichannel Time Delay Estimation

The accuracy of the conduction velocity estimate can be expected to improve
when the time delay estimation is based on a multichannel EMG recording
since more information is available on how the signal propagates along the
muscle fiber. Therefore, it is desirable to generalize the two-channel model in
(5.46) and (5.47) so that it accounts for the signal delay from one electrode
location to another. For the case when the multichannel recording is acquired
by a linear electrode array positioned away from the innervation zone, it may
be assumed that the time delay between adjacent channels is fixed,

θm = (m − 1)θ, m = 1, . . . , M, (5.59)

where M denotes the number of channels [77]. Thus, the estimation problem
becomes one of finding a single time delay θ rather than M−1 different ones.
With (5.59), the multichannel signal model is defined by

xm(n) = s(n − (m − 1)θ) + wm(n), m = 1, . . . , M, (5.60)

where assumptions on signal and noise properties are the same as those of
the two-channel model; in fact, the two models are identical when M = 2
in (5.60).

Since the noise in a channel is assumed to be uncorrelated with the noise
in the other channels, the multivariate Gaussian PDF can be factorized as

pv(x1, . . . ,xM ; θ, s) =
M∏

m=1

pv(xm; θ, s). (5.61)
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Taking the logarithm of pv(x1, . . . ,xM ; θ, s), we obtain the following quadratic
expression of the log-likelihood function,

ln pv(x1, . . . ,xM ; θ, s) = constant − 1
2σ2

v

M∑
m=1

N−1∑
n=0

(xm(n) − s(n − (m − 1)θ))2,

(5.62)

which is to be maximized with respect to θ and s in order to produce the
desired ML estimator. Proceeding in a way similar to the two-channel case,
differentiation of the log-likelihood function with respect to s(n) yields

∂ ln pv(x1, . . . ,xM ; θ, s)
∂s(n)

=
M∑

m=1

2xm(n + (m − 1)θ) − 2Ms(n), (5.63)

which, when set to zero, is given by the average of the M channels resyn-
chronized in time,

ŝ(n, θ) =
1
M

M∑
m=1

xm(n + (m − 1)θ). (5.64)

Replacing s(n) in (5.62) with ŝ(n, θ), the log-likelihood function can be ex-
pressed as

ln pv(x1, . . . ,xM ; θ, s) = constant

− 1
2σ2

v

M∑
m=1

N−1∑
n=0

(
xm(n) − 1

M

M∑
l=1

xl(n + (l − m)θ)

)2

. (5.65)

Omitting the factors that do not depend on θ, the multichannel ML estimator
of θ is given by

θ̂ = arg max
θ

(
M∑

m=1

N−1∑
n=0

(
2
M

M∑
l=1

xm(n)xl(n + (l − m)θ)

− 1
M2

(
M∑
l=1

xl(n + (l − m)θ)

)2 ))
, (5.66)

which, following several algebraic manipulations (see Problem 5.12), can be
simplified to

θ̂ = arg max
θ

(
M−1∑
m=1

M∑
l=m+1

N−1∑
n=0

xm(n)xl(n + (l − m)θ)

)
. (5.67)



Section 5.5. Modeling the Intramuscular EMG 371

Thus, the multichannel estimator averages all possible combinations of pair-
wise cross-correlation functions and then finds the location of the maximum
of the averaged function—this location is the ML estimate of θ. For M = 2,
it is straightforward to show that the ML estimator in (5.67) is identical to
the estimator in (5.56).

Since the multichannel estimate suffers equally from limited temporal
resolution, it is necessary to apply a technique which improves the resolu-
tion. Although being more complicated than in the two-channel case, the
frequency domain counterpart of (5.67),

θ̂ = arg max
θ

(
M−1∑
m=1

M∑
l=m+1

1
2π

∫ π

−π
Xm(ejω)X∗

l (ejω)ej(m−l)θω

)
, (5.68)

can be used in combination with, for example, a gradient-based optimization
technique [77].

The performance of multichannel estimation is illustrated by Figure 5.12,
where conduction velocity is estimated from a surface EMG recording using
either two or six channels. The results are based on the signals displayed in
Figure 5.11, although considerably longer segments than the ones displayed
are processed. In this example, improved performance is manifested by a
considerably lower variance of the conduction velocity estimates when six
channels are used.

The signal model for multichannel time delay estimation can be refined
so that the constraint in (5.59) of a linear time delay is removed [78]. An-
other refinement is to account for changes in waveform shape as the signal
propagates along the muscle fiber, for example, as modeled by a timescale
parameter [79]. For either of these model refinements, the ML estimator
requires that a multidimensional optimization problem be solved, which is
very time-consuming. As a result, effort has been expended on developing
computationally efficient, suboptimal estimators of conduction velocity.

5.5 Modeling the Intramuscular EMG

So far, we have described a number of phenomenological models of the sur-
face EMG which have helped us develop methods for estimating amplitude
and conduction velocity. In this section, the modeling aspect remains salient
to the presentation, although the scope shifts to describing a signal model
of the intramuscular EMG where information on firing pattern and MUAP
waveform shape is taken into consideration. The modeling approach provides
us with a better understanding of how various parameters with electrophys-
iological significance relate to signal amplitude and power spectrum, see
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(a) (b)

Figure 5.12: Conduction velocity estimation based on EMG signals recorded with
a linear electrode array. The ML estimates were obtained for two different subjects
using (a) two channels (channels 3 and 4 of the data partially displayed in Fig-
ure 5.11) and (b) six channels. The conduction velocity estimates are normalized
with respect to the first value and are presented as percentages. The length of the
sliding window was 250 ms. (Reprinted from Farina et al. [7] with permission.)

Sections 5.5.2 and 5.5.3, respectively. The model presented below is largely
based on the publications by De Luca and coworkers; the interested reader
is referred to [2, 6] and references therein.

5.5.1 A Signal Model of the MUAP Train

The electrical activity of a single motor unit is characterized by the time pat-
tern with which action potentials are repeatedly fired to activate the muscle
fibers and sustain contraction. The firing pattern can be given a statisti-
cal description in the form of a sum of unit impulse functions occurring at
random times tk,

dE(t) =
M∑

k=1

δ(t − tk), (5.69)
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where M is the total number of MUAPs assumed to occur in a train. The
signal representation dE(t) is sometimes also referred to as an event series
and will be revisited in Chapter 8 for the purpose of analyzing heart rate
patterns. In order to characterize the firing pattern statistically, it is often
preferable to consider the intervals rk between successive firing times rather
than the firing times themselves,

rk = tk − tk−1, k = 1, . . . , M, (5.70)

i.e., a series of interfiring intervals; for convenience, it is often assumed
that t0 = 0. Several experimental studies have concluded that the depen-
dence between interfiring intervals is very weak, suggesting that it is appro-
priate to assume that the intervals are statistically independent. Hence, the
joint PDF pr(r1, . . . , rM ) of the interfiring intervals can be expressed as a
product of individual PDFs,

pr(r1, . . . , rM ) =
M∏

k=1

prk
(rk). (5.71)

While nonstationary behavior of the interfiring intervals may be handled
with this model, a structure must be assigned to prk

(rk) that describes the
time-varying properties [80]. The structure of the PDF may be generalized
to explicitly account for the influence of various physiological factors on the
interfiring interval pattern, for example, the level of force and the type of
muscle fiber. Since such aspects on the PDF structure cannot be intro-
duced without substantial effort, we assume that all interfiring intervals are
identically distributed,

prk
(rk) ≡ pr(rk), k = 1, . . . , M. (5.72)

One approach to characterize the properties of interfiring intervals is by
the average firing rate λr, defined as the inverse of the mean length of the
intervals rk,

λr
def=

1∫ ∞

−∞
rpr(r)dr

. (5.73)

This definition of λr may be expressed in terms of the mean number of
interfiring intervals and the length of the observation interval, denoted E[M ]
and T , respectively. Since E[M ] is given by T divided by the mean interval
length,

E[M ] =
T∫ ∞

−∞
rpr(r)dr

, (5.74)
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dE(t) u(t)

h(t)

Figure 5.13: The generation of a MUAP train using the filtered-impulse signal
model.

the average firing rate is

λr =
E[M ]

T
. (5.75)

With M interfiring intervals contained in the observation interval [0, T ], the
average firing rate can be approximated by

λr ≈ M

T
. (5.76)

The MUAP waveform results from the superposition of several muscle
fiber action potentials of a single motor unit, as illustrated by Figure 5.1.
Its shape is largely determined by the geometry of the fibers of each motor
unit with respect to the electrode and by the properties of the muscle tissue,
see Section 5.1.1. The mathematical representation of a MUAP is here
synonymous with an impulse response h(t) whose shape should be chosen
to mimic that of a MUAP waveform. The MUAP train is modeled by the
output of the linear, time-invariant filter h(t) when a train of unit impulse
function dE(t) is the input,

u(t) = dE(t) ∗ h(t) =
M∑

k=1

h(t − tk). (5.77)

In this model, the PDF of the interfiring intervals should incorporate restric-
tions on their minimum length in order to assure that successive waveforms
do not overlap in time since a new firing cannot occur until the previous one
has terminated. A schematic illustration of the filtered-impulse signal model
is presented in Figure 5.13.

Unless the intramuscular EMG is recorded during very weak muscle con-
tractions, multiple motor units are simultaneously activated to produce the
necessary muscle force. Since the electrode detects the combined contribu-
tions of multiple recruited motor units, the intramuscular EMG signal is
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better modeled as the summation of multiple MUAP trains u1, . . . , uL(t),

x(t) =
L∑

l=1

ul(t) + v(t)

=
L∑

l=1

Ml∑
k=1

hl(t − tl,k) + v(t). (5.78)

Each train ul(t) results from by the filtered-impulse model in (5.77), associ-
ated with a particular MUAP waveform hl(t) and a firing pattern defined by
the random times tl,1, . . . , tl,Ml

. The multiple MUAP train model in (5.78) is
extended to include the additive term v(t) which accounts for nonmuscular
noise produced by, e.g., electronic amplifiers, electrode-wire movements, and
other bioelectrical sources.

During certain conditions, a synchronization behavior can be observed
between MUAP trains in which the firing times of one MUAP train tend
to coincide with those of other motor units. Even in the absence of syn-
chronization, the firing times of two MUAP waveforms in different trains
may occasionally coincide. Analysis of the intramuscular EMG signal must
therefore deal with the fact that MUAP waveforms do not not always occur
as isolated events, but can be part of a composite of two or several super-
imposed MUAP waveforms, especially when the EMG signal is recorded at
moderate to high MVCs. The problem of resolving superimposed waveforms
is discussed in Section 5.6, and a method is described whose structure is
inspired by the multiple MUAP train model in (5.78).

Several MUAP trains (L = 25) have been simulated (Figure 5.14(a)) and
summed to produce the synthesized EMG signal displayed in Figure 5.14(b).
The shape of the MUAP waveforms is fixed within each train but differs from
train to train. The shape of the impulse response hl(t) is defined by the
coefficients of a linear combination of basis functions (the so-called Hermite
functions) [81–83]. The PDF of the interfiring intervals pr(rk) is assumed
to be Gaussian with mean and standard deviation equal to 50 and 5 ms,
respectively.

The filtered-impulse model described above assumes that the MUAP
shape is fixed—a reasonable assumption as long as the electrode position
remains fixed and the active muscle fibers remain the same. However, the
local pick-up area of an intramuscular electrode implies that even a slight
electrode movement can significantly alter the MUAP shape. When this
observation is combined with the observation that the MUAP shape may
change during sustained contraction, cf. (5.40), it is evident that the shape
is more accurately modeled by a time-varying impulse response h(t, tk) whose
shape depends on the firing time tk.
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(a)

(b)

Figure 5.14: (a) Simulation of different MUAP trains with waveform shapes that
differ from train to train. (b) The resulting EMG signal is obtained as the summa-
tion of all MUAP trains, described by (5.78).
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Before we conclude the presentation of the signal model, it is worth
pointing out that summation of a large number of MUAP trains implies
that the signal amplitude approaches, by virtue of the law of large numbers,
a Gaussian distribution (“large” is usually interpreted as at least 15). For
such cases, the EMG signal is equally well modeled by the filtered-noise
model used for amplitude estimation in the surface EMG. Unfortunately,
the interesting connection between the EMG signal and the MUAP shape
and firing pattern is lost with the filtered-noise model.

5.5.2 MUAP Train Amplitude

We will now examine the amplitude properties of a single MUAP train u(t)
as characterized by the MUAP shape h(t) and the average firing rate λr.
Since u(t) is modeled as a random process, we need to consider the expected
value of u(t) when rectified or squared. The MUAP waveforms are nonover-
lapping, and the PDF of each firing time tk is assumed to be uniform over
the observation interval [0, T ],

pt(tk) =

⎧⎨⎩
1
T

, 0 ≤ tk ≤ T ;

0, otherwise.
(5.79)

The expected value of the rectified MUAP train is given by

E [|u(t)|] = E

[∣∣∣∣∣
M∑

k=1

h(t − tk)

∣∣∣∣∣
]

, (5.80)

which, when considering that MUAPs are nonoverlapping, can be written as

E [|u(t)|] = M

∫ ∞

−∞
|h(t − tk)|pt(tk)dtk

= λr

∫ T

0
|h(t − tk)|dtk, (5.81)

where the last step follows from setting M/T to the average firing rate λr,
cf. (5.76). Since h(t) has finite duration and is completely contained in the
observation interval, the expression in (5.81) simplifies to

E [|u(t)|] = λr

∫ ∞

−∞
|h(t)|dt. (5.82)

We note that EMG amplitude estimation, described in Section 5.2 and used
as a measure of muscle strength, may be related to the MUAP train model,
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since the expected value of the MUAP train is proportional to the firing rate
λr and thus to strength.

The expected value of the squared MUAP train u(t) is given by

E
[
u2(t)

]
= E

⎡⎣(
M∑

k=1

h(t − tk)

)2
⎤⎦ , (5.83)

which, since MUAPs are nonoverlapping, can be written as

E
[
u2(t)

]
= E

[
M∑

k=1

h2(t − tk)

]
. (5.84)

Proceeding in the same way as before, we obtain

E
[
u2(t)

]
= λr

∫ ∞

−∞
h2(t)dt. (5.85)

5.5.3 MUAP Train Power Spectrum

The power spectrum of a single MUAP train u(t) can be derived by invoking
the following well-known expression,

Su(Ω) = |H(Ω)|2SdE
(Ω), (5.86)

which relates the power spectrum SdE
(Ω) of the input signal dE(t), defined

in (5.69), to the power spectrum Su(Ω) of the output signal u(t) that results
from filtering with h(t). The derivation of Su(Ω) mostly revolves around
finding a closed-form expression of the autocorrelation function of dE(t) and
requires the availability of certain statistical quantities:

• The PDF pt(tk) of the firing time tk, again assumed to be uniform
within the interval [0, T ];

• the conditional PDF m(τ) which describes the probability of a firing
time at tk +τ , conditioned on that a previous firing time occurred at tk
(τ > 0); and

• the PDF pr(rk) of the interfiring interval rk which is also required, but
can be determined from knowledge of m(τ).

Using the definition of dE(t) in (5.69), the autocorrelation function can
be written as

rdE
(τ) = E [dE(t)dE(t − τ)]

= E

⎡⎣ M∑
k=1

M∑
j=1

δ(t − tk)δ(t − tj − τ)

⎤⎦ . (5.87)
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The above assumptions on PDFs lead to the expected value that can be
calculated as

rdE
(τ) =

∫ T

0

∫ T

0

M∑
k=1

δ(t − tk)δ(t − tj − τ)
1
T

m(tk − tj)dtjdtk

=
M

T

∫ T

0

∫ T

0
δ(t − tk)δ(t − tj − τ)m(tk − tj)dtjdtk. (5.88)

Integration with respect to tk yields

rdE
(τ) = λr

∫ T

0
δ(t − tj − τ)m(t − tj)dtj

= λrm(τ), τ > 0. (5.89)

Since m(τ) is only defined for positive values of τ , the autocorrelation func-
tion is easily extended to negative values due to the symmetry property of
an autocorrelation function,

rdE
(τ) = λrm(−τ), τ < 0. (5.90)

For τ = 0, we have

rdE
(0) = E [dE(t)dE(t)]

= E

⎡⎣ M∑
k=1

M∑
j=1

δ(t − tk)δ(t − tj)

⎤⎦
=

M

T

∫ T

0
δ(t − tk)δ(t − tk)dtk

= λrδ(τ), (5.91)

which, when combined with the results in (5.89) and (5.90), becomes

rdE
(τ) = λr(δ(τ) + m(τ) + m(−τ)). (5.92)

In order to arrive at the desired result, we need to express the conditional
PDF m(τ) in terms of pr(r). Conditioned on the fact that a previous firing
time occurred at tk, the PDF of the firing time at tk + τ is given by the
sum of the PDF of the spike at tk + τ being the first spike, plus the PDF of
the spike at tk + τ being the second spike, and so on, which when combined
becomes

m(τ) = pr(τ) +
∫ ∞

0
pr(τ ′)pr(τ − τ ′)dτ ′

+
∫ ∞

0

∫ ∞

0
pr(τ ′)pr(τ ′′)pr(τ − τ ′ − τ ′′)dτ ′dτ ′′ + . . . . (5.93)
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Alternatively, m(τ) can be calculated recursively using

m(τ) =pr(τ) +
∫ ∞

0
pr(τ ′)m(τ − τ ′)dτ ′. (5.94)

Combining the Fourier transform of this recursion with the Fourier transform
of rdE

(τ) in (5.92), the power spectrum of dE(t) can be expressed as

SdE
(Ω) = λr(1 + M(Ω) + M∗(Ω))

= λr

(
1 +

Pr(Ω)
1 − Pr(Ω)

+
P ∗

r (Ω)
1 − P ∗

r (Ω)

)
=

λr(1 − |Pr(Ω)|2)
1 − 2
{Pr(Ω)} + |Pr(Ω)|2 . (5.95)

Consequently, the power spectrum of a single MUAP train u(t) is described
by the following expression [6, 84],

Su(Ω) = |H(Ω)|2 λr(1 − |Pr(Ω)|2)
1 − 2
{Pr(Ω)} + |Pr(Ω)|2 . (5.96)

A deeper understanding of this expression can be obtained by assigning
a specific PDF to characterize the interfiring intervals. Based on the results
from several experimental studies that interfiring interval histograms are
approximately modeled by a Gaussian PDF [85], the power spectrum Su(Ω)
is evaluated for interfiring intervals characterized by

pr(r) =
1

2πσ2
r

exp

[
−

(r − 1
λr

)2

2σ2
r

]
, (5.97)

where the interval r has average length 1/λr and variance σ2
r . The charac-

teristic function of pr(r) is

Pr(Ω) = exp
[
−jΩ

λr

]
exp

[
−σ2

rΩ
2

2

]
, (5.98)

which gives

Su(Ω) = |H(Ω)|2 λr(1 − e−σ2
rΩ2

)

1 + e−σ2
rΩ2 − 2 cos

(
Ω
λr

)
e−

σ2
rΩ2

2

. (5.99)

Figure 5.15 displays the three spectral quantities of main interest, namely,
SdE

(Ω), H(Ω), and Su(Ω), with the firing pattern dE(t) defined by λr = 10 Hz
and σr = 7 ms and the MUAP waveform h(t) with a shape shown in the
diagram inset. The power spectrum SdE

(Ω) is manifested by the fundamental
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Figure 5.15: (a) The power spectrum SdE
(Ω) of the firing pattern for Gaussian

interfiring intervals σr = 7 ms and an average firing rate of λr = 10 Hz. (b) The
spectrum H(Ω) of the MUAP waveform h(t) shown in the inset and (c) the power
spectrum Su(Ω) of the MUAP train.

frequency at λr and related harmonics with decreasing power; for the specific
values of λr and σv, three harmonics can be discerned from SdE

(Ω)). An
important observation to be made from SdE

(Ω) is that the peaks become
increasingly distinct when the standard deviation σr decreases in relation
to λr, and vice versa. Examining the overall shape of the power spectrum
Su(Ω), it is evident that the frequency components of the firing pattern are
mainly present at lower frequencies, i.e., below about 40 Hz, whereas the
shape of h(t) determines Su(Ω) at higher frequencies.

Since the model of the intramuscular EMG signal is defined as a summa-
tion of multiple MUAP trains, the power spectrum Sx(Ω) of x(t) in (5.78)
not only involves the power spectra Sul

(Ω) of individual MUAP trains, but
also the cross-power spectra between trains whose firing patterns are corre-
lated. A general expression of the power spectrum Sx(Ω) is obtained from
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the autocorrelation function of x(t) which is

E [x(t)x(t − τ)] = E

[(
L∑

l=1

ul(t) + v(t)

) (
L∑

k=1

uk(t − τ) + v(t − τ)

)]

=
L∑

l=1

rul
(τ) +

L∑
l=1

L∑
k=1
k �= l

rul,uk
(τ) + rv(τ), (5.100)

where the function rul,uk
(τ) describes the cross-correlation between ul(t)

and uk(t). Taking the Fourier transform of E [x(t)x(t − τ)], the resulting
power spectrum of x(t) is given by [2, 86, 87]

Sx(Ω) =
L∑

l=1

Sul
(Ω) +

L∑
l=1

L∑
k=1
k �= l

Sul,uk
(Ω) + Sv(Ω), (5.101)

where Sul
(Ω) and Sv(Ω) denote the power spectrum of ul(t) and v(t), respec-

tively, and Sul,uk
(Ω) denotes the cross-power spectrum of ul(t) and uk(t).

For uncorrelated MUAP trains, we conclude from (5.101) that the power
spectra of each train will simply add to form the total power spectrum Sx(Ω).
This behavior can be observed during weak contractions, i.e., 5–10% MVC,
when few motor units are recruited, and leads to the peak corresponding to
the average firing rate λr that can be discerned from the power spectrum
estimated from the EMG [2]. An estimate of λr can thus be determined
from the estimated spectrum by selecting the largest peak below 40 Hz. At
higher levels of MVC, the spectral peak becomes increasingly indistinct as
additional motor units are recruited with average firing rates that may differ
quite considerably, causing the spectral peak to vanish. For situations when
MUAP trains exhibit strong cross-correlation with respect to firing patterns
(motor unit synchronization), the low-frequency components of the power
spectrum are influenced although the exact behavior depends on the degree
and structure of the cross-correlation.

Figure 5.16 presents 25 different MUAP trains, their summation into a
simulated EMG signal, and the power spectrum estimated from the digi-
tized EMG signal rather than from the theoretical expression (the average
firing rate λr is either 20 or 40 Hz). The MUAP shape was defined by the
coefficients of a linear combination of basis functions (Hermite basis func-
tions) [82], and the shape was held fixed in each of the trains. In order to
reduce variance, the periodograms of 100 realizations of the digitized signal
were averaged, and the resulting power spectrum is presented at the bottom
of Figure 5.16. In this simulation example, the average firing rate is easily
estimated from the power spectrum where the corresponding peak in the
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low-frequency region is clearly visible. For the lower average firing rate of
λr = 20 Hz, it is possible to discern the first harmonic at 40 Hz.

5.6 Intramuscular EMG Signal Decomposition

The intramuscular EMG signal contains important information concerning
the motor control system not immediately quantifiable from the measured
signal, but which needs to be disentangled with advanced signal processing
and pattern recognition. Since myoelectric activity recorded during con-
traction by a needle electrode is a composite of concurrently active motor
units, the purpose of EMG signal decomposition is to resolve the recorded
signal into its constituent MUAP trains. The decomposition procedure in-
volves several steps which together accomplish detection and identification
of individual MUAP waveforms belonging to different MUAP trains, see Fig-
ure 5.17 [88]. The main steps of EMG signal decomposition are discussed in
this section and accompanied by a description of select algorithms.

While the multiple MUAP train model in (5.78) only accounts for basic
properties of the intramuscular EMG signal, it nevertheless offers a useful
description of how the observed signal relates to individual motor units,
expressed in MUAP waveforms and firing patterns. This model will be
considered below when we develop the specific steps of the decomposition
procedure; however, its notation is adopted already in order to facilitate the
definition of signal decomposition. Assuming that the EMG is a discrete-
time signal, denoted x(n), the purpose of the signal decomposition can be
expressed as

x(n) →
(
h1(n), {θ1,j}M1

j=1

)
, . . . ,

(
hL(n), {θL,j}ML

j=1

)
, (5.102)

where L denotes the number of active motor units; the lth train is char-
acterized by Ml different MUAPs with shape hl(n) and the firing pattern
θl,1, . . . , θl,Ml

. The signal decomposition is illustrated by the simulation ex-
ample in Figure 5.18, where the observed signal x(n) results from summation
of five different MUAP trains. The decomposition process leads to the in-
formation displayed in the frame—in this case perfectly recovered from x(n)
since the number of trains, MUAP waveforms, and firing patterns, are iden-
tical with the underlying MUAP trains. In real life, the MUAP waveforms
belonging to a particular train vary slightly in shape so that a representative
MUAP waveform has to be selected for display.

The main processing steps of intramuscular EMG signal decomposition
are listed below:

MUAP detection. The first processing step performs detection of MUAPs
in the EMG signal, and a series of firing times is produced. The detec-
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(a) (b)

Figure 5.16: Power spectrum of simulated EMG signals with the average firing
rate equal to (a) λr = 20 Hz and (b) λr = 40 Hz. For each rate, the individual
MUAP trains, the resulting simulated EMG signal, and the power spectrum are
shown from top to bottom. Each power spectrum resulted from averaging of the
periodograms obtained from 100 realizations.



Section 5.6. Intramuscular EMG Signal Decomposition 385

Figure 5.17: Schematic illustration of the recording and decomposition of an
intramuscular EMG signal into MUAP trains. (Reprinted from De Luca et al. [89]
with permission.)

tor structure usually involves bandpass filtering to accentuate MUAP
shape and improve separation in time between successive MUAPs. A
MUAP is detected when the filtered signal exceeds a certain threshold
value. The problem of detecting signals in noise is discussed at length
in Section 7.4 and presents the rationale for using such a detector
structure.

MUAP feature extraction. In order to group (cluster) MUAP waveforms
with similar shape, the waveforms are first characterized by a set of
features arranged into a feature vector (Section 5.6.1).

MUAP clustering. The objective of clustering is to determine the num-
ber of active motor units by grouping the detected MUAPs into dif-
ferent clusters so that all members of a cluster have similar shape
(Section 5.6.1). Once the MUAPs have been clustered, the firing times
of the different MUAP trains can be determined.

Resolution of superimposed MUAPs. The signal decomposition is ren-
dered difficult by the fact that MUAPs belonging to different trains
may occur at the same time, thus resulting in superposition of wave-



386 Chapter 5. The Electromyogram

MUAP

MUAP
trains

EMG

Firing times

E
M

G
 d

ec
o
m

p
o
si

ti
o
n h1(n)

h2(n)

h3(n)

h4(n)

h5(n)

θ1,1

θ2,1 θ2,2 θ2,3 θ2,4

θ3,1 θ3,2 θ3,3 θ3,4 θ3,5

θ4,1 θ4,2 θ4,3 θ4,4 θ4,5

θ5,1 θ5,2 θ5,3 θ5,4 θ5,5

θ1,2 θ1,3 θ1,4 θ1,5

x(n)

Figure 5.18: Intramuscular EMG signal decomposition. Five MUAP trains (which
cannot be observed individually) are summed into the observed EMG signal. The
desired outcome of EMG decomposition (framed) consists of the MUAP waveforms
and the firing times of each MUAP train.

forms in the EMG signal. Signal processing techniques can be used to
resolve superimposed MUAP waveforms (Section 5.6.2).

Under ideal conditions, each MUAP waveform has a unique shape due to
the unique geometrical distribution of the muscle fibers of the motor unit rel-
ative the electrode. Unfortunately, the design of a decomposition procedure
cannot assume that MUAP shapes remain fixed throughout the recording,
but various issues related to signal nonstationarity should be taken into
account to attain robust performance. These issues are exemplified by sig-
nificant changes in MUAP shape caused by small movements of the needle
electrode and the gradual change in shape of a MUAP related to changes
in contraction level. Several approaches to EMG signal decomposition have
been presented where these issues are addressed to various extents; the in-
terested reader is referred to the abundant literature available on this topic,
see, e.g., [90–102].
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5.6.1 MUAP Feature Extraction and Clustering

Clustering refers to a self-organizing process which arranges feature vectors
into clusters so that the members of a cluster are closer to each other than
to the centers of other clusters. Each new feature vector is either assigned to
the cluster being closest in the feature space or appointed as a representative
of a new cluster. A clustering algorithm may be designed to group feature
vectors based on prior knowledge of the number of clusters. However, such
knowledge is not available in the EMG application, so the number of clus-
ters is only determined once the clustering process has been fully completed.
Rather than presenting an overview of the numerous algorithms for cluster-
ing, we will describe a frequently employed algorithm—the leader–follower
clustering algorithm—which serves as an excellent introduction to the cen-
tral ideas of clustering [103]. This algorithm has not only been employed
for analysis of MUAP waveforms [91, 93, 104–106], but it has also found its
way into many other areas of relevance for this textbook, for example, in
automated analysis of epileptic spikes in EEG signals and arrhythmias in
ECG signals.

The input feature vector pi may be defined in different ways to represent
the shape of a MUAP waveform. A straightforward representation is the
one defined by the time domain samples xi(n),

pi =

⎡⎢⎢⎢⎣
xi(0)
xi(1)

...
xi(N − 1)

⎤⎥⎥⎥⎦ , (5.103)

where i denotes waveform detection index. Often, the bandpass filtered
samples of the MUAP detector are instead used to obtain a representation
being less sensitive to noise. Implicit with the time domain representation
is the selection of N samples, to be appropriately aligned (centered) around
the detected MUAP waveform. Since the feature vector in (5.103) usually
suffers from a dimensionality problem due to the many samples included, a
basis function representation is often preferable since waveform shape can
be represented with much fewer coefficients,

pi =

⎡⎢⎢⎢⎣
wi,1

wi,2
...

wi,K

⎤⎥⎥⎥⎦ , (5.104)

see Section 4.5. The Karhunen–Loève basis functions are of particular in-
terest since the signal energy is concentrated into a few coefficients, offering
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a robust description of the signal. The coefficients of the Fourier transform
and the wavelet series expansion have also been considered for clustering of
MUAP waveforms [93, 94, 99, 100]. Similar to the time domain represen-
tation in (5.103), it is essential that MUAPs are appropriately aligned to
assure that the coefficients are representative. Yet another approach is to
define the feature vector in terms of heuristic features such as amplitude,
width, and shape of the waveform, providing an intuitively attractive but
less robust description [95, 106, 107].

The leader–follower clustering algorithm is a self-learning technique which
clusters the set of input feature vectors {p1,p2, . . .} sequentially; no prior
knowledge of the number of clusters is required. The following three com-
ponents are central to the algorithm.

• The lth cluster is characterized by its center and spread in the feature
space, defined by the mean vector µl and the covariance matrix Cl,
respectively.

• The distance measure d(pi,µl) quantifies similarity between the fea-
ture vector pi and the mean µl of the lth cluster. The distance deter-
mines whether pi belongs to an existing cluster or should be the first
member of a new cluster.

• Since the cluster parameters µl and Cl are unknown, they must be
subjected to estimation from the input feature vectors as the clustering
process progresses.

Similarity between the feature vector pi and the cluster mean µl is here
defined by the squared Mahalanobi’s distance,

d2(pi,µl) = (pi − µl)
TC−1

l (pi − µl), (5.105)

which can be understood as a weighted Euclidean distance where the weights
are chosen so as to normalize the errors in relation to their variance. The
Mahalanobi distance represents a natural choice for data characterized by a
multivariate Gaussian PDF since such data tend to cluster about the mean
µl, spreading in a cloud of ellipsoid shape whose principal axes are the
eigenvectors of Cl, cf. (3.7).

The leader–follower clustering algorithm initializes the first cluster center
(L = 1) by equating it with the initial feature vector,

µ1 = p1, (5.106)

and using a preset spread of the first cluster,

C1 = κI, (5.107)
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where the design parameter κ describes the uncertainty associated with the
cluster. Proceeding to the next feature vector and generalizing the descrip-
tion of the algorithm, the nearest cluster l in the feature space is determined
from

l = arg min
j=1,...,L

d2(pi,µj). (5.108)

The feature vector pi is assigned to cluster l if the distance is less than the
threshold η, i.e., d2(pi,µl) ≤ η. Otherwise, a new cluster is initialized in the
same way as the first cluster was in (5.106) and (5.107), and the number of
clusters is incremented by one, i.e., L = L + 1.

When a feature vector pi has been assigned to a cluster l, the information
about the cluster is updated so that its mean vector is modified to include
a fraction of pi through exponential averaging (Section 4.3.3),

µl,k = (1 − α)µl,k−1 + αpi, (5.109)

where the additional index k denotes the current number of members of clus-
ter l, and α is the update rate of the cluster center. Recalling the definition
of a covariance matrix,

Cl = E
[
(p − µl)(p − µl)

T
]
,

the covariance matrix is updated using the same type of recursive expression
as in (5.109),

Cl,k = (1 − α)Cl,k−1 + α(pi − µl)(pi − µl)
T . (5.110)

Rather than having to invert Cl,k every time the squared Mahalanobi dis-
tance in (5.105) is computed, the inverse matrix can be updated directly
thanks to the matrix inversion lemma in (A.31) allowing us to express C−1

l,k

in terms of C−1
l,k−1,

C−1
l,k =

1
(1 − α)

C−1
l,k−1 −

1
(1 − α)

1 − α

α
+ eT

l C−1
l,k−1el

C−1
l,k−1eleT

l C−1
l,k−1, (5.111)

where

el = pi − µl. (5.112)

The clustering process is repeated until all input feature vectors have been
processed.
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The threshold η is a design parameter which determines the total num-
ber of clusters. A small value of η leads to a large number of small clusters,
whereas a large value leads to a small number of large clusters. It is often
advantageous to relate the threshold setting to the SNR of the MUAP wave-
form in order to reflect the uncertainty associated with the feature vector;
a lower threshold may be used at higher SNRs, and vice versa. Evidently,
a signal-dependent threshold requires that an estimate of the SNR can be
determined.

The center and spread of a cluster is adapted to the input feature vectors
at a rate defined by α in the exponential averager. This technique tracks a
gradually changing shape of the MUAP waveform, while also providing an
improved SNR of µl. Too large a value of α may, however, cause a cluster’s
center to drift and get nearer to the center of another cluster so that two
similar clusters result. Too small a value of α leads to the very first feature
vector x1 being overemphasized.

The leader–follower clustering algorithm is particularly suitable for on-
line applications where clustering needs to be performed as the data becomes
available. The total number of clusters depends on the order of data presen-
tation and may be different if, for example, the data was presented in reverse
order. The above algorithm does not include any mechanism for merging
similar clusters, but may have to be supplemented with this once clustering
is completed.

Intramuscular EMG signal decomposition based on a variant of the
leader–follower clustering algorithm is illustrated by Figure 5.19. The in-
put feature vector was defined by the discrete Fourier transform (DFT) co-
efficients of the bandpass filtered EMG signal displayed in Figure 5.19(b).
Filtering was used to enhance temporal separation by making the MUAPs
more spike-like. A total of nine clusters were produced by the algorithm,
suggesting that nine different motor units were simultaneously active. The
number of clusters increases with contraction level, and reaches a limit at 30–
40% MVC above which the signal becomes difficult to analyze [93]. For the
case presented in Figure 5.19, the feature vectors only included information
related to the MUAP waveform, however, the vector may be augmented with
information on the firing pattern in order to improve clustering performance.

Figure 5.20 presents another example of an intramuscular EMG signal
where the MUAP waveforms have been clustered, but now with the firing
pattern of each active motor unit determined and presented. The relatively
regular pattern of interfiring intervals is disrupted by occasional gaps caused
by unresolved MUAP superpositions.
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(a)

(b)

(c)

Figure 5.19: Clustering of MUAP waveforms. (a) The EMG signal recorded from
biceps brachii using a needle electrode, (b) the bandpass filtered EMG, and (c) the
resulting MUAP clusters, in this case equal to nine. (Reprinted from McGill et
al. [93] with permission.)

5.6.2 Resolution of Superimposed MUAP Waveforms

The superposition of more than one MUAP waveform in the intramuscular
EMG signal leads to difficulties in determining the correct firing patterns
of the motor units, and calls for a technique which resolves a superimposed
waveform into its constituent MUAPs. The success in resolving superim-
posed waveforms depends on how the shapes of the individual waveforms
combine. Three categories of superimposed MUAPs may be defined, namely,
those which are completely, partially, and destructively superimposed [88],
see Figure 5.21. Completely and partially superimposed MUAPs may be dis-
tinguished from individual MUAPs by their increased amplitude or width,
see Figure 5.21(b)–(c). Unfortunately, a newly recruited motor unit may
produce a MUAP whose amplitude and width are similar to the superim-
posed MUAP, implying that superimposed MUAPs are not easily identified.
Destructively superimposed MUAPs are particularly problematic since their
amplitude may be so low that they are actually missed by the MUAP de-
tector, see Figure 5.21(d).

The method for resolving superimposed MUAPs may be activated when
a new MUAP shape has been found that does not fit into any of the ex-
isting MUAP clusters. Before initializing a new cluster, the new MUAP is
matched to combinations of the previously detected and clustered MUAPs
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MUAP clusters

#1

#2

#3

#4

#5

Cluster center Firing times

(a) (b) (c)

Figure 5.20: Clustering of MUAP waveforms and determination of firing patterns.
(a) Five clusters with MUAP waveforms, (b) the cluster centers computed from the
individual MUAP waveforms in (a), and (c) the related patterns of firing times.
(Reprinted from Stashuk and Qu [108] with permission.)

in order to find out if it represents a superposition of two or more MUAPs.
This approach is based on the assumption that the constituent MUAPs are
available—something which cannot be completely guaranteed even though
the likelihood of superimposed MUAPs is small when the EMG signal is
recorded at a few percent MVC.

We will now describe a model-based technique for resolving superimposed
MUAPs whose structure is inspired by the intramuscular EMG model in
(5.78). Using the least-squares (LS) criterion, our task is to determine the
amplitudes ak and firing times θk of the M known waveforms hk(n) which
yield the best fit to the superimposed MUAP waveform x(n) [92, 109],

J (p) = J (a,θ) =
N−1∑
n=0

(
x(n) −

M∑
k=1

akhk(n − θk)

)2

, (5.113)

where M > 1. The amplitudes ak are introduced to account for minor
changes in MUAP amplitude and, typically, deviate in amplitude with less
than 15–20% from previous MUAPs.8 For convenience, we use vector nota-

8The inclusion of the amplitudes ak may lead to a better description of the superimposed
MUAPs, while also introducing additional degrees of freedom which make convergence to
the minimum error of J (p) more difficult to achieve.
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MUAP #1

1,2,3

1,2,3

3,4

1+2+3

1+2+3

3+4

MUAP #2 MUAP #3 MUAP #4

(a)

(b)

(c)

(d)

Figure 5.21: Different types of MUAP waveform superposition. (a) Four MUAP
waveforms, and composite waveforms which are either (b) partially, (c) completely,
or (d) destructively superimposed. (Reprinted from Etawil and Stashuk [98] with
permission.)

tion of the amplitudes and firing times,

a =

⎡⎢⎢⎢⎣
a1

a2
...

aM

⎤⎥⎥⎥⎦ , θ =

⎡⎢⎢⎢⎣
θ1

θ2
...

θM

⎤⎥⎥⎥⎦ , (5.114)

with the total parameter vector

p =
[
a
θ

]
. (5.115)

Since the number of constituent MUAPs is unknown in practice, the mini-
mization of the error J (p) in (5.113) has to be repeated for different values
of M . Denoting the total number of MUAPs with L (M ≤ L), the error
J (p) should be evaluated for all possible subsets of M different MUAPs.
For M = 2, the following MUAP combinations are analyzed,

(hi(n), hj(n)), i, j = 1, . . . , L for i �= j, (5.116)

for M = 3,

(hi(n), hj(n), hk(n)), i, j, k = 1, . . . , L for i �= j, j �= k, i �= k, (5.117)
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and so on. The number of constituent MUAPs is determined when J (p)
reaches a sufficiently small error; the error usually corresponds to that
the residual signal is mostly noise. In practice, the number of constituent
MUAPs is small, i.e., M = 2, 3, or 4, while L can be much larger. Conse-
quently, the number of combinations to be analyzed is less than the maximal
number of MUAP combinations, which is (L! − L + 1).

The minimization of J (p) is done by differentiation with respect to a
and θ.9 First, we differentiate J (p) with respect to p and set the result to
zero, yielding the following set of normal equations,

N−1∑
n=0

x(n)hk(n − θk) =
M∑
i=1

ai

N−1∑
n=0

hi(n − θi)hk(n − θk) (5.118)

N−1∑
n=0

x(n)h′
k(n − θk) =

M∑
i=1

ai

N−1∑
n=0

hi(n − θi)h′
k(n − θk) (5.119)

for k = 1, . . . , M . The derivative waveform h′
k(n) is obtained from

h′
k(n) =

dhk(t)
dt

∣∣∣∣
t=nTs

, (5.120)

where hk(t) may be obtained from interpolation of hk(n); Ts denotes the
length of the sampling interval. By introducing the following two correlation
quantities,

rxhk
(θk) =

N−1∑
n=0

x(n)hk(n − θk) (5.121)

and

rhihk
(θk − θi) =

N−1∑
n=0

hi(n − θi)hk(n − θk), (5.122)

and the related notations,

rxh(θ) =

⎡⎢⎢⎢⎣
rxh1(θ1)
rxh2(θ2)

...
rxhM

(θM )

⎤⎥⎥⎥⎦ , rhhk
(θ) =

⎡⎢⎢⎢⎣
rh1hk

(θk − θ1)
rh2hk

(θk − θ2)
...

rhMhk
(θk − θM )

⎤⎥⎥⎥⎦ , (5.123)

9Another approach for finding the solution to the least-squares problem in (5.113) is
presented in [110] where differentiation is avoided. The firing times are estimated at a
time resolution finer than the sampling interval.
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Rhh(θ) =
[
rhh1(θ) rhh2(θ) · · · rhhM

(θ)
]
, (5.124)

the normal equations in (5.118) and (5.119) can be compactly expressed as[
RT

hh(θ)
RT

hh′(θ)

]
a =

[
rxh(θ)
rxh′(θ)

]
. (5.125)

Solving for a, we obtain an estimator of a, being a function of θ, which can
be inserted into (5.113) to produce the LS estimator of the integer-valued
parameter θ,

θ̂ = arg min
θ

J (â(θ),θ)

= arg min
θ

⎛⎝N−1∑
n=0

(
x(n) −

M∑
k=1

âk(θ)hk(n − θk)

)2
⎞⎠ . (5.126)

The amplitude estimate is obtained from â = a(θ̂).
The resulting estimation procedure is computationally demanding since

it involves the two coupled equations in (5.125) and (5.126), which must be
evaluated for all possible combinations of θ1, . . . , θM . By considering a subset
of all values, the procedure becomes computationally more feasible, and may
be used to find a good guess of the initial values for use in a gradient-based
search for the optimal solution, see below. For example, the error in (5.126)
may be evaluated on a grid of θk which only includes every second or third
sample.

The computational demands associated with the LS estimator can be
substantially reduced if gradient-based minimization is employed, since it
may produce the optimal estimates in relatively few iterations. Our approach
to gradient-based minimization is to use the well-known Newton’s method
which can be derived from the Taylor series expansion of J (p),

J (p + ∆p) = J (p) + [∇pJ (p)]T ∆p +
1
2!

(∆p)T
[
∇p∇T

pJ (p)
]T

(∆p) + . . .

(5.127)

Neglecting higher-order terms of the expansion, the change in J (p) due to
the change ∆p is described by

∆J (p) = J (p + ∆p) − J (p)

= [∇pJ (p)]T ∆p +
1
2!

(∆p)T
[
∇p∇T

pJ (p)
]T

(∆p). (5.128)

Differentiating this expression with respect to ∆p, we find that the expres-
sion ∆J (p) which describes the change has its minimum when

∆p = −
(
∇p∇T

pJ (p)
)−1

[∇pJ (p)] . (5.129)
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Using the method of steepest descent (see Section 3.2.5), the parameter
vector p(q) is iteratively updated with the gradient information in order to
bring the next estimate p(q+1) closer to the minimum,

p(q+1) = p(q) + α∆p(q), (5.130)

where q is the iteration index and α the step size. Insertion of (5.129) leads
to the expression which defines Newton’s method,

p(q+1) = p(q) − α
(
∇p∇T

pJ (p)
)−1 [

∇pJ (p(q))
]
. (5.131)

For our specific structure of J (p) in (5.113), the gradient is

∇pJ (p) =
[

RT
hh(θ)a − rxh(θ)

−ART
hh′(θ)a + Arxh′(θ))

]
, (5.132)

where

A = diag(a1, a2, . . . , aM ). (5.133)

The matrix with second derivatives (the Hessian matrix) reorients the nega-
tive gradient vector ∇pJ (p(q)) toward the minimum since the gradient does
not necessarily point to the minimum when the error surface is nonquadratic.
The Hessian matrix is defined by

∇p∇T
pJ (p) =

⎡⎢⎢⎣∇a∇T
aJ (p)

... ∇a∇T
θ J (p)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

∇θ∇T
aJ (p)

... ∇θ∇T
θ J (p)

⎤⎥⎥⎦ , (5.134)

which after evaluation becomes⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RT
hh(θ)

... −RT
h′h(θ)A

... diag(rxh′(θ))

... −diag(rh′h(0))A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−RT
hh′(θ)A

... −diag(rxh′′(θ))A

diag(rxh′(θ))
... ART

h′h′(θ)A

−diag(rhh′(0))A
... Adiag(rhh′′(0))A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.135)

It is worth commenting on certain aspects of Newton’s method related to
initialization, integer-valued parameters, and convergence properties. The
minimization may be initialized by choosing the ak values equal to one and
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Figure 5.22: The effect of errors in amplitude a and time θ when two MUAPs are
superimposed. (a) The two individual MUAPs and (b) the resulting superimposed
MUAP. The residual signal is displayed when (c) the error in amplitude between
the two waveforms differs by either 10 or 20% but no time error, (d) the error in
firing time differs by either 0.1 or 0.2 ms but no amplitude error, and (e) with errors
in both amplitude and time.

the θk values such that the hk(n)’s are well-aligned to the superimposed
waveform x(n); the alignment may be accomplished using, for example,
matched filtering techniques.

Since the parameter vector p is treated as continuous-valued in Newton’s
method, the part of p which relates to θ must in each iteration be rounded
to the nearest integer. The rounding is required in each iteration since the
correlation functions rxhk

(θk) and rhihk
(θk − θi) need to be computed.

It has proven advantageous to split the minimization procedure into two
stages to achieve better convergence. In the first stage, only the firing times
are adjusted whereas, in the next stage, amplitudes and firing times are si-
multaneously adjusted [109]. This approach is motivated by the observation
that the gradient with respect to amplitude is more sensitive to errors in time
than is the gradient with respect to time to errors in amplitude. Hence, the
minimization is more difficult to perform with respect to time than ampli-
tude. This observation is demonstrated by the example in Figure 5.22 where
two superimposed MUAP waveforms are considered. The effect of errors in
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a and θ is described by the residual signal

e(n) = x(n) − a1h1(n − θ1) − a2h2(n − θ2).

It is noted from this example that a time shift as small as 0.2 ms, i.e., a
fraction of the waveform width, causes a much larger residual signal than
does a 20% error in amplitude, see Figures 5.22(c) and (d), respectively.
The combined effect of errors in both amplitude and time is presented in
Figure 5.22(e).

We conclude this section by mentioning that suboptimal approaches
have been presented to the problem of resolving superimposed MUAPs
which avoid the heavy computations of LS estimation. Rather than jointly
dealing with the constituent MUAPs, as is done in LS estimation, the
“peel-off” approach resolves superimposed MUAPs by sequentially match-
ing and subtracting individual MUAPs; in that way less computations are
required [88, 90, 99, 100]. The first MUAP to be peeled off from the super-
imposed waveform may be chosen as the one which produces the smallest
residual signal, provided that these two waveforms have been first appro-
priately aligned in time. The procedure continues with peeling off the next
MUAP, and so on, until the amplitude of the residual signal has become
sufficiently small.
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Problems

5.1 In Section 5.2, the ML procedure for estimating the standard deviation σv

was found to include a whitening operation of the observed signal x(n). An-
other way to motivate this operation is to study the MSE of the estimator σ̂2

v ,

MSE
(
σ̂2

v

)
= E

[(
σ̂2

v − σ2
v

)2
]
,

where

σ̂2
v =

1
N

N−1∑
n=0

y2(n).

In order to show that the MSE is minimized when the filtered signal y(n)
becomes white, we divide the derivation into two steps.

a. Derive an expression for the MSE of σ̂2
v . Hint: When x(n) is a zero-

mean, Gaussian process with variance σ2
x, we have that

E
[
x2(n)x2(n − k)

]
= σ4

x + 2r2
x(k).

Also, it can be assumed that significant correlation lags are much
shorter than the observation interval N .

b. Minimize the MSE using a Lagrange multiplier in order to include the
constraint that the power of y(n) must not change with the whitening
operation, cf. (5.5). Hint: Express the cost function to be minimized
in the frequency domain using Parseval’s theorem.

5.2 Experimental studies have shown that the EMG amplitude (σ) is nonlinearly
related to muscle force (F) through

σ = g(F) = kFa,

where a and k are positive-valued constants. Hence, F can be written as [111]

F = g−1(σ) =
(σ

k

) 1
a

.

Show that the ML estimator of F is

F̂ = g−1

(√
1
N

(H−1x)T (H−1x)

)
.
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5.3 Assuming that the whitened signal y = H−1x is Gaussian with standard de-
viation related to force by σ = kFa, the ML estimator of F can be expressed
as (see Problem 5.2 and [51]),

F̂ =
(

σ̂

k

) 1
a

=

(
1

k2N

N−1∑
n=0

y2(n)

) 1
2a

.

The sum ξ =
∑N−1

n=0 y2(n) is a chi-squared random variable whose PDF is
defined by

p(ξ, σ) =

⎧⎨⎩ ξ(N/2−1)e
−ξ

2σ2

(2σ2)N/2Γ(N/2)
ξ ≥ 0

0 ξ < 0,

where the Gamma function Γ(x) is defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt.

a. Show that F̂ is biased.

b. The performance of F̂ can be studied in terms of the “signal-to-noise
ratio,” defined as the ratio between the energy of the expected value
of F̂ and its variance,

SNR =
E2

[
F̂

]
E

[(
F̂ − E

[
F̂

])2
] .

Show that the SNR is independent of F . Comment on the behavior
of the SNR as the number of observations N increases, under the as-
sumption that a linear relationship exists between amplitude and force
(i.e, a = 1).

5.4 The multichannel ML amplitude estimator is given by (see (5.35))

σ̂ =

√√√√ 1
NM

N−1∑
n=0

M∑
m=1

z2
m(n)
λm

.

It was pointed out that this estimator exhibits numerical problems when an
eigenvalue λm is close to zero. In order to derive a more robust estimator,
the following approximation is useful,

1
N

N−1∑
n=0

z2
m(n) ≈ σ2

vλm,
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which draws on (5.32). Using this result, modify the multichannel ML esti-
mator so that it becomes more robust.

5.5 At weaker contractions the presence of nonmuscular noise can no longer
be neglected as in (5.1), but an additive, random noise term should be
included in the model. Accordingly, the observed signal can no longer be
treated as deriving entirely from an AR process. In this problem, we develop
an amplitude estimation technique in which the observed signal instead is
modeled by

x(n) = s(n) + v(n).

The technique is developed in two steps consisting of whitening of the EMG
signal component (part (a.) below), followed by reduction of the remaining
noise component (part (b.) below) [50].

a. Propose a filter h(n) to whiten s(n), being inversely related to the
power spectrum Ss(ejω). It can be assumed that the observed signal
x(n) at 0% MVC only contains the noise component v(n).

b. In order to reduce the noise that remains after using the filter developed
in (a), the signal is subjected to Wiener filtering. Suggest means for
determining the quantities which define the Wiener filter.

5.6 Show that the spectral parameters ωMNF and ωMDF, describing the mean and
median frequency, respectively, change by the same factor when the power
spectrum is subjected to scaling. As a result, the ratio ωMNF/ωMDF is constant
during spectral compression.

5.7 The spectral parameters ωMNF and ωMDF are influenced differently by noise.
This aspect can be investigated by calculating the bias of the parameters,
assuming that the observed signal is modeled by

x(n) = s(n) + v(n).

Here, the signal s(n) has the power spectrum Ss(ejω), and the noise v(n) is
white with variance σ2

v ; the two components are assumed to be uncorrelated.
Show that the median frequency is less influenced by noise in terms of bias.
Hint: In the derivations it can be assumed that the SNR is high so that

1
π

∫ π

0
Ss(ejω)dω � σ2

v .
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5.8 In order to quantify the degree of spectral compression, for example, ob-
served during muscle fatigue, the spectral scaling factor ν in (cf. (5.41))

Sx2(e
jω) =

1
ν

Sx1(e
jω/ν)

needs to be determined. This is often done by computing the median fre-
quencies ωMDF,x1 and ωMDF,x2 of the discrete-time signal segments x1(n) and
x2(n), respectively, and estimating the scale factor by

ν̂ =
ωMDF,x2

ωMDF,x1

.

a. Show that the percentile frequencies ωc, obtained for different values
of the percentile c in∫ ωc

0
Sx(ejω)dω = c

∫ π

0
Sx(ejω)dω,

change by the same factor when the power spectrum is subjected to
scaling. Recall that the percentile frequency is defined for c = 1

2
in (5.44), i.e., the median frequency, see also Problem 5.6.

b. In view of the result in (a), the scale factor ν can be estimated for
different values of the percentile factor c. Suggest an estimator which
combines the ν-estimates, resulting for different values of c, so that a
“global” estimate of ν is obtained.

5.9 An alternative to the mean frequency ωMNF is the mobility parameter H1,
defined as (see (3.97))

H1 =

√√√√√√√
∫ π

−π
ω2Sx(ejω)dω∫ π

−π
Sx(ejω)dω

,

which also can be used as an estimate of dominant frequency. Show that
H1 changes in the same way as ωMDF and ωMNF when the power spectrum is
subjected to compression.

5.10 An advantage of the mobility parameter H1 is that it can be easily computed
in the time domain, see page 101. Show that same advantage applies to
the mean frequency ωMNF by developing a related time domain procedure.
Hint: Make use of the fact that the one-sided power spectrum of a signal
can be interpreted as the analytic signal, resulting from summation of the
original signal and the Hilbert transform (see page 145).
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5.11 The conduction velocity ν can be estimated from the time delay θ between
the two EMG signals x1(n) and x2(n), recorded at locations separated by
a distance d, using ν̂ = d/θ̂. In this problem, we look at certain aspects
related to two-channel conduction velocity estimation, assuming that the
model defined by (5.46) and (5.47) is valid [7].

a. Derive the maximum error when estimating the velocity for ν = 4 m/s
and d = 10 mm at a sampling rate of 1 kHz.

b. Show that the frequency domain algorithm in (5.58) is equivalent to
interpolation of the signal prior to time delay estimation.

c. Derive an iterative, frequency domain algorithm which produces an es-
timate of the time delay θ between the two signals x1(n) and x2(n) [76].
Hint: Use Newton’s algorithm defined by

θ(i+1) = θ(i) − α

dJ (θ)
dθ

∣∣∣
θ=θ(i)

d2J (θ)
dθ2

∣∣∣
θ=θ(i)

,

where J (θ) is the function to minimized respect to θ.

5.12 Derive the multichannel ML amplitude estimator in (5.68) starting with the
expression in (5.66).

5.13 Derive the multichannel version of the iterative algorithm in Problem 5.11
for the time delay estimation. The frequency domain expression in (5.68)
defines the starting point for this algorithm.

5.14 The intramuscular EMG signal x(t) can be model by linear summation of L
different MUAP trains as detected by the recording electrode,

x(t) =
L∑

l=1

ul(t).

It was shown in Section 5.5.3 that the power spectrum Sx(Ω) of x(t) not only
involves the power spectra Sul

(Ω) of individual MUAP trains, but also the
cross-power spectra between trains, see (5.101). In this problem, we deter-
mine Sx(Ω) for two special cases of interrelations between different MUAP
trains, namely, when

a. the firing times are uncorrelated, or

b. the firing times are identical in all MUAP trains.



Chapter 6

The Electrocardiogram—
A Brief Background

An electrocardiogram (ECG) describes the electrical activity of the heart
recorded by electrodes placed on the body surface. The voltage variations
measured by the electrodes are caused by the action potentials of the ex-
citable cardiac cells as they make the cells contract. The resulting heartbeat
in the ECG is manifested by a series of waves whose morphology and timing
convey information which is used for diagnosing diseases that are reflected
by disturbances of the heart’s electrical activity. The time pattern that
characterizes the occurrence of successive heartbeats is also very important.

The very first ECG recordings in man were made by Augustus Waller
in the 1880s. The Dutch physiologist Willem Einthoven further developed
the recording device in the early 20th century by making use of a string
galvanometer which was sensitive enough to record electrical potentials on
the body surface. He also defined sites for electrode placement on the arms
and legs which remain in use today. The pioneering effort of Einthoven were
rewarded with the Nobel Prize in Medicine in 1924. Since then, the ECG has
undergone dramatic development and become an indispensable clinical tool
in many different contexts. From having been a signal which was recorded
at rest under favorable conditions, the ECG is today recorded in diverse
clinical applications, often during strenuous or ambulatory conditions where
signal processing algorithms are essential for extraction of reliable informa-
tion [1]. The importance of the ECG has been further strengthened through
the discoveries of subtle variability patterns which are present in rhythm or
wave morphology on a beat-to-beat basis and cardiac micropotentials. Both
these discoveries were made possible thanks to the availability of suitable
signal processing techniques.

411
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The number of electrodes attached to the body surface depends on the
type of clinical information desired. It is usually sufficient to use a few elec-
trodes when only heart rhythm is being studied, whereas ten electrodes are
typically used when information on waveform morphology is required. Much
denser spatial sampling of the body surface can be achieved by employing a
recording technique known as “body surface potential mapping”, in which
an array of 100–200 electrodes is attached to the torso [2, 3]. The signals
recorded with such an electrode array can be used to produce a sequence of
“electrical images” which offer a more detailed view of the spatiotemporal
potential distribution over the body surface [4]. For example, an electrical
image may capture the presence of local large gradients in potential which
would be missed when too sparse spatial sampling is used.

Although this textbook is concerned with the processing of noninvasive
signals, it is important to be aware that the electrical activity of the heart
may also be studied by invasively recorded signals (electrograms). The elec-
trogram signal is recorded by internally implanted electrodes or an electrode
catheter guided through the skin and through a blood vessel leading into
the heart. Due to the proximity of the electrode to the heart, the electro-
gram gives a much more local description of the electrical activity of cardiac
cells than does the ECG. The electrogram is studied in electrophysiological
testing when the heart is artificially stimulated to help identify the region
where an arrhythmia may develop. Another important use of the electro-
gram signal is to provide an implanted cardiac pacemaker with information
on whether the heart’s natural pacemaker is working properly or needs to
be replaced by the artificial pacemaker. Generally, an artificial pacemaker
corrects an abnormally slow heart rate by taking over the function of the
natural pacemaker. An implantable cardioverter defibrillator is equally de-
pendent on the electrogram signal, but is specifically designed to detect the
presence of life-threatening arrhythmias which, for example, cause the heart
to cease pumping blood. Once such a condition is detected, a high-energy
electrical shock is given to terminate the arrhythmia [5].

This chapter contains a brief description of the heart’s electrical activity.
The generation of the ECG and techniques for its recording are described,
and the manifestations in the ECG of certain important heart diseases are
considered. Finally, an overview of the most common clinical ECG applica-
tions is presented.

6.1 Electrical Activity of the Heart

The heart is a muscular organ the size of a large fist whose primary function
is to pump oxygen-rich blood throughout the body. Its anatomy is divided
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Figure 6.1: Schematic illustration of (a) the heart’s anatomy (the arrows indicate
the directions of the blood flow into and out of the heart) and (b) its electrical
conduction system.

into two “mirrored” sides, left and right, which support different circulatory
systems but which pump in a synchronized, rhythmic manner. Each side
of the heart consists of two chambers, the atrium where the blood enters
and the ventricle where the blood is forced into further circulation, see Fig-
ure 6.1(a). The two sides are divided by a muscular wall called the septum.
The direction of blood flow is controlled by four different valves which are
located between the atria and the ventricles (atrioventricular valves) and
between the ventricles and the arteries (pulmonary and aortic valves).

The wall of the heart is called the myocardium and is primarily com-
posed of muscle cells which produce mechanical force during contraction of
the heart. The myocardium also contains specialized muscle cells which are
connected into a network (conduction system) that allows an electrical im-
pulse to rapidly spread throughout the heart. A cardiac cycle is created
when such an impulse propagates through the conduction system. The elec-
trical impulse is the event that triggers the mechanical force, and thus the
electrical event precedes heart contraction.

The sequence of mechanical events that defines a cardiac cycle can be
assumed to start in the right atrium where blood is collected from all the
veins in the body except those of the lungs. When the right atrium is
triggered to contract, it forces blood into the right ventricle. When the
right ventricle has been filled, it contracts and forces blood into the lungs,
where the excess carbon dioxide is replaced by oxygen. The pulmonary veins
return the oxygenated blood to the left atrium which in turn empties into
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the left ventricle. In its capacity as a high-pressure pump, the left ventricle
forces blood to all of the body organs and tissues (except the lungs) through
the arterial vessels which evolve into capillaries and, finally, into the venous
return system of the heart.

Each cardiac cycle is composed of two phases, activation and recovery,
which are referred to in electrical terms as depolarization and repolarization
and in mechanical terms as contraction and relaxation. Depolarization is
manifested by a rapid change in the membrane potential of the cell (from
–90 to 20 mV in approximately 1 ms) and constitutes the initial phase of the
cardiac action potential, see Figure 1.2. The rapid change in voltage causes
neighboring cells to depolarize, and, as a result, an electrical impulse spreads
from cell to cell throughout the myocardium. Depolarization is immediately
followed by repolarization during which the membrane potential of the cells
gradually returns to its resting state.

The initialization of a cardiac cycle occurs in a mass of pacemaker cells
with the ability to spontaneously fire an electrical impulse. These cells are
collectively referred to as the sinoatrial (SA) node and are situated in the
upper part of the right atrium. The electrical impulse (sometimes also called
the electrical wavefront) then propagates through the conduction system so
that atrial and ventricular contraction and relaxation can take place with
the correct timing (Figure 6.1(b)). After electrical activation of the right
and left atria, the impulse is collected and delayed at the atrioventricular
(AV) node before it enters into the ventricles. The delay allows the atrial
contraction to further increase the blood volume in the ventricles before
ventricular contraction occurs. The delay in the AV node is caused by slower
conduction of the impulse by the muscle tissue in this area. The impulse
enters the wall between the two ventricles at the bundle of His; this is the
only location that electrically connects the atria and the AV node/ventricles.
The pathway is then divided into rapidly conducting bundles with branches
to the left and right ventricles and then further into an extensive network
of specialized conduction fibers called Purkinje fibers. The large size of the
two ventricles requires the electrical impulse to propagate rapidly to initiate
a unified contraction. The conduction velocity of the heart ranges from only
0.05 m/s at the AV node to as much as 4 m/s at the Purkinje fibers.

The SA node is the natural pacemaker of the heart which determines
the rate of beating. Since the cells of the SA node have the fastest pace-
maker rate, all other cells follow in synchrony; this property of beating on
its own is called automaticity. The rate of the SA node is, however, not
only determined by its inherent discharge rate (“clock frequency”), but also
by external information which is mediated through the autonomic nervous
system. The balance between the parasympathetic and sympathetic parts of
the autonomic nervous system determines the heart rate so that an increase
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in parasympathetic activity decreases the heart rate, while an increase in
sympathetic activity increases the heart rate. An upper limit is set on the
discharge rate by the time during which a cell is electrically inactive, i.e., the
refractory period, and ranges from 200–250 ms, which corresponds to a the-
oretical maximum heart rate of 240–300 beats/minute. However, a rhythm
initiated by the SA node rarely exceeds a rate of 220 beats/minute, and this
only applies to young individuals; the maximum heart rate decreases with
age.

The SA node has precedence over other pacemaker cells in the normal
heart. During certain conditions, however, another mass of cells, referred
to as an ectopic focus, may take precedence over the SA node. An ectopic
focus, which can be located in the atria or in the ventricles, determines the
heart rate when the discharge rate of the SA node falls below a certain level.
The intrinsic rate of atrial cells is about 50–60 times per minute and is higher
than the ventricular cells which discharge at a rate between 20 and 40 times
per minute.

The electrical activity of the heart can be characterized by measurements
acquired from the cellular level as well as from the body surface. We will
restrict ourselves to electrocardiographic measurements, although the study
of cardiac action potentials is essential for a deeper understanding of the
mechanisms behind various cardiac disorders such as arrhythmias. The ECG
describes the different electrical phases of a cardiac cycle and represents a
summation in time and space of the action potentials generated by millions
of cardiac cells. Thus, rather than directly reflecting changes in membrane
potential across the cells, the ECG provides a measure of the electrical cur-
rents generated in the extracellular fluid by these potential changes. The
waveforms produced during depolarization and repolarization deviate from
a baseline level which corresponds to the resting state of the cells. The depo-
larization waves are generally steeper and more peaked than those related to
the subsequent repolarization which are smooth and rounded. These charac-
teristics are illustrated in Figure 6.2 where the action potentials associated
with different regions of the heart are depicted; the timing relationship be-
tween the different action potentials and the ECG measured on the body
surface is also illustrated.

6.2 Generation and Recording of an ECG

6.2.1 Depolarization and Repolarization

Of the millions of individual cells in the heart that depolarize during a cardiac
cycle, only groups of cells in the myocardium depolarize at any given instant.
Each group of cells which is simultaneously depolarizing may be represented
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Figure 6.2: The morphology and timing of action potentials from different regions
of the heart and the related cardiac cycle of the ECG as measured on the body
surface.

as an equivalent current dipole source to which a vector is associated, de-
scribing the dipole’s time-varying position, orientation, and magnitude. The
related vectors of all these groups can be summed to give a “dominant”
vector which describes the main direction of the electrical impulse, see Fig-
ure 6.3.

The dipole/vector representation has proven very useful for understand-
ing how the waves of the ECG are generated as recorded by electrodes at-
tached to the body surface.1 Figure 6.4 illustrates the sequence of vectors
associated with different phases of depolarization and repolarization and the
related ECG wave, in this example viewed by an exploring electrode which
is positioned on the chest (known as lead V5, see below). This electrode posi-
tion primarily reflects the activity of the left ventricle, although the activity
of the atria and the right ventricle can also be observed.

1It has been shown that the ECG is proportional to the projection of the dominant
vector onto a lead vector whose direction is defined by the positions of the heart and the
electrode(s) [6]. The lead vector modulus decreases as the electrodes retreat from the
heart due to increased impedance and, consequently, with a lowered ECG amplitude as a
result. It is often helpful to consider the ECG as being proportional to the projection of
the dominant vector onto the lead vector.
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dominant vector

Figure 6.3: The vector associated with each group of cells in the myocardium,
during both depolarization and repolarization, can be summed into a dominant
vector describing the main direction of the electrical impulse.

Before a new heartbeat is initiated by the SA node, all cardiac cells are at
rest, which is reflected by a horizontal line (the isoelectric line) in the ECG
which forms its baseline, see Figure 6.4(a). During atrial depolarization, the
dominant vector is directed downwards toward the AV node. As a result, an
atrial wave with positive polarity is generated in the ECG recorded at the
position of the exploring electrode, see Figure 6.4(b). The amplitude of the
resulting wave is low because the muscle mass of the atria that produces the
electrical wavefront is relatively small.

Once depolarization of the atria has been completed, the ECG returns to
the isoelectric line where it remains until the ventricles become depolarized,
see Figure 6.4(c). Depolarization of the AV node and the His bundle starts
toward the end of the atrial wave but does not produce any visible ECG
waves because of the small muscle masses.

The waves associated with ventricular depolarization are much larger
than the atrial wave since the ventricles have a much larger muscle mass.
Ventricular depolarization begins in the wall between the ventricles (septum)
in such a way that the associated vector is directed away from the explor-
ing electrode, see Figure 6.4(d); hence, the related ECG wave has negative
polarity. Due to the high conduction velocity of the cells in this part of
the heart, the negative wave has a short duration. During continued ven-
tricular depolarization, the dominant direction of the vector gradually turns
toward the exploring electrode. This behavior is related to the fact that
the wall of the left ventricle is three times thicker than that of the right
ventricle and consequently takes longer to depolarize, see Figure 6.4(e)–(g).
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Figure 6.4: The ECG recorded in by an electrode positioned at the location
of the symbol �. (a) All cardiac cells at rest, (b) atrial depolarization, (c) the
electrical impulse passing through the AV node, (d)–(g) ventricular depolarization,
(h) ventricular repolarization, and (i) all cardiac cells again at rest.

Depolarization terminates with the dominant vector pointing away from the
electrode, and thus a wave with negative polarity is produced in the ECG,
see Figure 6.4(g).

Once ventricular depolarization has been completed, the ECG returns to
the isoelectric line where it remains until ventricular repolarization occurs.
During ventricular repolarization, a similar sequence of dominant vectors to
those during ventricular depolarization appears, and a wave with positive
polarity is produced, see Figure 6.4(h). Since atrial repolarization is concur-
rent with ventricular depolarization, the related atrial repolarization wave is
masked by the ventricular waves which have much larger amplitudes.

It is important to realize that the polarity and morphology of individual
waves are strongly dependent on where the electrodes are positioned on the
body. For some positions, a wave may actually be completely absent because
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the wavefront is propagating perpendicularly to the electrode. Furthermore,
wave amplitude depends on the distance between the heart and the electrode.

6.2.2 ECG Recording Techniques

The electrical activity of the heart is measured on the body surface by at-
taching a set of electrodes to the skin. The electrodes are positioned so that
the spatiotemporal variations of the cardiac electrical field are sufficiently
well-reflected. For an ECG recording, the difference in voltage between a
pair of electrodes is referred to as a lead. The ECG is typically recorded
with a multiple-lead configuration which includes unipolar or bipolar leads,
or both. A so-called unipolar lead reflects the voltage variation of a single
electrode and is measured in relation to a reference electrode which is posi-
tioned so that the voltage remains almost constant throughout the cardiac
cycle; the reference is commonly called the “central terminal”. A bipolar
lead reflects the voltage difference between two electrodes, e.g., between the
left and right arm.

The electrode wires are connected to a differential amplifier which is spe-
cially designed for bioelectrical signals. An amplifier with high gain and
large dynamic range is needed since the ECG ranges from a few microvolts
to about 1 V in magnitude; although the individual waves have a maximal
magnitude of only a few millivolts, a wandering baseline in the ECG due to
variations in electrode-skin impedance may reach 1 V. The amplifier band-
width is commonly between 0.05 and 100–500 Hz, where the upper limit
depends on the ECG application of interest. Insulation must also be taken
into consideration to assure patient safety and implies that everything on
the patient side is battery powered.

A number of lead systems exist today with standardized electrode posi-
tions of which we will describe the two that have received the most attention,
namely, the standard 12-lead ECG and the orthogonal lead system producing
a vectorcardiogram (VCG). We will briefly consider techniques for synthesiz-
ing one lead system from the other. In practice, the preferred lead system
is not necessarily chosen on the basis of maximized information content,
but the choice is more often guided by various clinical issues and practical
considerations.

Standard 12-lead ECG. The standard 12-lead ECG is the most widely
used lead system in clinical routine and is defined by a combination of three
different lead configurations: the bipolar limb leads, the augmented unipolar
limb leads, and the unipolar precordial leads (Figure 6.5). The 12-lead ECG
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is recorded by placing 10 electrodes at standardized positions on the body
surface.

The three bipolar limb leads are denoted I, II, and III and are obtained
by measuring the voltage difference between the left arm, right arm, and left
leg in the following combinations:

I = VLA − VRA, (6.1)
II = VLL − VRA, (6.2)

III = VLL − VLA, (6.3)

where VLA, VRA, and VLL denote the voltage recorded on the left arm, right
arm, and left leg, respectively. Since these three electrode positions can be
viewed as the corners of an equiangular triangle (“Einthoven’s triangle”) with
the heart at its center, the resulting limb leads describe the cardiac electrical
activity in three different directions of the frontal plane, see Figure 6.6(a);
each direction is thus separated by an angle of 60o. It is not necessary to
record lead III since it can be computed from the leads I and II by the
relation III = II − I.

The augmented unipolar limb leads (aV F, aV L and aV R) were intro-
duced to fill the 60o gaps in the directions of the bipolar limb leads. These
leads use the same electrodes as the bipolar limb leads, but are defined as
voltage differences between one corner of the triangle and the average of the
remaining two corners:

aV R = VRA − VLA + VLL

2
, (6.4)

aV L = VLA − VRA + VLL

2
, (6.5)

aV F = VLL − VLA + VRA

2
, (6.6)

see Figure 6.6(b). Hence, the augmented limb leads describe directions which
are shifted 30o from those of the bipolar limb leads: the gap between I and
II is filled by −aV R, between II and III by aV F , and between III and
I by aV L (Figure 6.7(a)). The augmented limb leads are considered to be
unipolar because one electrode is exploring while the average of the other
two serves as the reference electrode, cf. the expressions (6.4)–(6.6). Similar
to lead III, the augmented limb leads do not have to be recorded but can
be easily computed from leads I and II.

The precordial leads are positioned in succession on the front and left side
of the chest in order to provide a more detailed view of the heart than do the
limb leads (Figure 6.6(c)). The six precordial leads, by convention labeled
V1, ..., V6, are unipolar and related to a central terminal which is defined by
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Figure 6.5: The standard 12-lead ECG with bipolar limb leads (I, II, and III),
augmented unipolar limb leads (aV F, aV L, and −aV R), and unipolar precordial
leads (V1, ..., V6). The ECG was recorded from a healthy subject.
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Figure 6.6: Electrode positions for recording (a) the bipolar limb leads I, II,
and III (together these three leads define Einthoven’s triangle), (b) the augmented
unipolar limb leads aV R, aV L, and aV F (the output signal is measured between
the two resistors), and (c) the precordial leads V1, . . . , V6.
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Figure 6.7: (a) The directions of the bipolar limb leads and the augmented limb
leads in the frontal plane. Note that the negative polarity of lead aV R is commonly
used since the six limb leads then reflect directions from −30o to +120o which are
30o apart. (b) The precordial leads are approximately 30o apart in the transversal
plane.

the average of the voltages measured on the right and left arms and the left
leg,

VWCT =
VLA + VRA + VLL

3
. (6.7)

Based on theoretical considerations, this definition has been found advan-
tageous since VWCT remains almost constant throughout the entire cardiac
cycle. The abbreviation WCT stands for Wilson central terminal to honor
the physician who introduced the definition given in (6.7). Leads V1 and V2

primarily reflect the activity of the right ventricle. Leads V3 and V4 primar-
ily view the front of the left ventricle (anterior wall), while its side (lateral
wall) is viewed by V5 and V6 (Figure 6.7(b)).

In general, the ECG waveforms of the six limb leads have a relatively
low amplitude and tend to be more noisy than the precordial leads since
the electrodes are positioned on the extremities at larger distances from the
heart. Thus, the signal-to-noise ratios of the limb leads are often lower than
those observed in the precordial leads.

Orthogonal leads. An orthogonal lead system is attractive since it reflects
the electrical activity in the three perpendicular directions X, Y , and Z. For
such a lead system, the ECG interpretation is not confined to findings in in-
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Figure 6.8: A vectorcardiographic loop and its projection onto the three orthog-
onal planes. The two arrows outside each loop indicate the direction in which the
loop evolves.

dividual leads, but additional information is acquired through the visualiza-
tion of a three-dimensional loop together with its projection onto the XY -,
XZ-, and Y Z-planes, see Figure 6.8. Since a loop is traced out by the tip of
the vector which describes the dominant direction of the electrical wavefront
during the cardiac cycle, this particular type of recording is referred to as
a vectorcardiogram. While the VCG provides a time-varying description of
how the magnitude and direction of the dominant vector change with time,
it does not provide an anatomically exact description of where the wavefront
is propagating in the myocardium.

Pairs of electrodes which are positioned along mutually perpendicular
lines on the body surface may, at first glance, appear to produce leads which
are orthogonal.2 Based on mathematical modeling as well as on experimen-
tal results, however, it has been found that additional electrodes are required
in order to account for the geometry of the human torso. The corrected or-
thogonal leads, known as the Frank lead system after its inventor [7], are
obtained as linear combinations of seven electrodes positioned on the chest,

2The word “orthogonal” is used here to signify the different, perpendicular spatial
directions and should not be confused with its usage in the mathematical sense as on
page 255.
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Figure 6.9: The orthogonal vectorcardiographic leads X, Y , and Z; these leads
were recorded from the same subject as the ECG leads shown in Figure 6.5.

back, neck, and left foot. The resulting leads X, Y , and Z view the heart
from the left side, from below, and from the front. The waves observed
in leads X, Y , and Z have a fairly close resemblance to those of V5, aV F ,
and V2 (cf. Figures 6.9 and 6.5). However, analysis of the orthogonal leads
on an individual basis does not significantly add to the diagnostic informa-
tion gathered from the analysis of V5, aV F , and V2. The benefit of using
VCG leads reveals itself rather when the loop, or its projections on the
planes, is analyzed with respect to spatial quantities such as loop morphol-
ogy, direction of rotation, and area. These quantities, which do not have any
counterpart in the analysis of individual leads, have been used to improve
ECG-based diagnosis of, e.g., myocardial infarction.

Although the information contained in VCG leads has been found useful
in certain applications, the 12-lead ECG remains by far the preferred lead
system in the clinical routine due to the existence of well-established criteria
for its interpretation.

Synthesized leads. The concept of synthesized leads was first introduced
to handle situations in which VCG leads were available but where analy-
sis of the standard 12-lead ECG was desired [8]. Such lead synthesis may
be employed to extend the clinical value of a database containing digitized
VCG signals. Another situation arises when the attachment of certain elec-



426 Chapter 6. The Electrocardiogram—A Brief Background

trodes of the 12-lead ECG is inconvenient or even impossible, such as during
open-heart surgery when some of the electrodes cannot be attached. With
synthesized leads, the clinician can still monitor changes that may occur in
some of the ECG leads. In practice, synthesis of the 12-lead ECG from the
VCG has not gained wide acceptance due to diagnostic inaccuracies which
have been noted between the true and synthesized leads. However, the 12-
lead ECG synthesized from another configuration known as the EASI leads,
requiring only four electrodes, has received more attention [9, 10].

The opposite idea, of synthesizing the orthogonal leads of the VCG
from the standard 12-lead ECG, has been implemented with greater suc-
cess [11, 12], almost certainly because more leads are available. The addi-
tion of synthesized VCG leads to computer programs which originally relied
on 12-lead ECG recordings has contributed to improved detection of certain
electrocardiographic abnormalities. The synthesized VCG leads are some-
times referred to as the 12-lead vectorcardiogram in order to acknowledge
the origin of the lead system.

Both these types of lead synthesis rely on the basic assumption that the
voltage at any point on the body surface at any instant in time n can be ap-
proximated by a linear combination of the L recorded leads x1(n), . . . , xL(n).
Hence, the M synthesized leads y1(n), . . . , yM (n) result from the following
simple, linear relationship,⎡⎢⎢⎢⎣

y1(n)
y2(n)

...
yM (n)

⎤⎥⎥⎥⎦ = TM×L

⎡⎢⎢⎢⎣
x1(n)
x2(n)

...
xL(n)

⎤⎥⎥⎥⎦ , (6.8)

where the synthesis matrix TM×L has the dimensions M × L. The original
matrix T12×3 was derived from geometrical considerations of the heart’s
electrical field [13]. In determining T3×12 for VCG lead synthesis, both
heuristic and statistical approaches have been investigated [12]. So far, the
best agreement with the original Frank leads, expressed in diagnostic terms,
has been achieved by using an inverse of the original matrix T12×3 [11, 14],
see also [15]. The calculation of this particular choice of T3×12 represents an
overdetermined least-squares problem (i.e., where the number of equations
is larger than the number of unknown variables) whose solution is briefly
described in Appendix A.

6.2.3 ECG Waves and Time Intervals

We will now describe some important ECG wave characteristics, central to
the development of signal processing algorithms, along with the wave-naming
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Figure 6.10: Wave definitions of the cardiac cycle and important wave durations
and intervals. The J point defines the point in time when the QRS complex curves
into the ST segment.

convention. Atrial depolarization is reflected by the P wave, and ventricular
depolarization is reflected by the QRS complex, whereas the T wave reflects
ventricular repolarization, see Figure 6.10. Atrial repolarization cannot usu-
ally be discerned from the ECG since it coincides with the much larger QRS
complex. The amplitude of a wave is measured with reference to the ECG
baseline level, commonly defined by the isoelectric line which immediately
precedes the QRS complex. The duration of a wave is defined by the two
time instants at which the wave either deviates significantly from the baseline
or crosses it.

The P wave reflects the sequential depolarization of the right and left
atria. In most leads, the P wave has positive polarity and a smooth, mono-
phasic morphology. Its amplitude is normally less than 300 µV, and its
duration is less than 120 ms. An absent P wave may, for example, suggest
that the rhythm has its origin in the ventricles, i.e., a ventricular ectopic
focus has taken precedence over the SA node causing atrial depolarization
to coincide with ventricular depolarization.

The spectral characteristic of a normal P wave is usually considered to
be low-frequency, below 10–15 Hz (Figure 6.11). However, the application of
ensemble averaging techniques to produce a noise-reduced ECG has helped
demonstrate that much higher frequency components of the P wave exist;
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Figure 6.11: Power spectrum of the P wave, QRS complex, and T wave. The
diagram serves primarily as a rough guide to where the spectral components are
located; large variations exist between beats of different lead, origin, and subjects.

such components have been found useful for predicting the occurrence of
certain arrhythmias of atrial origin.

It is sometimes problematic to determine the time instants that define
the onset and end of a P wave because of a low amplitude and smooth
morphology. As a result, the analysis of individual P waves is excluded from
certain ECG applications where the presence of noise is considerable.

The QRS complex reflects depolarization of the right and left ventricles
which in the normal heart lasts for about 70–110 ms. The first negative
deflection of the QRS complex is denoted the Q wave, and the first positive
is denoted the R wave, while the negative deflection subsequent to the R wave
is denoted the S wave (Figure 6.10). Although the QRS complex may be
composed of less than three individual waves, it is nevertheless referred to
as a QRS complex. The morphology of the QRS complex is highly variable
and depends on the origin of the heartbeat: the QRS duration of an ectopic
beat may extend up to 250 ms, and is sometimes composed of more than
three waves.

Since the QRS complex has the largest amplitude of the ECG wave-
forms, sometimes reaching 2–3 mV, it is the waveform of the ECG which is
first identified in any type of computer-based analysis. The algorithm that
performs the search is termed the QRS detector and produces the “land-
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mark information” required to further analyze the ECG characteristics, see
Section 7.4.

Due to its steep slopes, the frequency content of the QRS complex is
considerably higher than that of the other ECG waves and is mostly con-
centrated in the interval 10–50 Hz (Figure 6.11). Similar to the P wave,
ensemble averaging of the QRS complex has, in certain ECG recordings,
uncovered high-frequency components which have been found to convey di-
agnostic information. In particular, the presence of late potentials in the
terminal portion of the QRS complex has received considerable attention;
see page 447 for further details.

The ST segment is not really a wave, but represents the interval during
which the ventricles remain in an active, depolarized state. The ST segment
begins at the end of the S wave (the J point) from where it proceeds nearly
horizontally until it curves into the T wave (Figure 6.10). Changes in the
ST segment, which make it either more elevated, depressed, or more steeply
sloped, often indicate various underlying cardiac conditions.

The T wave reflects ventricular repolarization and extends about 300 ms
after the QRS complex. The position of the T wave is strongly dependent
on heart rate, becoming narrower and closer to the QRS complex at rapid
rates; this “contraction” property does not apply to the P wave or the QRS
complex. The normal T wave has a smooth, rounded morphology which, in
most leads, is associated with a single positive peak.

The T wave is sometimes followed by another slow wave (the U wave)
whose origin is unclear but is probably ventricular after-repolarization. At
rapid heart rates, the P wave merges with the T wave, causing the T wave
end point to become fuzzy as well as the P wave onset. As a result, it
becomes extremely difficult to determine the T wave end point because of
the gradual transition from wave to baseline.

The RR interval represents the length of a ventricular cardiac cycle,
measured between two successive R waves, and serves as an indicator of
ventricular rate. The RR interval is the fundamental rhythm quantity in any
type of ECG interpretation and is used to characterize different arrhythmias
as well as to study heart rate variability.

The PQ interval is the time interval from the onset of atrial depolariza-
tion to the onset of ventricular depolarization. Accordingly, the PQ interval
reflects the time required for the electrical impulse to propagate from the SA
node to the ventricles. The length of the PQ interval is weakly dependent
on heart rate.

The QT interval represents the time from the onset of ventricular depo-
larization to the completion of ventricular repolarization. This interval nor-
mally varies with heart rate and becomes shorter at more rapid rates. It is
therefore customary to correct the QT interval for heart rate—using nonlin-
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ear [16] or, better, linear techniques [17]—so that the corrected QT interval
allows an assessment that is roughly independent of heart rate. Prolongation
of the QT interval has been observed in various cardiac disorders associated
with increased risk of sudden death.

6.3 Heart Rhythms

The rhythm of the normal heart is controlled by the electrical impulses
formed within the SA node and produces a heart rate between 50 and 100
beats/minute during rest. A deviation from or a disturbance of the normal
sinus rhythm is called arrhythmia. An arrhythmia may come about when
depolarization is initiated by other pacemaker cells of the heart than those
of the SA node, thus altering the formation of the electrical impulses. An-
other mechanism which produces arrhythmia is when the conduction of the
electrical impulses is altered [18, 19].

Problems of impulse formation arise when an ectopic focus below the
SA node exhibits accelerated automaticity. Alternatively, decelerated auto-
maticity of the SA node makes way for an ectopic focus to take over control.
In contrast to a sinus rhythm, an ectopic rhythm lacks modulation by the
parasympathetic and sympathetic components of the autonomic nervous sys-
tem.

Problems of impulse conduction are related to an area of the heart where
the conduction of the cells is partially or totally blocked. A partial block
delays propagation of the electrical impulse (e.g., causing prolongation of
the PR interval), whereas a total block causes conduction failure and an
accompanying decrease in heart rate.

The reentry phenomenon is another impulse conduction problem that
sustains arrhythmia and is caused by changes in the refractory period and
propagation speed of the heart. When neighboring areas of the myocardium
have different refractory periods, the electrical impulse may depolarize an
area which is receptive, while another area remains inactive since the cells
are still refractory from the previous cardiac cycle. Once the inactive area
has recovered, the impulse may be accepted and the area can serve as a
pathway back to the area which was initially depolarized. Reentry occurs
if the latter area has had time to recover and can be depolarized again and
continues until the cells become unreceptive. The resulting movement of the
electrical impulse is often circular and is said to occur in a reentry circuit.

The classification of cardiac arrhythmia involves the site of its origin.
The following list describes different relationships between the atria and
ventricles among different kinds of arrhythmia [18].
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1. The atrial and ventricular rhythms are associated and have the same
rate, and the rhythm may originate in the atria or the ventricles, re-
spectively.

2. The atrial and ventricular rhythms are associated, but the atrial rhythm
is faster than the ventricular rate (the rhythm originates in the atria).

3. The atrial and ventricular rhythms are associated, but the ventricu-
lar rate is faster than the atrial rate (the rhythm originates in the
ventricles).

4. The atrial and ventricular rhythms are independent, and the atrial and
ventricular rates are either the same or one is faster than the other.

An arrhythmia is also classified with respect to its rate: bradyarrhythmia
has a slow heart rate of less than 60 beats/minute, whereas tachyarrhyth-
mia has a rapid rate of more than 100 beats/minute. Hence, “atrial tachy-
arrhythmia” refers to an arrhythmia which is initiated in the atria and has a
rate that exceeds 100 beats/minute. It should be noted that not all arrhyth-
mias are beyond these rate limits. An arrhythmia which suddenly begins
and ends is referred to as paroxysmal ; otherwise, it is said to be persis-
tent/permanent.

The significance of an arrhythmia differs widely and may be benign,
symptomatic, life threatening, or fatal. Its consequence depends not only on
its manifestation, but also on the presence of abnormal structural conditions
of the heart, see Section 6.4.

6.3.1 Sinus Rhythm

The normal sinus rhythm originates from the SA node and has a rate be-
tween 50 and 100 beats/minute at rest (Figure 6.12(a)). The rhythm is
called sinus bradycardia when the rate is below the lower limit and sinus
tachycardia when it is above the upper limit. At rest, the heart rate is
essentially regular but not totally so, even if external perturbations in the
form of physical or mental stress are absent. These small variations in heart
rate are caused by continual variation of the balance between the two com-
ponents of the autonomic nervous system which influence the firing rate of
the SA node: increased parasympathetic activity decreases the rate, whereas
increased sympathetic activity increases the rate.

The dynamics of spontaneous heart rate variability serve as an indicator
of how heart rate, respiration, blood pressure, and temperature are con-
trolled by the body [20–22]. Decreased heart rate variability may be asso-
ciated with significant underlying cardiac or autonomic abnormalities. For
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(a)

(b)

Figure 6.12: (a) Normal sinus rhythm and (b) respiratory sinus arrhythmia.

example, decreased variability has been associated with increased mortal-
ity after myocardial infarction, caused by a malignant ventricular arrhyth-
mia [23, 24]. Heart rate variability has been increasingly studied in recent
years for the purpose of diagnosing and predicting cardiovascular diseases.
As a result, tailored signal processing algorithms that can handle, for exam-
ple, the presence of ectopic beats that disrupt the sinus rhythm are much
in demand. Chapter 8 contains a comprehensive description of some of the
algorithms used for the analysis of heart rate variability.

In a normal subject, the variability in heart rate is related to the phases
of respiration so that the rate increases with inspiration and decreases with
expiration (Figure 6.12(b)). When pronounced, this type of sinus rhythm
is called respiratory sinus arrhythmia and is normal. Figure 6.13 illustrates
heart rate variability in terms of RR intervals for a normal subject who
has been instructed to breath deeply at different, predetermined respiratory
rates. Each of the four respiratory rates was maintained for one minute. In
this example, the variability is as large as 25–30 beats/minute during the
course of just a few heartbeats. It is obvious that the variability increases as
the respiratory rate decreases and the breaths become increasingly deeper.

Important information on autonomic function may be inferred from an
ECG by studying changes in the sinus rhythm in response to different types
of provocation. The so-called orthostatic test represents a provocation in
which the subject is tilted from lying to a standing position using a tilt table.
Other types of provocation are used in the deep breathing test, where the
subject is instructed to hyperventilate (cf. Figure 6.13(a)), and the Valsalva
test, where the subject is forcibly trying to exhale with both the nose and
mouth closed [25].
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Figure 6.13: (a) Variation in RR intervals during controlled respiration with deep
breaths. (b) The corresponding variations in air flow. The healthy subject was
instructed to maintain the same respiratory rate for one minute for each respiratory
rate.

6.3.2 Premature Beats

The normal sinus rhythm is sometimes interrupted by a beat occurring before
the expected time of the next sinus beat and is therefore referred to as a
premature beat ; the terms “ectopic beat” and “extrasystole” are frequently
used synonyms. The ectopic focus producing the premature beat may be
located in any part of the heart other than the SA node. Depending on
the location of the focus, the premature beat may have either normal or
abnormal morphology and may be either preceded by a P wave or not.

A premature beat is either called a supraventricular premature beat
(SVPB) if its origin is above the ventricles, i.e., in the atria or the AV node,
or a ventricular premature beat (VPB) if its origin is in the ventricles. The
presence of a VPB almost always prevents the occurrence of the next sinus
beat. Although the SA node discharges on schedule, the impulse cannot
propagate to the ventricles because the tissue has been made refractory by
the premature beat. The pause that results between the VPB and the next
sinus beat is called the compensatory pause. The most common kind of SVPB
is associated with an abnormal P wave morphology and a QRS complex mor-
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phology resembling that of a normal sinus beat. The related compensatory
pause is so that the interval between the two sinus beats that enclose the
SVPB is less than the length of two normal RR intervals (Figure 6.14(a)).

A VPB may originate from any area beyond the point where the common
bundle has branched into the left and right bundle branches. Since the elec-
trical impulse of the ventricular ectopic focus does not follow the normal con-
duction pathways, the produced QRS complex is abnormally prolonged and
has a morphology which deviates considerably from that of a sinus beat—it
is often much larger and bizarre-looking. A VPB usually inhibits the next
sinus beat and introduces a compensatory pause which is twice the length of
the normal RR interval (Figure 6.14(b)). When several different ectopic foci
exist in the ventricles, the resulting premature beats have widely different
QRS complex morphologies and are called multiform VPBs. When a pre-
mature beat follows every normal sinus beat, the rhythm pattern is called
bigeminy (Figure 6.14(c)); similarly, when a premature beat follows every
other normal sinus beat, the rhythm is called trigeminy (Figure 6.14(d)).

When the heart rate of the SA node is slow and the VPB is extremely
premature, the next sinus beat can still occur on time because the AV node
and ventricles are no longer refractory. Such a VPB is referred to as “inter-
polated” and is not associated with a compensatory pause, but is enclosed
by two short RR intervals (Figure 6.14(e)).

Isolated premature beats are commonly found in normal subjects. Abun-
dant premature beats may, however, be a manifestation of an underlying
cardiac disease.

6.3.3 Atrial Arrhythmias

Various rhythm disturbances originate from one or multiple ectopic foci in
the atria. The resulting arrhythmias are characterized either by the presence
of abnormal P waves or a complete lack of distinct P waves. Abnormal
P waves appear when an ectopic focus is located far away from the SA node,
i.e., closer to the AV node, since the electrical impulse then propagates in a
direction which is opposite to the normal one; a normal P wave thus becomes
negative. If the focus is near the AV node and the ventricles, depolarization
of the ventricles commences at about the same time as does depolarization
of the atria. In consequence, the occurrence of the P wave coincides with
that of the QRS complex and cannot be discerned in the ECG.

Atrial tachycardia is an arrhythmia produced by increased automaticity
in the pacemaking cells of one or multiple foci within the atria. Most of the
electrical impulses are conducted to the ventricles, leading to a heart rate
from 140 to 220 beats/minute. Due to the rapid rate, P waves are often
masked by the T wave or even the QRS complex of the previous heart cycle.
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(a)

(b)

(c)

(d)

(e)

Figure 6.14: Examples of ectopic beats with different origins. (a) A supraventric-
ular premature beat with a small, negative P wave (occurring after the third sinus
beat). (b) A premature ventricular beat followed by a compensatory pause. The
sum of the two RR intervals adjacent to the ectopic beat is approximately equal to
twice the normal RR interval. (c) Bigeminy, (d) trigeminy, and (e) an interpolated
ventricular premature beat (occurring after the third sinus beat).
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Atrial flutter and atrial fibrillation are two tachyarrhythmias in which the
atria are unsynchronized with the ventricles and beat at a rate which is much
faster than that of the ventricles. Both these arrhythmias are caused by the
continuing reentry of an electrical impulse in the atria. This is manifested
in the ECG by an undulating baseline which replaces the P waves, and,
consequently, the isoelectric line is no longer well-defined. The rapid and
irregular rate of atrial flutter/fibrillation causes the blood to flow more slowly
than normal through the atria, increasing the likelihood that a blood clot
will be produced. If the clot is pumped out of the heart, a stroke may result
if it reaches the brain, but a clot may also cause damage to other parts of
the body.

Atrial flutter is the more organized arrhythmia of the two and is char-
acterized by the atria beating regularly at a rate of usually around 300
beats/minute. Not all electrical impulses reach the ventricles but are blocked
by a refractory AV node, which thus protects the ventricles from too rapid
activation. When only every second impulse is conducted to the ventri-
cles, a 2:1 block is said to exist, producing a ventricular rate of around 150
beats/minute, and so on. In the ECG, flutter waves are referred to as F waves
and have an appearance which resembles that of a sawtooth (Figure 6.15(a)).

Atrial fibrillation is a very rapid, chaotic rhythm (400–700 beats/minute)
which makes the atria quiver and the ventricles beat irregularly. The ar-
rhythmia is produced by reentry within multiple circuits in the atria, giving
rise to impulses that bombard the AV node. Only some of the impulses get
through the AV node and then produce a ventricular rate which is highly
irregular and often also rapid. In the ECG, fibrillation waves are referred to
as f waves and have an irregular, multiform appearance (Figure 6.15(b)).

6.3.4 Ventricular Arrhythmias

The most common ventricular tachyarrhythmias result from the reentry
mechanism and include ventricular tachycardia, ventricular flutter, and ven-
tricular fibrillation. The mechanisms behind these three arrhythmias are
analogous to the three above-mentioned atrial tachyarrhythmias, i.e., they
are reentrant ventricular tachyarrhythmias; however, their manifestations in
the ECG are completely different.

Ventricular tachycardia occurs at a rate over 120 beats/minute and con-
sists of beats with a morphology similar to that of premature beats, i.e.,
increased QRS width and large amplitude. The P waves are often lost be-
cause wide QRS complexes or T waves are constantly occurring so that one
ventricular cycle immediately succeeds the other. In Figure 1.7, an ECG
was presented which contains an episode of ventricular tachycardia with
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Figure 6.15: Examples of atrial and ventricular tachyarrhythmias. (a) Atrial
flutter, (b) atrial fibrillation, (c) ventricular flutter, and (d) ventricular fibrillation.

three beats. This is the minimum number of consecutive beats required to
be defined as arrhythmia.

Ventricular flutter is a rapid organized rhythm without any discernible
QRS complexes or T waves. It is similar to atrial flutter but has a much
larger amplitude which fluctuates considerably over time. Ventricular flutter
can lead to ventricular fibrillation, which is a totally disorganized rhythm
during which the ventricles cease to depolarize in an orderly fashion. As a
result, a heart undergoing ventricular fibrillation cannot deliver oxygenated
blood to the brain. Ventricular fibrillation leads to cardiac arrest, cessa-
tion of respiration, loss of consciousness, and, if no immediate treatment is
given, it is almost invariably fatal. Ventricular flutter and fibrillation pro-
duce ECGs of similar appearance, although the latter rhythm is associated
with a more chaotic signal (Figures 6.15(c) and (d)).
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6.3.5 Conduction Blocks

The propagation of an electrical impulse can be disturbed by a block along
its normal conduction pathway. The block causes depolarization and repo-
larization to become abnormal, disturbing the function of the heart. One
conduction block is related to the AV node and makes the electrical con-
nection between the atria and ventricles abnormal to various degrees. The
severity of the AV block is graded from minor, when all impulses are con-
ducted with delay, through moderate, when some impulses do not reach
the ventricles, to complete, when no impulses are conducted. A complete
AV block is manifested by P waves and QRS complexes at two different, in-
dependent rates; the P waves are produced by the SA node, while the QRS
complexes have their origin in a ventricular ectopic focus. Many other types
of conduction blocks may occur, e.g., in the left or right bundle branches [18].

6.4 Heartbeat Morphologies

A wide variety of abnormal beat morphologies can be seen in an ECG which
reflect abnormal structural conditions of the heart, such as enlargement of
the atria or ventricles (hypertrophy) and inflammation of the sac-like cov-
ering of the heart (pericarditis). Abnormal morphologies are also typical
of several arrhythmias. In this section, two important structural conditions
are considered which are caused either by insufficient blood supply to the
myocardium (myocardial ischemia) or by death of the tissue of the myocar-
dial wall (myocardial infarction). During the acute phase of an ischemic
episode or myocardial infarction, the beat morphology sometimes undergoes
dynamic changes which are so rapid that they occur almost from one beat
to the next.

6.4.1 Myocardial Ischemia

Myocardial ischemia is a condition where the blood flow to the cells of the
heart is restricted, causing a lack of oxygenated blood. Myocardial ischemia
arises when one or more coronary arteries has become narrowed and the
demand for oxygenated blood to the heart muscle increases due to exer-
cise or mental stress. A temporary reduction in flow usually causes chest
pain or discomfort known as angina pectoris. However, myocardial ischemia
is sometimes completely unrelated to chest pain and is then called silent is-
chemia. Since ischemia is associated with electrical instability of the heart, it
may cause life-threatening ventricular tachyarrhythmias such as ventricular
fibrillation.
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Myocardial ischemia is manifested in an ECG as a change in morphology
of the ST segment and T wave, jointly referred to as an ST–T change. While
the normal ST segment starts at the isoelectric line and curves smoothly up-
wards into the T wave, the ischemic ST segment is instead horizontal or
slopes downwards and may start well below the isoelectric line. An ST seg-
ment which drops below the isoelectric line is referred to as an ST depression.
An ischemic T wave is often more flat than a normal T wave and may exhibit
biphasic morphology or negative polarity.

Tiny beat-to-beat alternations in T wave morphology are related to myo-
cardial ischemia as a presage of malignant ventricular arrhythmias that often
lead to sudden cardiac death [26–29]. The morphologic alternations follow a
flip-flop pattern (i.e., ABABA...) in which every other T wave has the same
morphology. Since T wave alternans is a phenomenon in the microvolt range,
it cannot be perceived by the naked eye from a standard ECG print-out, but
requires signal processing techniques for its detection and quantification [30].

Subjects with suspected angina pectoris, who may also have had episodes
of silent ischemia, are referred to a hospital to perform an exercise stress
test. From this test, a diagnosis can be made by the physician once the
ST–T reaction, as provoked by an exercise stress test, has been examined;
a similar test can be used when T wave alternans is of interest. Another
common test is ambulatory ECG monitoring, where the subject carries a
portable recording device for 24 hours or more so that episodes of myocardial
ischemia can be identified. Both these tests are discussed in more detail
below.

6.4.2 Myocardial Infarction

Myocardial infarction causes death (necrosis) of some heart cells due to sud-
den and sustained loss of blood supply. The loss is caused by a complete
blockage of a coronary artery and typically results from the process of arte-
riosclerosis. In that process, an artery becomes hardened by a build-up of
plaque which will eventually rupture so that a blood clot forms and blocks
the artery. Similar to silent ischemia, an infarction is associated with electri-
cal instability of the heart and dramatically increases the risk of ventricular
fibrillation.

Most patients today survive myocardial infarction thanks to a number of
efficient treatment options. Although the heart is unable to pump as much
blood as before infarction, there is usually sufficient viable heart muscle left
to perform the required work load, making recovery almost complete.

The infarcted area is electrically inert and disturbs the normal propa-
gation pathways of the electrical impulse. As a result, the dominant vector
which describes the main direction of the impulse is altered, and waves are
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(a)

(b)

Figure 6.16: (a) The normal QRS complex (left panel) and the QRS complex
after myocardial infarction (right panel). The dark area represents the infarcted
area. (b) Evolution of a myocardial infarction in lead aV F . The ECG was recorded
upon arrival at the emergency room (left panel), after 10 days (middle panel), and
after 6 months (right panel).

produced which differ significantly from the normal ECG. Figure 6.16(a) il-
lustrates morphologic changes caused by myocardial infarction: in lead aV F ,
the amplitude of the R wave is reduced, and a much larger, pathological
Q wave is observed.

During the healing period, when the necrotic heart muscle completes the
scarring process, the QRST complex undergoes a gradual change in morphol-
ogy. Figure 6.16(b) illustrates the changes that occur during a time span
of 6 months following infarction. In this example, the initial ST–T segment
elevation has disappeared after 10 days, and a large Q wave has appeared
which remains after 6 months.

6.5 Noise and Artifacts

An important reason behind the success of computer-based ECG analysis is
the capability to improve poor signal quality by means of signal processing
algorithms. This result has been achieved thanks to good knowledge of not
only signal properties but also noise properties. It is therefore important to
become familiarized with the most common types of noise and artifacts in
the ECG before addressing methods in the next chapter which compensate
for their presence. Below follows a list of common noncardiac noise sources



Section 6.5. Noise and Artifacts 441

of which the first three are of technical origin whereas the fourth is of phys-
iological origin. Even parts of the cardiac activity can sometimes be viewed
as a source of noise when detecting QRS complexes, see Section 7.4.

Baseline wander is an extraneous, low-frequency activity in the ECG
(Figure 6.17(a)) which may interfere with the signal analysis, rendering the
clinical interpretation inaccurate and misleading. For example, ECG mea-
surements defined with reference to the isoelectric line cannot be computed
because the isoelectric line is no longer well-defined. Baseline wander, which
is often exercise-induced, may result from a variety of noise sources includ-
ing perspiration, respiration, body movements, and poor electrode contact.
The magnitude of the undesired wander may exceed the amplitude of the
QRS complex by several times. Its spectral content is usually confined to
an interval well below 1 Hz, but it may contain higher frequencies during
strenuous exercise. Signal processing techniques for the removal of baseline
wander are presented in detail in Section 7.1.

Electrode motion artifacts are mainly caused by skin stretching which al-
ters the impedance of the skin around the electrode. Motion artifacts resem-
ble the signal characteristics of baseline wander, but are more problematic to
combat since their spectral content considerably overlaps that of the PQRST
complex. They occur mainly in the range from 1 to 10 Hz [31, 32]. In the
ECG, these artifacts are manifested as large-amplitude waveforms which are
sometimes mistaken for QRS complexes (Figure 6.17(b)). Electrode motion
artifacts are particularly troublesome in the context of ambulatory ECG
monitoring where they constitute the main source of falsely detected heart-
beats.

Powerline interference (50/60 Hz) is caused by improper grounding of
the ECG equipment and interference from nearby equipment [33]. Such in-
terference can be removed in many situations by means of linear or nonlinear
filtering, see Section 7.2.

The electrical activity of skeletal muscles during periods of contrac-
tion causes electromyographic noise (EMG noise), commonly seen in ECGs
recorded during ambulatory monitoring or exercise. The main characteris-
tics of such noise have already been presented on page 74 in connection with
artifact rejection in EEG signal processing (different muscles are, however,
active in producing the noise which corrupts the ECG signal), see also Sec-
tion 5.1. Electromyographic noise can either be intermittent in nature, e.g.,
due to a sudden body movement (Figure 6.17(c)), or have more stationary
noise properties. The frequency components of EMG considerably overlap
those of the QRS complex while also extending into higher frequencies. As
a result, difficulties in removing EMG noise from the EEG signal without
introducing distortion are unfortunately also present in ECG signal process-
ing. Some approaches that deal with EMG noise are briefly presented in
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(a)

(b)

(c)

(d)

Figure 6.17: Different types of noise and artifacts in the ECG. (a) Baseline wander,
(b) electrode motion artifacts, (c) electromyographic noise, and (d) respiration-
induced modulation of the QRS amplitude.

Section 7.3. The influence of EMG noise can also be reduced by ensemble
averaging when the recurrent property of the heartbeats can be exploited.

Respiratory activity influences electrocardiographic measurements not
only through heart rate but also through beat morphology. Such beat-to-
beat variations in morphology are caused by chest movements, changes in
the position of the heart, and changes in lung conductivity [34, 35]. During
the respiratory cycle, the vector describing the dominant direction of the
electrical wave propagation changes so that variations in beat morphology
arise. Figure 6.17(d) presents an ECG with a pronounced variation in QRS
amplitude being induced by respiration; in this example, the period length
of a breath is approximately 5 s, suggesting that the subject is breathing at a
rate of 12 breaths/minute. Although variations in QRS amplitude represent
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an undesirable signal characteristic, it may be exploited for estimation of
the respiratory frequency [36–39].

6.6 Clinical Applications

Since its invention, the usage of the ECG has become so greatly diversified
that it is today inappropriate to refer to the ECG as being just one clinical
test. In order to give the reader an overview, the most common clinical
applications of the ECG are briefly described, while a comprehensive de-
scription can be found elsewhere [1]. Each of these applications has become
intimately associated with computer processing of the ECG, a fact that has
contributed to improving test accuracy.

6.6.1 Resting ECG

The resting ECG is one of the most widely used diagnostic tests in clini-
cal routines of all kinds and is called for when a wide range of diseases are
suspected, not necessarily of cardiac origin. The standard 12-lead ECG is
recorded for 10 s in conditions which are favorable from a signal quality per-
spective since the patient is at rest in the supine position. The brief recording
time limits the significance of the test to heart problems of a permanent na-
ture, while transiently occurring arrhythmias must be investigated by other
tests such as the ambulatory ECG (see below).

Resting ECGs are today conventionally interpreted by computer, and
this involves software that derives a set of measurements describing wave-
form morphology and rhythm. Due to the good signal quality of resting
ECGs, P wave information can be part of the analysis even if the P waves
are small; such information is a prerequisite for correct classification of atrial
arrhythmias. Although some basic signal processing is needed when analyz-
ing a resting ECG (see Chapter 7), the big challenge has been to develop
software that satisfactorily implements all the different criteria that are ap-
plied by the human interpreter to the ECG. While the diagnostic accuracy
of a modern system is very good, the ECG print-out is usually checked by a
physician to assure that the diagnosis is correct.

Once a resting ECG has been diagnosed, the signal is stored in a database
for retrieval, if necessary, at a later date. Database storage facilitates serial
ECG analysis in which two or more successive ECG recordings from the
same patient are compared to reveal possible changes related, for example,
to myocardial infarction. Unfortunately, interrecording changes in the ECG
caused by nonphysiological factors, such as different electrode placement or
positional changes of the heart, degrade the reliability of serial analysis.
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6.6.2 Intensive Care Monitoring

A patient who has suffered myocardial infarction or undergone heart surgery
is placed in an intensive care unit (ICU) or coronary care unit (CCU). Such
a unit has a number of beds wired to a central computer so that the ECG
of each individual patient can be continuously monitored. The objective of
ECG monitoring is primarily to detect life-threatening arrhythmias, such
as ventricular fibrillation, at a very early stage. It is also important to
detect episodes of acute myocardial ischemia by monitoring changes in the
ST segment. Of the five ECG applications discussed in this section, intensive
care monitoring is the only one which is critically dependent on real-time
signal processing: a serious event such as cardiac arrest must be detected
within a few seconds so that the staff can be alerted to immediately begin
emergency life-saving procedures.

The ECG signal is recorded under conditions associated with consider-
able amounts of noise and artifacts caused by, for example, muscle activity
and changes in body position. Poor signal quality produces an increased
number of false alarms and reduced diagnostic performance. As a result,
the intensive care staff must deal with increased distraction and workload,
sometimes leading to critical cardiac events being overlooked. Since the pa-
tient’s stay at the ICU/CCU may last for more than a week, it is important
to address the signal quality issue. With the current trend of continuously
monitoring the 12-lead ECG rather than a subset of leads, this issue is even
more crucial since more leads are liable to result in more problems.

6.6.3 Ambulatory Monitoring

Ambulatory ECG monitoring is used to identify patients with transient
symptoms, e.g., palpitations, light-headedness, or syncope, which are in-
dicative of arrhythmias. Another group of patients are those at high risk of
sudden death after infarction. Ambulatory monitoring is also used in pa-
tients who are on antiarrhythmic drugs and whose reaction to the therapy
needs to be assessed. During 24 hours or more of normal daily activities,
the patient carries a solid state recording device that stores the ECG. A
3-lead configuration is often used because the 12-lead ECG is impractical
in these recording conditions. The patient is instructed to note activities
and symptoms in a diary, used later to facilitate assessment of the ECG.
The connection between symptoms and arrhythmia can be made even more
precise by asking the patient to press the event button of the device when-
ever a symptom occurs. The ambulatory ECG recording technique is also
called Holter monitoring after its inventor Norman Holter who introduced
the first portable (analog) device to record an ECG in the late 1950s [40].
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The ambulatory recording technique has since then also been successfully
utilized in other applications such as the monitoring of EEG (see page 43)
or blood pressure.

Digital storage of a 24-hour, three-lead ambulatory ECG requires con-
siderable amount of memory. For many years, it was far from feasible to
manufacture portable recorders with sufficient memory, and, therefore, data
compression algorithms became a hot research topic in ECG signal pro-
cessing; Section 7.6 describes the major principles behind such algorithms.
Although current memory technology can easily accommodate 24 hours or
more of uncompressed ECG, data compression remains an important aspect
since it is needed, for example, when storing large numbers of ambulatory
ECG recordings in a database available for later retrieval and scrutiny.

Once the patient has returned the device to the hospital, the recorded
ECG is analyzed by computer with respect to the occurrence of arrhyth-
mias. The results are then assessed by a physician or technician to make
sure that artifacts, sometimes numerous, have not jeopardized the analysis
and introduced false arrhythmias. For several years, much emphasis was
placed on developing algorithms for classification of beat morphologies since
it was believed that the VPB count per hour represented an important risk
factor in sudden death. Although it was later shown that this belief was
unfounded, VPB detection remains an essential part of the analysis of am-
bulatory ECGs. For example, it is necessary to deal with the presence of
ectopic beats when an ECG is analyzed with respect to heart rate variability.
The latter type of analysis in Holter monitoring has shown great promise in
predicting mortality rates in patients after myocardial infarction. Another
important use of Holter monitoring is for the detection of silent ischemia
where changes in the ST segment are analyzed.

Diagnosis of atrial arrhythmias using the ambulatory ECG is rendered
difficult by the fact that P waves are frequently masked by noise and artifacts.
As a result of this, it is extremely difficult to design algorithms for P wave
detection that give a reliable diagnosis.

6.6.4 Stress Test

Exercise stress testing is a method of investigating the ability of the heart
to cope with physical work. When the body works harder, the demand for
oxygen increases, and the heart needs to pump more blood. With the stress
test it is possible to assess if the blood supply to the arteries that supply
the heart is sufficient; for example, the test can be used to diagnose patients
with angina pectoris who may have suffered from undiagnosed episodes of
silent ischemia.
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Figure 6.18: Exercise stress testing using an ergometer bicycle.

Exercise usually starts at a low workload, and the load is thereafter in-
creased progressively; either a bicycle (Figure 6.18) or a treadmill is used.
During exercise, the standard 12-lead ECG is recorded and subjected to
real-time signal processing to provide the physician with a reliable ECG.
The processed signal can be monitored on a screen together with trends
that describe the time evolution of different ECG measurements, notably
changes in the ST segment. The stress test is terminated when the patient
experiences fatigue, when symptoms like chest pain and shortness of breath
prevent further exercise, or when abnormal ECG changes appear. The over-
all response to exercise is assessed in terms of maximum workload, maximum
heart rate, ECG changes, blood pressure, and respiratory rate. In addition,
the recovery period subsequent to exercise is assessed to determine if the
ECG returns to its initial appearance before exercise.

Figures 6.19(a) and (b) illustrate the ECG reaction observed in a nor-
mal subject and a patient suffering from myocardial ischemia, respectively.
In the normal ECG the ST depression that develops during exercise largely
disappears after 4 minutes’ recovery. On the other hand, for the ischemic pa-
tient the ST depression endures and the ST segment actually starts to slope
slightly downwards after 4 minutes’ recovery. It should be noted that the
much shortened QT interval observed at peak exercise is primarily explained
by the higher heart rate.

Considering the difficult circumstances under which the exercise ECG is
recorded, the production of accurate measurements by signal processing has
attracted much research attention [41–43]. Especially at high workloads,
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(a)

(b)

Figure 6.19: ECG reaction during exercise stress test for (a) a healthy subject
and (b) a patient suffering from myocardial ischemia. The beats were noise-reduced
using exponential averaging. Note that the beat at peak exercise is shorter because
of the higher heart rate.

baseline wander and EMG noise seriously degrade the signal quality and
preclude direct measurements from the ECG. Ensemble averaging is con-
ventionally implemented in commercial systems for stress testing in order to
produce a noise-reduced ECG. Exponential averaging or related recursive al-
gorithms are commonly used since it is essential to track the exercise-induced
changes in the ST segment (see Section 4.3.3). Although VPBs are of little
interest per se in stress testing, their presence must nonetheless be deter-
mined in order to exclude them from averaging since that technique only
involves sinus beats.

6.6.5 High-Resolution ECG

For many years the interpretation of resting ECGs was based on measure-
ments derived from waves whose amplitude were at least several tens of
microvolts; waves with smaller amplitudes were ignored since these were al-
most always caused by noise. This limitation was, however, removed with the
advent of the high-resolution ECG with which it became possible to detect
signals on the order of 1 µV thanks to signal averaging techniques (therefore,
these signals are sometimes denoted “micropotentials”). The high-resolution
ECG has helped unlock novel information and has demonstrated that signal
processing for the purpose of noise reduction is a clinically viable technique.
The acquisition procedure is usually the same as for the resting ECG, except
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that the signal is recorded over an extended time period so that a sufficiently
low noise level is attained, i.e., sufficiently many heartbeats must be available
for averaging.

In contrast to the averaging of evoked potentials, where information is
available on when the external stimulus is elicited, the time reference (“fidu-
cial point”) must be determined from each individual heartbeat before en-
semble averaging can be performed. The fiducial point must be accurate,
otherwise low-amplitude, high-frequency components of the ECG will be dis-
torted by smearing (cf. Section 4.3.6 on the effects of latency shifts). The
high-resolution ECG rests on the assumption that the signal to be esti-
mated has a fixed beat-to-beat morphology, whereas signal averaging during
exercise must be able to track slow changes in morphology. Since the high-
resolution ECG is often expected to contain high-frequency components,
the sampling rate is at least 1 kHz (a lower sampling rate is sufficient in the
other, above-mentioned ECG applications).

Several subintervals of the cardiac cycle have received special attention
in high-resolution ECG analysis, and low-level signals have been considered
in connection with

• the bundle of His which depolarizes during the PR segment, i.e., an
interval which in the resting ECG is considered silent [44, 45],

• the terminal part of the QRS complex and the ST segment where late
potentials may be present [46–48],

• intra-QRS potentials [49–51], and

• the P wave [52–54].

Of these four applications, the analysis of late potentials has received the
most widespread clinical attention. Late potentials may be found in patients
with myocardial infarction where ventricular depolarization can terminate
many milliseconds after the end of the QRS complex (Figure 6.20). This
prolongation is due to delayed and fragmented depolarization of the cells
in the myocardium which surround the dead region (scarred tissue) caused
by infarction; the conduction capability of the bordering cells is severely
impaired by infarction. Many studies have demonstrated the importance of
late potentials when, for example, identifying postinfarct patients at high
risk of future life-threatening arrhythmias [55].
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Figure 6.20: (a) The high-resolution ECG obtained by signal averaging the ortho-
gonal X, Y, and Z leads. (b) The terminal part of the QRS complex and the
ST segment, i.e., the interval shaded gray in (a), is magnified 10 times in amplitude
to better display the small undulations known as late potentials.
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Chapter 7

ECG Signal Processing

Electrocardiographic analysis was one of the very first areas in medicine
where computer processing was introduced [1–3]. Early work mostly dealt
with the development of decision tree logic for ECG interpretation, mim-
icking the rules a cardiologist would apply. It soon became quite evident,
however, that the outcome of computer interpretation was critically depen-
dent on the accuracy of the measurements. As a result, the role of signal
processing has become increasingly important in producing accurate mea-
surements, especially when analyzing ECGs recorded under ambulatory or
strenuous conditions. In addition, theoretical advances in signal processing
have contributed significantly to a new understanding of the ECG signal
and, in particular, its dynamic properties.

So far, no system offers a “universal” type of ECG signal analysis, but
systems are designed to process signals recorded under particular conditions.
It is, therefore, customary to speak of systems for resting ECG interpreta-
tion, stress testing, ambulatory ECG monitoring, intensive care monitoring,
and so on. Common to all these systems is a set of algorithms which con-
dition the signal with respect to different types of noise, extract basic ECG
measurements of wave amplitudes and durations, and compress the data for
efficient storage or transmission. The block diagram in Figure 7.1 presents
this set of signal processing algorithms, i.e., filtering for noise reduction,
QRS detection, wave delineation, and data compression; their respective de-
scriptions define the scope of the present chapter. While these algorithms
are frequently implemented to operate in sequential order, information on
the occurrence time of a QRS complex, as produced by the QRS detector, is
sometimes incorporated into the other algorithms to improve performance.
The complexity of each algorithm varies from application to application so
that, for example, noise filtering performed in ambulatory monitoring is
much more sophisticated than that required in resting ECG analysis.
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Wave 
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Figure 7.1: Algorithms for basic ECG signal processing. The timing information
produced by the QRS detector may be fed to the blocks for noise filtering and data
compression (indicated by gray arrows) to improve their respective performance.
The output of the upper branch is the conditioned ECG signal and related temporal
information, including the occurrence time of each heartbeat and the onset and end
of each wave.

Before describing the details of the algorithms for basic ECG signal pro-
cessing, we will provide a brief introduction on their use and the analysis
which often follows.

ECG filtering. Considerable attention has been paid to the design of
filters, which may have linear or nonlinear structures, for the removal of
baseline wander and powerline interference, see Sections 7.1 and 7.2, respec-
tively. Both these types of disturbance imply the design of a narrowband
filter. Removal of noise due to muscle activity represents another important
filtering problem being much more difficult to handle because of the substan-
tial spectral overlap between the ECG and muscle noise (Section 7.3). This
circumstance is identical to the situation where the EEG signal is disturbed
by muscle noise, see page 74. In contrast to the EEG, muscle noise present
in the ECG can be reduced whenever it is appropriate to employ techniques
that benefit from the fact that the ECG is a recurrent signal. For example,
ensemble averaging techniques used for noise reduction of evoked potentials,
described in Chapter 4, can be successfully applied to time-aligned heart-
beats for reduction of muscle noise.

The filtering techniques described in Sections 7.1–7.3 are primarily used
for preprocessing of the signal and have as such been implemented in a wide
variety of systems for ECG analysis. It should be remembered, however, that
filtering of the ECG, as with any other type of biomedical signal, is contex-
tual and should be performed only when the desired information remains
undistorted. This important insight may be exemplified by filtering for the
removal of powerline interference. Such filtering is suitable in a system for
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the analysis of heart rate variability, whereas it is inappropriate in a system
for the analysis of late potentials, as late potentials spectrally overlap the
interference.

A major concern when filtering out noise is the degree to which the QRS
complexes influence the output of the filter. The QRS complex acts, in fact,
as an unwanted, large-amplitude impulse input to the filter. Since linear,
time-invariant filters are generally more sensitive to the presence of such
impulses, filters with a nonlinear structure may be preferable. In order to
assure that a filter does not introduce unacceptable distortion, its perfor-
mance should be assessed by means of simulated signals so that distortion
can be exactly quantified.

QRS detection. The presence of a QRS complex and its occurrence time
is basic information required in all types of ECG signal processing. The
design of a QRS detector, described in Section 7.4, is of crucial importance
since poor detection performance may propagate to subsequent processing
steps and, consequently, may limit the overall performance of the system.
Beats which remain undetected constitute a more severe error than do false
detections; the former type of error can be difficult to correct at a later
stage in the chain of processing algorithms, while, hopefully, false detections
can be eliminated by, for example, an algorithm for classification of QRS
morphologies.

Once the QRS complex has been detected, the T wave can be analyzed
since ventricular repolarization always follows depolarization. Conversely,
the P wave does not lend itself as easily to analysis since atrial and ven-
tricular rhythms may be independent of each other. In the vast majority of
cases, however, atrial and ventricular rhythms are associated so that P wave
detection may be based on a backward search in time beginning at the QRS
complex and ending at the end of the preceding T wave. The success rate of
the P wave detector is strongly dependent on the noise level of the ECG. As
a result, comprehensive rhythm interpretation, which assumes the availabil-
ity of P wave information, is precluded from those applications where the
ECG signal is relatively noisy. Further aspects of the problem of detecting
P waves can be found in, e.g., [4–8].

Wave delineation. Since essential diagnostic information is contained in
the wave amplitudes and durations of a heartbeat, cf. Figure 6.10, wave delin-
eation represents an important step in ECG signal processing (Section 7.5).
The design of such delineation algorithms continues to receive attention with
the all-embracing goal of elegantly handling the fact that the signal ampli-
tude is low at the wave boundaries and often obscured by noise waves. The
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lack of universally acknowledged rules for finding the onset and end of ECG
waves is another factor that makes the design process challenging. Once
the onset and end of a wave have been determined, its duration and peak
amplitude can be readily computed.

Data compression. The ECG signal exhibits a certain amount of redun-
dancy, as manifested by correlation between adjacent samples, the recurrence
of heartbeats with similar morphology, and the relative resemblance between
different leads. Considerable savings can be achieved in terms of storage ca-
pacity and transmission time by exploiting the different types of redundancy
so that each sample can be represented by fewer bits than in the original
signal. The use of data compression is, however, only acceptable as long
as the desired diagnostic information is preserved in the reconstructed sig-
nal. The major approaches to designing methods for ECG data compression
are presented in Section 7.6, together with various considerations on how to
evaluate performance.

Further analysis. The above aspects of basic ECG signal processing
are usually accompanied by further analysis dealing with morphology and
rhythm. Feature extraction is performed for the purpose of characterizing
the morphology of a QRS complex. Although the durations and amplitudes
that result from wave delineation contain important diagnostic information,
additional features are required to reliably group beats with similar mor-
phology into the same cluster. One approach to feature extraction is to
derive a set of “heuristic” features which, e.g., describe the area, polarity,
and slopes of the waves. Another, more robust, approach is to make use of
the coefficients that result from the correlation of each beat with either a
set of orthonormal basis functions or a set of QRS templates, being either
predefined or created dynamically during the analysis.

Based on the set of extracted features, clustering of QRS morphologies
can be performed. In its simplest form, clustering may be used to single
out beats that deviate from the predominant morphology, which is usually
that belonging to the normal sinus beat. Once this is done, beats belonging
to the “sinus cluster” can be subjected, for example, to ensemble averaging
or heart rate variability analysis. In other situations, there is reason to
study the entire range of beat clusters. Since clustering does not assign a
label with a physiological meaning to a beat, it may be necessary to classify
the beats according to their cardiac origin. The steps of feature extraction
and clustering were briefly described in Section 5.6.1 within the context of
electromyographic analysis and clustering of motor unit action potentials.
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Rhythm analysis is, for natural reasons, based on the pattern of RR inter-
vals, but must also embrace morphologic information since most arrhythmias
are manifested by a joint deviation in rhythm and morphology. The scope
of rhythm analysis is strongly application-dependent. For example, rhythm
analysis in a system for resting ECG interpretation is limited by the very
short duration of the recording and thus only deals with less complicated,
persistent arrhythmias, whereas a system for continuous arrhythmia moni-
toring is designed to detect life-threatening, transient arrhythmias such as
ventricular fibrillation.

In addition to these types of analysis, a wide variety of specialized signal
processing algorithms have been developed over the years [9]. A small se-
lection of such algorithms include those for noise reduction in stress testing,
detection of ST–T segment changes in ischemia monitoring, characterization
of heart rate variability (Chapter 8), detection and characterization of “un-
organized” arrhythmias such as atrial and ventricular fibrillation, serial com-
parison of ECG/VCG recordings, interpretation of pacemaker performance
(“pacemaker ECG”), detection of late potentials, and dynamic analysis of
the repolarization phase including detection of T wave alternans.

7.1 Baseline Wander

Removal of baseline wander is required in order to minimize changes in beat
morphology which do not have cardiac origin. This is especially important
when subtle changes in the “low-frequency” ST–T segment are analyzed for
the diagnosis of ischemia, which may be observed, for example, during the
course of a stress test [10, 11]. The frequency content of baseline wander
is usually in the range below 0.5 Hz. However, increased movement of the
body during the latter stages of a stress test further increases the frequency
content of baseline wander, see Figure 7.2. Patients unable to perform a
traditional treadmill or ergometer stress test may still be able to perform
a stress test by either sitting, running an ergometer by hand, or using a
special rowing device. In such cases, baseline wander related to motion of
the arms severely distorts the ECG signal. The bandwidth of such baseline
wander is considerably larger than that caused by respiratory activity and
perspiration.

We will below describe the two major techniques employed for the re-
moval of baseline wander from the ECG, namely, linear filtering and poly-
nomial fitting. Linear filtering can be further divided into filtering based on
time-invariant or time-variant structures.
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(a)

(b)

Figure 7.2: (a) Electrocardiographic baseline wander due to sudden body move-
ments. The amplitude of the baseline wander is considerably larger than that of
the QRS complexes. (b) A close-up in time (10×) of the ECG signal framed in (a).

7.1.1 Linear, Time-Invariant Filtering

The design of a linear, time-invariant, highpass filter involves several consid-
erations, of which the most crucial are the choice of filter cut-off frequency
and phase response characteristic. The cut-off frequency should obviously
be chosen so that the clinical information in the ECG signal remains undis-
torted while as much as possible of the baseline wander is removed. Hence,
it is essential to find the lowest frequency component of the ECG spec-
trum. In general, the slowest heart rate is considered to define this par-
ticular frequency component; the PQRST waveform is attributed to higher
frequencies. During bradycardia the heart rate may drop to approximately
40 beats/minute, implying that the lowest frequency contained in the ECG
is approximately 0.67 Hz [12]. Since the heart rate is not perfectly regular
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Figure 7.3: Linear, time-invariant, highpass filtering and the effect of a nonlinear
phase response. The original ECG (top panel) was processed with two filters having
almost identical magnitude functions, but with either a highly nonlinear phase
(solid line) or a zero-phase (dotted line). The signal produced by the filter with the
nonlinear phase contains severely distorted ST–T segments (middle panel), while
the zero-phase filter introduces virtually no distortion at all (bottom panel). The
filter cut-off frequency was Fc = 0.5 Hz, and the sampling rate was Fs = 250 Hz.

but always fluctuates from one beat to the next, it is necessary to choose a
slightly lower cut-off frequency, approximately Fc = 0.5 Hz. If too high a
cut-off frequency is employed, the output of the highpass filter contains an
unwanted, oscillatory component which is strongly correlated to the heart
rate.

The other crucial design consideration is related to the properties of
the phase response and, consequently, the choice of filter structure. Linear
phase filtering is highly desirable in order to prevent phase distortion from
altering various wave properties of the cardiac cycle such as the duration of
the QRS complex, the ST–T segment level, or the end point of the T wave,
see Figure 7.3. It is well-known that FIR filters can have an exact linear
phase response, provided that the impulse response is either symmetric or
antisymmetric [13, Ch. 4]. On the other hand, IIR filters introduce signal
distortion due to the nonlinear phase response.
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If we assume that the filter cut-off frequency is Fc = 0.5 Hz, and the
signal is sampled at a rate of Fs = 250 Hz, the corresponding normalized
cut-off frequency becomes

fc =
Fc

Fs
= 0.002, (7.1)

which thus establishes that baseline wander removal must be treated as a
narrowband filtering problem, i.e., only a fraction of the signal spectrum
should be attenuated. Although a linear phase FIR, highpass filter can be
designed in numerous ways, the result is invariably a filter with a very long
impulse response. A straightforward approach to the design of a filter is to
choose the ideal highpass filter as a starting point,

H(ejω) =
{

0, 0 ≤ |ω| ≤ ωc;
1, ωc < |ω| < π,

(7.2)

where ωc = 2πfc. Since the corresponding impulse response has an infinite
length,

h(n) =
1
2π

∫ π

ωc

1 · ejωndω +
1
2π

∫ −ωc

−π
1 · ejωndω

=

⎧⎪⎨⎪⎩
1 − ωc

π
, n = 0;

−sin(ωcn)
πn

, n = ±1,±2, . . . ,

(7.3)

truncation can be done by multiplying h(n) by a rectangular window func-
tion, defined by

w(n) =
{

1, |n| = 0, . . . , L;
0, otherwise,

(7.4)

or by another window function if more appropriate, see [14, Ch. 8]. Such
an FIR filter should have an order 2L of approximately 1150 to achieve a
reasonable trade-off between stopband attenuation (at least 20 dB) and the
width of the transition band, see Table 7.1. Although the symmetry of the
impulse response can be exploited to reduce the number of multiplications in
the filter, a considerable number of multiplications is nevertheless required.
The use of a filter with lower order, for example, 400, hardly provides any
attenuation at all in the stopband, see Figure 7.4.1

1The well-informed filter designer may, at this point, argue that more advanced design
techniques will produce shorter filters than does the windowing method. While this is
certainly true, the use of any such advanced technique will not sufficiently reduce filter
complexity.
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Table 7.1: Filter orders required to achieve a certain stopband attenuation using
the window method, in this case with a Hamming window. The cut-off frequency
of the highpass filter is 0.5 Hz, the stopband interval is 0–0.3 Hz, and the sampling
rate is 250 Hz.

Minimum stopband Required filter
attenuation (dB) order, 2L

20 1142
30 1564
40 1884
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Figure 7.4: Frequency response for highpass filters designed with the window
method, using a Hamming window and a filter order of 400 (dash–dotted line)
and 1142 (solid line). The frequency response of the forward-backward, fifth-order
Butterworth filter is also displayed (dashed line). The cut-off frequency Fc was
0.5 Hz, and the sampling rate was 250 Hz.

A number of techniques exist with which the above problem of filter
complexity can be dramatically reduced, while preserving the linear phase
property. These techniques include

• forward-backward IIR filtering,

• insertion of zeros into an FIR filter, and
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• sampling rate alteration.

All three techniques are briefly described in the following.

Forward-backward IIR filtering. An IIR filter meets the magnitude
specifications more easily with a much lower filter order due to the freedom
of positioning its poles. However, this property is accompanied by a non-
linear phase response. The use of forward-backward filtering remedies this
disadvantage since the overall result is filtering with a zero-phase transfer
function. Implementation of such a filtering scheme involves three steps:
processing of the input signal x(n) with an IIR filter h(n), time reversal
of the filter output, and repeated processing with h(n), followed by time
reversal of the doubly filtered signal to produce the output signal s(n), or,
equivalently,

z1(n) = h(n) ∗ x(n), (7.5)
z2(n) = h(n) ∗ z1(−n), (7.6)
s(n) = z2(−n). (7.7)

The overall effect of this scheme is established by determining the input–
output relationship in the frequency domain. Using the discrete-time Fourier
transform of a real-valued signal x(n),

X(ejω) =
∞∑

n=−∞
x(n)e−jωn, (7.8)

and the transform property

x(−n) F←→ X∗(ejω),

(7.5)–(7.7) can be combined and written as

S(ejω) = Z∗
2 (ejω) = H∗(ejω)Z1(ejω)

= H∗(ejω)H(ejω)X(ejω)

= |H(ejω)|2X(ejω). (7.9)

Thus, x(n) is processed with a filter whose magnitude function is |H(ejω)|2
and phase function is zero, albeit that h(n) itself has a nonlinear phase
response. The order of the overall filter is twice that of h(n).

In order to exemplify forward-backward IIR filtering, the overall fre-
quency response for a fifth-order Butterworth filter is shown in Figure 7.4 for
fc = 0.5/250. It is evident that the frequency response is close to that of the
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FIR filter with an order of 1142, but with better attenuation of frequencies
close to zero. The number of multiplications required for forward-backward
IIR filtering is dramatically lower than that of straightforward FIR filtering;
the number of multiplications required in each of these approaches is the
subject of Problem 7.2.

Forward-backward IIR filtering is primarily a scheme for off-line process-
ing since the requirement of causality has to be relaxed when a time-reversed
signal is processed [15, 16]. If one is willing to accept a relatively short time
delay, this type of filtering can also be implemented in “almost” real time
by processing successive, overlapping signal segments [17]. The delay can be
reduced by cleverly choosing the initial conditions of the forward-backward
filters such that the initial transients at both ends of the filtered signal are
minimized [18].

The application of forward-backward filtering to baseline wander removal
becomes increasingly difficult at higher sampling rates, i.e., for 1000 Hz and
higher, since the poles of the filter move closer and closer to the unit circle,
or even outside, and the filter thus becomes unstable. Another potential
disadvantage of forward-backward filtering is that this technique is not easily
extended to handle time-variant filtering in which the cut-off frequency of
the highpass filter varies in time, see below.

Insertion of zeros into an FIR filter. Insertion of zeros into a finite
impulse response h0(n), designed for a much lower sampling rate Fs0 , is a
cheap way to reduce filter complexity [19]. The insertion of D − 1 zeros in
between every sample in h0(n),

h(n) =
{

h0(n/D), n = 0,±D,±2D, . . . ;
0, otherwise,

(7.10)

has the effect of a D-fold repetition of the corresponding filter transfer func-
tion H0(ejω): a result easily established by calculating the discrete-time
Fourier transform of h(n),

H(ejω) =
∞∑

n=−∞
h(n)e−jωn

=
∞∑

n=−∞
h0(n)e−jωnD

= H0(ejωD). (7.11)

The effect of zero insertion is illustrated in Figure 7.5, where the magni-
tude function |H0(ejω)| of an ideal highpass filter is shown together with the
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Figure 7.5: The effect of inserting zeros into the impulse response. (a) The
original magnitude function and (b) the magnitude function after insertion of four
zeros between each sample, i.e., D = 5. The stopbands occur at 50 and 100 Hz for a
sampling rate of Fs = 250 Hz and Fs0 = 50 Hz (half the sampling rate is indicated
by the dotted line).

function |H(ejω)| resulting from setting D = 5. The D-fold repetition of the
filter transfer function attenuates not only the desired baseline wander, but
also signal frequencies present at multiples of the original sampling rate Fs0

of h0(n). The shape of the frequency response increasingly resembles the
shape of a comb as the number of inserted zeros increases, and, therefore,
such filters are commonly referred to as comb filters. In certain situations,
the repetition property can be explored for attenuating powerline interfer-
ence with the baseline filter; this requires that the powerline frequency be
equal to the ratio of the final sampling rate Fs to D or be a multiple of that
ratio [19]. However, it is essential to realize that this type of multiple stop-
band filtering can severely distort the diagnostic information, for example,
that of the QRS complex.

Sampling rate alteration. Filter complexity can be drastically reduced
by the introduction of sampling rate alteration in which filtering of baseline
wander is performed on a signal sampled at a much lower rate than the
original ECG. Sampling rate alteration involves the two steps of
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Figure 7.6: Baseline removal by means of linear highpass filtering. The baseline
wander is estimated by an FIR lowpass filter h(m), using sampling rate decima-
tion and interpolation by a factor of D. The resulting baseline estimate y(n) is
subtracted from the observed signal x(n), assuming that x(n) has been appropri-
ately delayed. Note that lowpass filtering is included in the blocks representing
decimation and interpolation.

1. decimation of the original signal to a lower sampling rate better suited
to filtering, and

2. interpolation of the processed signal back to its original sampling rate.

Since decimation removes the high-frequency content of the signal, the pre-
viously mentioned highpass filtering technique for baseline wander removal
has to be replaced by a lowpass filter which instead outputs an estimate
of the baseline wander. Once the baseline estimate has been interpolated
to the original sampling rate, it can be subtracted from the original signal
which then, in effect, causes the signal to be highpass filtered. The block
diagram in Figure 7.6 shows the different steps involved in filtering based on
decimation and interpolation.

Decimation by an integer factor D requires that the original signal x(n)
be first bandlimited to |ω| ≤ π/D to avoid aliasing [13, Ch. 10]. Conse-
quently, the decimation process must involve two different steps, namely,
lowpass filtering using a linear phase filter ha(n) (where “a” denotes that
the filter is required for alteration of the sampling rate),

z(n) = ha(n) ∗ x(n), (7.12)

followed by a factor-of-D downsampling,2

zd(m) = z(mD). (7.13)

2Strictly speaking, sampling rate alteration is not a time-invariant procedure, but, for
all practical purposes, it can here be considered as such since the spectral content of the
signal component to be extracted is very low-frequency.
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Ideally, the specifications of ha(n) should be such that frequencies in the
range π/D ≤ |ω| ≤ π are eliminated,

Ha(ejω) =
{

1, |ω| < π/D;
0, π/D ≤ |ω| ≤ π.

(7.14)

Since the frequency content of baseline wander is typically far below π/D,
the definition of the transition band of ha(n) does not have to be nearly
as strict as suggested by (7.14). Instead, the cut-off frequency of ha(n)
can be chosen well below π/D, thus implying that low-order FIR filters are
appropriate for decimation.

Once x(n) has been decimated to a lower sampling rate, the design spec-
ifications of the lowpass filter h(m) are much less demanding since the nor-
malized cut-off frequency fc is now D times higher than the original one
given in (7.1),

fc =
Fc

Fs
D = 0.002D. (7.15)

The design of h(m) can be based on the previously mentioned windowing
method or, better, by considering some criterion-based technique which pro-
duces a filter with linear phase [20].

The output of the filter h(m) constitutes the estimated baseline wander
which, prior to being subtracted from x(n), must be interpolated in order
to have the original sampling rate, see the block diagram in Figure 7.6. The
interpolation process is initialized by insertion of zeros between successive
samples in the output signal zf (m),

zu(n) =
{

zf (n/D), n = 0,±D,±2D, . . . ;
0, otherwise.

(7.16)

As already pointed out in (7.11), this operation causes periodic repetition of
the spectrum for a downsampled signal, and, consequently, zu(n) must be
lowpass filtered to eliminate undesired spectral components. The lowpass
filter ha(n), previously used for decimation, is also used for interpolation
since the alteration factors D are identical (although the interpolation filter
should have an additional gain factor D in order to assure that the power of
the baseline wander estimate is correct).

From a computational point of view, it is useful to observe that ha(n)
only needs to produce an output for every mth sample in the decimation
process, cf. the convolution in (7.12). Furthermore, filtering of zu(n) for
interpolation is much simplified by the fact that (m − 1) out of m samples
are equal to zero, thus making most filtering multiplications unnecessary.
Both these properties can easily be profited from when ha(n) is assigned
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Figure 7.7: Illustration displaying schematic spectra of the ECG (here represented
by its fundamental frequency which reflects heart rate) and baseline wander at a
(a) low heart rate and (b) high heart rate. The magnitude function of the highpass
filter (dashed line) has a cut-off frequency fc which increases at higher heart rates.

an FIR structure. Further details on how to design systems for sampling
rate alteration can be found in [13, Ch. 10]. For example, large alterations
in sampling rate are more efficiently implemented using several, successive
stages of decimation; interpolation is then implemented analogously [21].

7.1.2 Linear, Time-Variant Filtering

The cut-off frequency of the filter for baseline wander removal was in the
previous section related to the minimal heart rate in order to avoid distor-
tion of the signal. Unfortunately, filtering based on such a choice of cut-off
frequency cannot sufficiently remove baseline wander that may occur, for
example, during the latter stages of a stress test. Since the heart rate in-
creases as the workload of the ergometer increases, it may be advantageous
to couple the cut-off frequency to the prevailing heart rate, rather than to
the lowest possible heart rate, to further improve baseline removal. Fig-
ure 7.7 illustrates changes in the ECG spectrum which occur as the heart
rate increases.

The notion “prevailing heart rate” can be represented in several ways,
of which the instantaneous RR interval length estimate r(n) is a simple but
useful way, and, consequently, heart rate is inversely proportional to r(n).
It is assumed that two successive heartbeats occur at the times θi and θi+1;
the corresponding RR interval is then given by

ri+1 = θi+1 − θi. (7.17)

At the occurrence times of the beats, the instantaneous RR interval estimate
is defined as r(θi) = ri and r(θi+1) = ri+1, whereas linear interpolation may,



468 Chapter 7. ECG Signal Processing

for example, be used to define the interior values of the interval [θi, θi+1] at
different time instants,

r(n) = ri +
ri+1 − ri

θi+1 − θi
(n − θi), n = θi, . . . , θi+1. (7.18)

Since the time-varying cut-off frequency fc(n) is related to heart rate, it is
desirable to make it inversely proportional to the instantaneous RR interval
estimate r(n),

fc(n) ∼ 1
r(n)

. (7.19)

The time-varying cut-off frequency fc(n) is used to design a lowpass filter
at every time instant n, for example, integrated with the filter structure
in Figure 7.6. Considering the ideal lowpass filter, a time-varying impulse
response hI(k, n) can be derived from the inverse DTFT of its frequency
response,

hI(k, n) =
1
2π

∫ ωc(n)

−ωc(n)
1 · ejωkdω

=

⎧⎪⎪⎨⎪⎪⎩
2πfc(n)

π
, k = 0;

sin(2πfc(n) · k)
πk

, k �= 0,

(7.20)

where k denotes time within the impulse response, and n denotes the time
at which the filter should be applied; ωc(n) = 2πfc(n) denotes the variable
cut-off radian frequency. In practice, an upper limit must be imposed on
fc(n) in order to avoid waveform morphology being distorted during a very
short RR interval. The problem of designing several lowpass filters, each
having a slightly different cut-off frequency, can be reduced to the design
of one single, prototype lowpass filter subjected to a simple transformation
to produce the other filters; such a transformation of filter coefficients is
discussed in Problem 7.5.

Linear filtering based on filters with variable cut-off frequency was ini-
tially suggested for off-line processing of ECG signals [22] and later extended
for use in on-line processing [23]. Other approaches to linear, time-variant
filtering have also been described based on adaptive, LMS techniques [7, 24].

Baseline wander removal relying on linear, time-invariant or time-variant
FIR filtering is illustrated by the example in Figures 7.8(a)–(c), where the
baseline wander changes relatively fast at a heart rate of approximately
120 beats/minute. It is evident from Figure 7.8(c) that the time-variant
filter, with its higher cut-off frequency, performs better than does the time-
invariant filter, where the fixed cut-off frequency is related to the lowest
possible heart rate.
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Figure 7.8: Comparison of three methods for baseline wander removal at a heart
rate of approximately 120 beats/minute. (a) The original ECG signal and the
signals resulting from (b) time-invariant filtering, (c) heart rate dependent filtering,
and (d) cubic spline fitting (see page 470).
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Figure 7.9: Polynomial fitting for baseline wander removal based on a series of
knots positioned within the PQ intervals. To facilitate interpretation, the resulting
baseline estimate is plotted with an offset from the signal.

7.1.3 Polynomial Fitting

An alternative to baseline wander removal with linear filtering techniques is
to fit a polynomial to representative samples (“knots”) of the ECG, with one
knot being defined for each beat. The knots are chosen from the “silent”,
isoelectric line which, in most heart rhythms, is best represented by the PQ
interval. The polynomial estimating the baseline is fitted by requiring it
to pass through each of the knots smoothly, see Figure 7.9. In contrast to
linear filtering, baseline wander removal by polynomial fitting requires that
the QRS complexes first be detected and that the corresponding PQ intervals
be accurately determined.

Using a first-order polynomial, successive knots are simply connected by
straight lines [25]. However, the resulting baseline estimate tracks variations
rather poorly, and its derivatives at the knots are discontinuous. By using
higher-order polynomials, the likelihood of producing an accurate baseline
estimate increases, although it is associated with increased computational
complexity. Instead of letting the order increase as the number of knots
increases, third-order polynomial fitting to successive triplets of knots rep-
resents a popular approach [26–29]. This technique is commonly referred
to as cubic spline baseline estimation and is described in more detail in the
following.

Since the cubic spline technique has its starting point in a Taylor series
expansion, we will present its development within a continuous-time frame-
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work; discretization of the technique is then straightforward. The knots of
successive beats located at the times ti are denoted,

x(ti), i = 0, 1, 2, . . . , (7.21)

and are assumed to have been determined by some suitable method. The
baseline estimate y(t) is computed for the interval [ti, ti+1] by incorporating
the three knots x(ti), x(ti+1), and x(ti+2) into the Taylor series expanded
around ti,

y∞(t) =
∞∑
l=0

(t − ti)l

l!
y(l)
∞ (ti), (7.22)

which, for a third-order polynomial description, is truncated to

y(t) = y(ti) + (t − ti)y(1)(ti) +
(t − ti)2

2
y(2)(ti) +

(t − ti)3

6
y(3)(ti), (7.23)

where y(l)(t) denotes the lth derivative of y(t), which is identical to y
(l)
∞ (t)

for l = 1, 2, and 3. Furthermore, the series expansion for the first deriva-
tive y(1)(t),

y(1)(t) = y(1)(ti) + (t − ti)y(2)(ti) +
(t − ti)2

2
y(3)(ti), (7.24)

is considered since it constrains the degree of polynomial change that may
take place at each knot. The goal is now to find appropriate values of y(ti),
y(1)(ti), y(2)(ti), and y(3)(ti) which will allow us to compute y(t) from (7.23).

As already pointed out, it is natural to require that y(t) passes through
the knot x(ti),

y(ti) = x(ti). (7.25)

We may also approximate the first derivative y(1)(ti) at ti by the slope be-
tween x(ti+1) and x(ti),3

y(1)(ti) ≈
x(ti+1) − x(ti)

ti+1 − ti
. (7.26)

In order to find the remaining two variables y(2)(ti) and y(3)(ti) in (7.23),
the Taylor series for y(t) and y(1)(t) is studied for t = ti+1,

y(ti+1) = y(ti) + y(1)(ti)∆ti1 + y(2)(ti)
∆t2i1

2
+ y(3)(ti)

∆t3i1
6

(7.27)

3This equation could just as well make use of ti−1 instead of ti; however, this was not
suggested in the original derivation of the cubic spline technique in [26].
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and

y(1)(ti+1) = y(1)(ti) + y(2)(ti)∆ti1 + y(3)(ti)
∆t2i1

2
, (7.28)

where

∆tij = ti+j − ti.

The left-hand side of the two equations in (7.27) and (7.28) can be deter-
mined in a way analogous to (7.25) and (7.26),

y(ti+1) = x(ti+1), (7.29)

y(1)(ti+1) ≈
x(ti+2) − x(ti)

ti+2 − ti
=

x(ti+2) − x(ti)
∆ti2

. (7.30)

With the values of y(ti+1) and y(1)(ti+1) inserted into (7.27) and (7.28), the
following solution for y(2)(ti) and y(3)(ti) is obtained,

y(2)(ti) =
6(y(ti+1) − y(ti))

∆t2i1

− 2(2y(1)(ti) + (y(ti+2) − y(ti))/∆ti2)
∆ti1

, (7.31)

y(3)(ti) = −12(y(ti+1) − y(ti))
∆t3i1

+
6(y(1)(ti) + (y(ti+2) − y(ti))/∆ti2)

∆t2i1
, (7.32)

where y(ti+2) is identical to the knot x(ti+2).
The baseline estimate y(t) in (7.23) is now completely specified and can

be computed within the interval [ti, ti+1]. Since the ECG is assumed to
be a discrete-time signal, y(t) is, of course, computed equidistantly in time
for tn = nT and subsequently subtracted from the ECG signal at samples
x(n) = x(tn). This procedure is then repeated for the next interval [ti+1, ti+2]
using the knots x(ti+1), x(ti+2), and x(ti+3), and so on. Problem 7.7 deals
with efficient computation of the baseline estimate, making use of a recursive
procedure.

The performance of the cubic spline technique is critically dependent
on the accuracy of the knot determination. While the PQ interval is rela-
tively easy to find in ECGs recorded during resting conditions, this interval
may be exceedingly difficult to delimit in recordings with muscle noise or
when certain types of chaotic arrhythmias are present, such as ventricular
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tachycardia [30, 31]. In the latter situation, the PQ interval is no longer
well-defined, and, therefore, the cubic spline technique is inapplicable.

The cubic spline approach results in linear filtering with a time-variable
cut-off frequency in the sense that the baseline estimate better tracks rapid
baseline wander when a fast heart rate is encountered. This behavior is
explained by the fact that more knots become available at faster heart
rates. On the other hand, polynomial fitting performs poorly when the
available knots are too far apart, a property illustrated by the example in
Figure 7.8(d). The problem of too few knots has been addressed by defining
additional knots within each beat, depending on the zero-crossing pattern
of the signal [32].

7.2 Powerline Interference (50/60 Hz)

Electromagnetic fields caused by a powerline represent a common noise
source in the ECG, as well as to any other bioelectrical signal recorded from
the body surface. Such noise is characterized by 50 or 60 Hz sinusoidal inter-
ference, possibly accompanied by a number of harmonics. Such narrowband
noise renders the analysis and interpretation of the ECG more difficult, since
the delineation of low-amplitude waveforms becomes unreliable and spuri-
ous waveforms may be introduced [33]. Although various precautions can
be taken to reduce the effect of powerline interference, for example, by se-
lecting a recording location with few surrounding electrical devices or by
appropriately shielding and grounding the location, it may still be necessary
to perform signal processing to remove such interference [34, 35]. Several
techniques have been presented for this purpose, ranging from straightfor-
ward linear, bandstop filtering to more advanced techniques which handle
variations in powerline frequency and suppress the influence of transients
manifested by the occurrence of QRS complexes.

7.2.1 Linear Filtering

A very simple approach to the reduction of powerline interference is to con-
sider a filter defined by a complex-conjugated pair of zeros that lie on the
unit circle at the interfering frequency ω0,

z1,2 = e±jω0 .

Such a second-order FIR filter has the transfer function

H(z) = (1 − z1z
−1)(1 − z2z

−1)

= 1 − 2 cos(ω0)z−1 + z−2. (7.33)
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Since this filter has a notch with a relatively large bandwidth, it will at-
tenuate not only the powerline frequency but also the ECG waveforms with
frequencies close to ω0. It is, therefore, necessary to modify the filter in
(7.33) so that the notch becomes more selective, for example, by introducing
a pair of complex-conjugated poles positioned at the same angle as the zeros
z1,2 but at a radius r,

p1,2 = re±jω0 , (7.34)

where 0 < r < 1. Thus, the transfer function of the resulting IIR filter is
given by

H(z) =
(1 − z1z

−1)(1 − z2z
−1)

(1 − p1z−1)(1 − p2z−1)

=
1 − 2 cos(ω0)z−1 + z−2

1 − 2r cos(ω0)z−1 + r2z−2
. (7.35)

The notch bandwidth is determined by the pole radius r and is reduced as r
approaches the unit circle. Figure 7.10 shows the impulse response and the
magnitude function for two different values of the radius, r = 0.75 and 0.95.
From Figure 7.10 it is obvious that the bandwidth decreases at the expense
of increased transient response time of the filter. The practical implication
of this observation is that a transient present in the signal causes a ringing
artifact in the output signal. For causal filtering, such filter ringing will
occur after the transient, thus mimicking the low-amplitude cardiac activity
that sometimes occurs in the terminal part of the QRS complex, i.e., late
potentials. Figure 7.11 shows one heartbeat without any contamination by
powerline interference and the ringing artifact that results from processing
with the IIR filter given in (7.35) using r = 0.97. This example clearly
demonstrates that uncritical use of linear, time-invariant filtering can have a
devastating effect on the ECG signal, significantly modifying its diagnostic
content.

More sophisticated linear filters than the above second-order IIR filters
can be designed for the removal of powerline interference, for example, by
increasing the filter order to obtain a narrower notch or by employing filter
design criteria involving both time and frequency properties. Since increased
frequency resolution is always obtained to the detriment of decreased time
resolution, it is impossible to design a linear, time-invariant filter which only
removes powerline interference while not introducing a certain amount of
ringing.
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Figure 7.10: Pole-zero diagram for two second-order IIR filters whose zeros are
identically positioned but whose poles are at a radius r of either 0.75 or 0.95. The
impulse response h(k) and the corresponding magnitude function are shown in the
left and right panels, respectively.
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Figure 7.11: Filtering of powerline interference. The original ECG signal without
powerline interference (top), the output signal from the second-order IIR filter de-
fined in (7.35) for r = 0.97 (middle), and the nonlinear filter defined in (7.41) with
transient suppression using α = 10 µV (bottom). Note that the ringing caused by
IIR filtering masquerades as late potentials. (Reprinted from Hamilton [36] with
permission.)

7.2.2 Nonlinear Filtering

From the above observation, it is obviously desirable to develop a method
for removal of powerline interference which is less sensitive to transients.
We will now describe a nonlinear filter based on the idea of subtracting a
sinusoid, generated internally by the filter, from the observed signal [36–
39]. The amplitude of the internal sinusoid is adapted to the powerline
interference present in the observed signal x(n). The adaptation process is
the key to making the filter less sensitive to transients and avoiding related
filter ringing. The internal sinusoid is generated by

v(n) = w0 sin(ω0n).

Taking into account the fact that the amplitude w0, in practice, is unknown
and changing with time, it is preferable to generate the sinusoid recursively
allowing us to update v(n) at every sample so that amplitude changes can
be tracked. The sinusoid can be generated by an oscillator defined by a pair
of complex-conjugated poles located on the unit circle at frequency ω0. The
transfer function for the oscillator is

H(z) =
V (z)
U(z)

=
1

1 − 2 cos ω0z−1 + z−2
, (7.36)
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and, accordingly, the sinusoid is generated by the following difference equa-
tion,

v(n) = 2 cos ω0v(n − 1) − v(n − 2) + u(n), (7.37)

using the initial conditions v(−1) = v(−2) = 0. The input signal u(n) is
given by

u(n) = δ(n), (7.38)

where δ(n) is the unit impulse function.
An error function e(n) is now introduced that indicates how well v(n)

predicts the powerline interference contained in the signal x(n),

e(n) = x(n) − v(n). (7.39)

Since this error definition suffers from a dependence on the DC level of
x(n), it must be modified so that it becomes insensitive to the DC level, for
example, by computing the first difference of e(n),

e′(n) = e(n) − e(n − 1)
= x(n) − x(n − 1) − (v(n) − v(n − 1)). (7.40)

We can, of course, use other types of filter to efficiently remove the DC level
while retaining the sinusoidal interference; however, the first difference filter
is extremely simple to implement. Depending on the sign of e′(n), the current
value of v(n) is either updated by a fixed positive or negative increment α or
kept constant to produce a new estimate v̂(n) of the powerline interference.
The update equation is given by

v̂(n) = v(n) + α sgn(e′(n)), (7.41)

where the sgn function has been defined earlier in (4.99). The output signal
y(n) of the nonlinear filter results from subtraction of v̂(n) from x(n),

y(n) = x(n) − v̂(n). (7.42)

The nonlinear equation in (7.41) implements the transient suppression
property of the filter since changes in amplitude are limited by the incre-
ment α. We note that too small a value of α causes the filter to poorly track
changes in amplitude of the powerline interference, whereas too large a value
of α causes the filter to introduce extra noise in y(n) because of the large
step alterations which will occur in v̂(n).



478 Chapter 7. ECG Signal Processing

0 100 200 300 400 500

-1000

0

1000

0 100 200 300 400 500

-1000

0

1000

0 100 200 300 400 500

-1000

0

1000

n

x
(n

)
y
(n

)
y
(n

)
(µ

V
)

(µ
V

)
(µ

V
)

(a)

(b)

(c)

Figure 7.12: Convergence properties of the nonlinear 50/60 Hz filter, illustrated
by processing (a) a purely sinusoidal signal x(n). The output signal y(n) of the
nonlinear filter is computed for a fixed increment of either (b) α = 10 µV or (c) α =
2 µV.

Before the next sample at time n+1 is processed, v(n) is replaced by its
estimate in (7.41),

v(n) = v̂(n), (7.43)

and then used in the recursion (7.37) to generate v(n + 1), and so on.
The performance of the nonlinear filter is exemplified in Figure 7.11. In

contrast to the above-mentioned IIR notch filter, no ringing artifact can be
discerned after the QRS complex when this filter is applied. In the ECG
signal, adaptation of the internal sinusoid primarily takes place during the
isoelectric line and the T wave; the duration of the QRS complex is short
enough not to significantly influence the interference estimate v̂(n) [38]. Fig-
ure 7.12 illustrates the convergence properties of the nonlinear filter: too
large a value of α will produce an output signal in which a substantial part
of the sinusoid remains.

The frequency characteristics of this filter are not easily analyzed due to
its nonlinear structure. By replacing the nonlinear update equation in (7.41)
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with a linear one,

v̂(n) = v(n) + αe′(n), (7.44)

the resulting filter can be identified as an IIR notch filter with the transfer
function [40]

H(z) =
(1 − α)(1 − 2 cos ω0z

−1 + z−2)
1 − (α + 2(1 − α) cos ω0)z−1 + (1 − α)z−2

. (7.45)

This filter has a pair of zeros on the unit circle at ω0 and a pair of poles
located inside the unit circle. The update parameter α in (7.44) determines
the pole position and, thus, the bandwidth of the IIR filter. Clearly, the
transient suppression property is lost when (7.41) is replaced by the linear
update equation in (7.44), and thus, QRS-related ringing artifacts will occur
in the filtered signal. It may be noted from the transfer function in (7.45)
that the poles are not located at the angles ±ω0, but rather at positions
modified by the increment α.

7.2.3 Estimation–Subtraction

Another approach to the removal of powerline interference is to estimate
the amplitude and phase of the interfering sinusoid in an isoelectric seg-
ment, followed by subtraction of the estimated sinusoid within the entire
heartbeat [41–43]. Since it is only of interest to estimate the properties of
the interference, the isoelectric segment can be made even more “silent”
by appropriate use of bandpass filtering centered around the powerline fre-
quency. The position of this segment can be defined by the PQ interval
(Figure 7.13), cf. the determination of knots in the cubic spline method
for baseline removal, or with reference to certain detection criteria [44, 45].
The performance of the estimation–subtraction method deteriorates when
parts of the P or the Q wave are included in the segment; the interference
is then overestimated and causes an increase, rather than a decrease, in the
50/60 Hz content of the output signal.

The sinusoid is subtracted not only from the interval in which it is es-
timated, but also from the remaining parts of the heartbeat [42]. A new
estimate is determined for the subsequent beat and subtracted, and so on.
Such a beat-to-beat oriented procedure implies, however, that sudden shifts
in amplitude may occur in the output signal at the boundaries of successive
beats.

In order to proceed in more detail with the estimation–subtraction ap-
proach, our goal is to find the amplitude w and phase φ,

v(n) = w

√
2
N

sin(ω0n + φ), n = 0, . . . , N − 1, (7.46)
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I2I1

Figure 7.13: A heartbeat disturbed by 50-Hz powerline interference. The sam-
ples of the first interval, denoted I1, are used for estimating the amplitude and
phase of the interference, after which a sinusoid, defined by the estimated ampli-
tude and phase, is subtracted from the samples of both intervals, i.e., I1 and I2.
The procedure is repeated for the next heartbeat, and so on.

that produce the best fit to the signal x(n), indexed by n = 0, . . . , N − 1
in the isoelectric segment, i.e., the interval I1 in Figure 7.13. The factor√

2/N is included in (7.46) for normalization purposes. The frequency ω0

is assumed to be known and is restricted to be harmonically related to the
fundamental frequency 2π/N such that

ω0 = 2π
k0

N
. (7.47)

The observation interval has a length N which is chosen such that an integer
number of periods of the sinusoidal interference is contained in the interval.
The fit of v(n) to x(n) turns out to be much more easily solved when (7.46)
is rewritten so that the two unknown parameters w and φ enter v(n) in a
linear way,

v(n) = w1

√
2
N

cos(ω0n) + w2

√
2
N

sin(ω0n), (7.48)

where

w1 = w sinφ,

w2 = w cos φ.

Based on techniques described in Section 4.5 for analysis of evoked potentials,
an estimator of w1 and w2 can be developed by noting that v(n) is a linear
combination of two orthonormal basis functions. In vector–matrix notation,
(7.48) can be expressed as

v = Φw, (7.49)
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where

v =

⎡⎢⎢⎢⎣
v(0)
v(1)

...
v(N − 1)

⎤⎥⎥⎥⎦
and

w =
[
w1

w2

]
,

and the matrix Φ is orthogonal,

Φ =
[
ϕ1 ϕ2

]
=

√
2
N

⎡⎢⎢⎢⎣
1 0

cos ω0 sinω0
...

...
cos ω0(N − 1) sinω0(N − 1)

⎤⎥⎥⎥⎦ . (7.50)

The weight vector can be determined from minimization of the MSE
between the observed signal x and the sinusoidal model defined by Φw,

E
[
‖x − Φw‖2

]
.

The related estimator has already been presented in (4.203) and is given by

ŵ = ΦTx. (7.51)

Hence, the weight estimates are determined by the inner products between
x and the cosine and sine basis functions ϕ1 and ϕ2, respectively. The
powerline interference estimate v̂ is then computed from (cf. (4.206))

v̂ = ΦΦTx (7.52)

and subtracted from the observed signal x within the interval from which v̂
was estimated,

y = x − v̂. (7.53)

Alternatively, the subtraction can be expressed as

y =
(
I − ΦΦT

)
x

= Hx, (7.54)
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where each row of the matrix H = I − ΦΦT is an impulse response which
describes how the input samples are filtered to produce the output sample at
a certain time instant. For the above sine–cosine basis functions, the matrix
H has the following form,

H = − 2
N

⎡⎢⎢⎢⎢⎢⎢⎣
1 − N

2 cos ω0 cos 2ω0 · · · cos ω0(N − 1)
cos ω0 1 − N

2 cos ω0 · · · cos ω0(N − 2)

cos 2ω0 cos ω0 1 − N
2 · · · ...

...
...

...
. . . cos ω0

cos(N − 1)ω0 cos(N − 2)ω0 . . . cos ω0 1 − N
2

⎤⎥⎥⎥⎥⎥⎥⎦ .

(7.55)

This particular matrix is highly structured, since it is not only symmetric
and Toeplitz, but each row is a circularly shifted version of the row above and
is, therefore, referred to as a circulant matrix. Calculation of the magnitude
response for each of the N linear, time-invariant filters in (7.55) produces
identical results since a circular shift of a finite length sequence in the fre-
quency domain corresponds to multiplying its DFT by a phase shift [46]. The
magnitude response is displayed in Figure 7.14 and has, as one would expect,
bandstop characteristics. As the interval length N , over which the sinusoid
is fitted, increases, the stopband becomes increasingly narrow and the pass-
band becomes increasingly flat; the oscillatory phenomenon at both sides
of the stopband will, however, persist as N increases (Gibbs phenomenon).
The phase response of each of the filters is nonlinear, except the one with
a symmetric impulse response having the value − 2

N (1 − N
2 ) at its midpoint

(N being odd).
Hence, we can interpret the estimation–subtraction technique in terms of

linear filtering which allows us to compare its frequency response to those of
other linear filtering methods. The simplicity of the estimation–subtraction
technique, as defined by (7.52) and (7.53), relies on the assumption that the
two basis functions are orthonormal. It is, however, possible to develop an
estimation–subtraction technique for any value of ω0, not necessarily har-
monically related to 1/N , but at the expense of a more complex procedure.

Finally, the estimated sinusoid v̂ = ΦΦTx is extended in time so that it
can be subtracted from the samples located outside the isoelectric segment,
i.e., the interval I2 in Figure 7.13. In doing this, the estimation–subtraction
technique can no longer be interpreted as a linear filtering operation since it
has become completely insusceptible to the input signal in the interval I2.

We conclude the description of methods for cancellation of powerline
interference by mentioning that the estimation–subtraction technique may
be modified to adaptively compute estimates of the weights w1 and w2. Such
a modification may be based on the LMS algorithm for which the reference
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Figure 7.14: Cancellation of powerline interference using the estimation–
subtraction technique. The magnitude function of the filter is displayed for two
different interval lengths, N = 40 (dashed line) and 200 (solid line), assuming a
sampling rate of 500 Hz.

input is either generated internally or taken directly from a wall outlet,
of course, after appropriate insulation and attenuation [47, Ch. 12], [48, 49].
The weights w1 and w2, for each new instant in time, are modified so that the
MSE between the powerline frequency and the observed signal is minimized,
see the block diagram in Figure 7.15.

It has been shown that the adaptive estimation–subtraction approach
presented in Figure 7.15, for a fixed frequency ω0, is characterized by a
linear, time-invariant, second-order IIR filter, the transfer function of which
is equal to [47, Ch. 12],

H(z) =
1 − 2 cos ω0z

−1 + z−2

1 − 2(1 − µ) cos ω0z−1 + (1 − 2µ)z−2
, (7.56)

where µ denotes the step size parameter of the LMS algorithm. Due to the
adaptive structure of the filter, we have the capability of tracking variations
in ω0 and φ, provided that the reference comes from an external outlet
that reflects these variations. However, the adaptive filter will unfortunately
introduce a ringing artifact at the end of the QRS complex due to its linear
structure.
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Figure 7.15: Adaptive removal of 50/60 Hz powerline interference based on the
LMS algorithm. The ECG signal x(n) is fed to the upper branch which constitutes
the primary input to the algorithm.

7.3 Muscle Noise Filtering

The presence of muscle noise represents a major problem in many ECG
applications, especially in recordings acquired during exercise, since low-
amplitude waveforms may become completely obscured. Muscle noise is,
in contrast to baseline wander and 50/60 Hz interference, not removed by
narrowband filtering, but presents a much more difficult filtering problem
since the spectral content of muscle activity considerably overlaps that of
the PQRST complex. Since the ECG is a repetitive signal, techniques can
be used to reduce muscle noise in a way similar to the processing of evoked
potentials. Successful noise reduction by ensemble averaging is, however,
restricted to one particular QRS morphology at a time and requires that
several beats be available. Hence, there is still a need to develop signal
processing techniques which can reduce the influence of muscle noise.

One approach to dealing with this problem is offered by time-varying
lowpass filtering using a filter with a variable frequency response [50, 51].
For example, a filter with a Gaussian impulse response has been suggested
for this purpose as the filter’s bandwidth is easily changed from one sample
to another through a function β(n) which defines the width of the Gaussian,

h(k, n) ∼ e−β(n)k2
. (7.57)
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The width function β(n) is designed to reflect local signal properties so that
smooth segments of the ECG are subjected to considerable lowpass filtering,
whereas the QRS interval, with its much steeper slopes, largely remains
unfiltered. By making β(n) proportional to the derivative of the signal,
slow signal changes produce small values of β(n), thus making the Gaussian
impulse response to decay more slowly to zero so as to produce greater noise
suppression, and vice versa. Details of designing the width function β(n),
truncating h(k, n) in (7.57), and the resulting performance on ECG signals
can be found in [50], see also Problem 7.14. The idea of adapting the cut-off
frequency of a linear lowpass filter to the slopes of the ECG has also been
explored for other types of filters [52].

It is evident that the Gaussian filtering technique is related to the time-
varying lowpass filter earlier described for the removal of baseline wander,
with the major difference being that the baseline filter is adapted to the pre-
vailing heart rate rather than to the morphologic properties of the signal. It
may also be of interest to point out that the noise reduction technique based
on a truncated series expansion of basis functions may also be considered;
this technique can be interpreted in terms of time-varying lowpass filtering,
see Section 4.5.4.

The overall value of muscle noise reduction, resulting from any of the
above-mentioned time-varying filter techniques, must be judged in relation
to the distortion introduced in the PQRST complex. In fact, the Achilles’
heel of such filtering is that its time-varying properties may introduce artifi-
cial waves: a filter that provides considerable smoothing of the low-frequency
ECG segments outside the QRS complex, including the P and T waves, while
essentially no filtering at all is done within the QRS complex, is likely to ex-
hibit undesirable effects during the transitional periods. Such distortion may
be acceptable when the filter output is used as input to other signal process-
ing steps; however, the distortion renders the filtered signal unsuitable for
diagnostic interpretation of the ECG because of the artificial waves that may
have been introduced.

Although a host of additional techniques have been proposed for muscle
noise reduction, see, e.g., [53–57], no single method has gained wide ac-
ceptance for use in clinical routine. As a result, the muscle noise problem
remains largely unsolved, similar to the muscle noise problem in EEG signal
processing.

7.4 QRS Detection

A QRS detector must be able to detect a large number of different QRS mor-
phologies in order to be clinically useful and able to follow sudden or gradual
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changes of the prevailing QRS morphology. Furthermore, the detector must
not lock onto certain types of rhythm, but treat the next possible event as
if it could occur at almost any time after the most recently detected beat.

Several detector-critical types of noise and artifacts exist depending on
the ECG application of interest. The noise may be highly transient in nature
or be of a more persistent nature, as exemplified by the presence of powerline
interference. In the case of an ECG recording with episodes containing
excessive noise, it may be necessary to exclude such episodes from further
analysis.

Most QRS detectors described in the literature have been developed from
ad hoc reasoning and experimental insight. The detectors can, in general
terms, be described by the block diagram presented in Figure 7.16 [58].
Within such a detector structure, the purpose of the preprocessor is to en-
hance the QRS complexes while suppressing noise and artifacts; the pre-
processor is usually implemented as a linear filter followed by a nonlinear
transformation. The output of the preprocessor is then fed to a decision rule
for detection. The purpose of each processing block is summarized below.

a. The linear filter is designed to have bandpass characteristics such that
the essential spectral content of the QRS complex is preserved, while
unwanted ECG components such as the P and the T waves are sup-
pressed. The center frequency of the filter varies from 10 to 25 Hz and
the bandwidth from 5 to 10 Hz. In contrast to other types of ECG
filtering, waveform distortion is not a critical issue in QRS detection.
The focus is instead on improving the SNR to achieve good detector
performance.

b. The nonlinear transformation further enhances the QRS complex in
relation to the background noise as well as transforming each QRS
complex into a single positive peak better suited for threshold detec-
tion. The transformation may consist of a memoryless operation, such
as rectification or squaring of the bandpass filtered signal, or a more
complex transformation with memory. Not all preprocessors employ
nonlinear transformations, but the filtered signal is instead fed directly
to the decision rule.

c. The decision rule takes the output of the preprocessor and performs
a test on whether a QRS complex is present or not. The decision rule
can be implemented as a simple amplitude threshold procedure, but
may also include additional tests, for example, on reasonable waveform
duration, to assure better immunity against various types of noise.

As indicated by its name, the QRS detector is designed to detect heart-
beats, while rarely producing occurrence times of the QRS complexes with
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Figure 7.16: Block diagram of a commonly used QRS detector structure. The
input is the ECG signal, and the output θ̂1, θ̂2, . . . is a series of occurrence times of
the detected QRS complexes.

high temporal resolution. Hence, it may be necessary to improve the res-
olution using an algorithm that performs time alignment of the detected
beats. Such alignment reduces the problem of smearing which may occur
when computing the ensemble average of several beats; cf. the methods for
estimation of latency shifts on page 229.

7.4.1 Signal and Noise Problems

The problem of conditioning the ECG with respect to noise has already been
addressed. However, the term “noise” acquires a somewhat different meaning
when considered from a QRS detection point of view because the P and
T waves, although being part of the same cardiac cycle as the QRS complex,
must now be treated as noise. Hence, noise may have physiological as well
as technical origins. Signal and noise problems in QRS detection can be
classified into two main categories, namely, morphologic changes (including
amplitude changes) and the occurrence of noise. These categories can be
further subclassified:

I. Changes in QRS morphology:

a. of physiological origin, or

b. due to technical problems.

II. Occurrence of noise:

a. with large P or T waves,

b. of myoelectric origin, or

c. due to transient artifacts (mainly related to electrode problems).

Changes in QRS morphology are demonstrated by the ECGs shown in
Figures 7.17(a)–(c). In Figure 7.17(a), every third QRS complex is quite
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different in morphology from the others, although roughly equal in ampli-
tude; this rhythm is known as trigeminy since every second normal beat
is followed by a VPB. In Figure 7.17(b), two morphologies occur of which
one is markedly lower in amplitude than the other and has biphasic mor-
phology; this rhythm is known as bigeminy. Both these examples contain
VPBs and, therefore, represent signal problems of physiological origin. Fig-
ure 7.17(c) demonstrates a technically mediated, rather drastic variation in
QRS amplitude.

Various common types of noise are illustrated in Figures 7.17(d)–(g).
Figures 7.17(d) and (e) present situations where the P and T waves could
be misinterpreted as QRS complexes. Tall, sharp, and uniphasic P waves
precede the rather small and biphasic QRS complexes in Figure 7.17(d),
whereas the QRS complexes are very low in amplitude relative to the T waves
in Figure 7.17(e). Figure 7.17(f) shows a short burst of noise, probably of
muscular origin, where some of the noise wave shapes resemble the QRS
complex, making them rather difficult to deal with. Figure 7.17(g) shows
an example of an even more delicate type of artifact, probably due to elec-
trode problems. The shape and amplitude of such artifacts are also fairly
representative of QRS complexes, and only the time relationships and the
complete absence of T waves reveal to the trained eye that these artifacts
are not QRS complexes.

7.4.2 QRS Detection as an Estimation Problem

The rationale for using the QRS detector structure in Figure 7.16 can be
appreciated from a theoretical viewpoint by investigating a number of sta-
tistical models of the ECG signal. In doing so, we will rely on ML estimation
techniques in order to derive the detector structure that corresponds to the
model of interest.4

Unknown occurrence time. As a starting point, we will reconsider the
signal model introduced on page 230 for derivation of Woody’s method,
developed for the alignment of evoked responses with varying latency. Here,
it is assumed that a QRS complex with known morphology s(n) occurs
at an unknown time θ so that it is completely contained in the observation
interval of length N . The noise v(n) is again modeled by a stationary, white,

4Since we have tried to pursue an “estimation viewpoint” in this textbook, we will not
consider QRS detection in terms of classical detection theory, as presented, for example,
in [59]. Instead, the detection theory viewpoint is briefly explored in Problem 7.16, where
the central concepts of hypothesis testing and likelihood ratio are introduced. For the signal
models of interest here, it should be emphasized that both viewpoints lead to essentially
the same detector structure.
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Figure 7.17: Various common types of noise in the ECG of physiological and
technical origins. The specific details of each ECG are discussed in the text.
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Gaussian process with variance σ2
v . In summary, the observation model is

given by

x(n) =

⎧⎨⎩
v(n), 0 ≤ n ≤ θ − 1;
s(n − θ) + v(n), θ ≤ n ≤ θ + D − 1
v(n), θ + D ≤ n ≤ N − 1,

(7.58)

where the integer D denotes the duration of s(n). The ML estimate of
the occurrence time θ is determined by the value that maximizes the log-
likelihood function,

θ̂ = arg max
θ

ln p(x; θ), (7.59)

where x =
[
x(0) x(1) · · · x(N − 1)

]T . Proceeding in the same way as
we did on page 231, maximization of the log-likelihood function is equivalent
to finding the location of the peak amplitude in the signal y(θ),

θ̂ = arg max
θ

y(θ), (7.60)

where y(θ) denotes the output of the matched filter h(n),

y(θ) =
θ+D−1∑

n=θ

x(n)h(θ − n). (7.61)

The impulse response of the matched filter was found to be equivalent to
a time-reversed replica of s(n). We remind the reader that h(n) can be
modified so that it is matched to stationary, colored noise rather than to
white noise, see page 236.

For the model in (7.58), a QRS complex is always assumed to be present
in the observation interval. Such an assumption is, however, not very realis-
tic since the interval may be empty, and, as a result, the maximum amplitude
occurring at θ̂ will correspond to a falsely detected event. It is, therefore,
necessary to include a threshold test to determine whether or not the po-
tential event at θ̂ has a sufficiently large amplitude. A QRS complex is only
detected if the output of the matched filter at θ̂ exceeds the threshold η,

y(θ̂) > η. (7.62)

Following a “refractory period” immediately after an event has been de-
tected, the threshold procedure is repeated for the subsequent observation
interval, and a new event is detected when η is exceeded. Hence, a series
of occurrence times θ̂1, θ̂2, . . . of the detected QRS complexes is produced.
The threshold η, which in (7.62) is assumed to be fixed, is in practice made
dependent on the amplitude of the most recently detected QRS complexes in
order to track changes in QRS amplitude. Aspects of threshold adaptation,
as well as other aspects on the decision rule, are further described below.
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Unknown occurrence time and amplitude. A major limitation of the
model in (7.58) is the assumption of a QRS complex having a fixed ampli-
tude. A natural extension of the model is, therefore, to assume that the
occurrence time θ and the amplitude a are unknown parameters which are
jointly subjected to ML estimation. Thus, the observed signal x(n) is instead
modeled by

x(n) = as(n − θ) + v(n). (7.63)

Before continuing with the estimator derivation, it is helpful to recall that
since s(n) is completely contained in the observation interval, its energy is
equal to Es for all possible values of θ,

Es =
θ+D−1∑

n=θ

s2(n − θ) =
N−1∑
n=0

s2(n).

Our goal is to choose θ and a so that the log-likelihood function is maximized,

[θ̂, â] = arg max
θ,a

ln pv(x; θ, a). (7.64)

Although the estimate of a may be of less interest for the final output of
the detector, it is still important to investigate how the very presence of this
unknown parameter influences the overall structure of the ML estimator.
For the Gaussian, white noise assumption, the joint PDF of the observed
signal is given by

pv(x; a, θ) =
θ−1∏
n=0

1√
2πσ2

v

exp
[
−x2(n)

2σ2
v

]

·
θ+D−1∏

n=θ

1√
2πσ2

v

exp
[
−(x(n) − as(n − θ))2

2σ2
v

]

·
N−1∏

n=θ+D

1√
2πσ2

v

exp
[
−x2(n)

2σ2
v

]
.

(7.65)

Hence, the corresponding log-likelihood function is

ln pv(x; a, θ) = −N

2
ln(2πσ2

v) −
1

2σ2
v

N−1∑
n=0

x2(n)

+
1

2σ2
v

θ+D−1∑
n=θ

(
2ax(n)s(n − θ) − a2s2(n − θ)

)
= constant +

1
2σ2

v

(2ay(θ) − a2Es). (7.66)



492 Chapter 7. ECG Signal Processing

Maximization of the log-likelihood function in (7.66) may be performed in
two steps. The first step is performed by differentiation with respect to
the continuous-valued parameter a, resulting in an estimator of a being a
function of θ which is used to determine an estimator of the integer-valued
parameter θ. Differentiation with respect to a yields

∂ ln pv(x; θ, a)
∂a

=
1

2σ2
v

(2y(θ) − 2aEs), (7.67)

which, when set to zero, becomes

â(θ) =
1
Es

y(θ) = ȳ(θ). (7.68)

The estimator of a is thus equal to the energy-normalized output ȳ(θ) of
the matched filter. The next step is to insert â(θ) into (7.66), yielding the
following ML estimator of θ,

θ̂ = arg max
θ

[
Es

2σ2
v

ȳ2(θ)
]

. (7.69)

The multiplicative factor Es/2σ2
v is, in practice, unknown but can fortunately

be omitted since it does not influence the estimation of θ. Squaring the out-
put signal of the matched filter implies that the estimator treats waveforms
with positive or negative amplitude in the same way. If required, an estimate
of a can be computed by simply inserting the resulting θ̂ into (7.68).

Again, the detection of QRS complexes may be based on a threshold test,
although now modified so that the squared, filtered signal ȳ2(θ) is compared
to a threshold η,

ȳ2(θ̂) > η. (7.70)

For the signal model in (7.63), we have thus shown that θ̂ should be chosen to
be the instant in time at which the largest amplitude occurs in the squared
output of the matched filter. Hence, these different processing steps may
serve as the rationale for considering a detector structure in which both
linear filtering and nonlinear transformation are embraced, as illustrated in
Figure 7.16.

It may be instructive to examine how the structure of the ML estimator
is modified when the absolute value of the amplitude a is constrained to a
certain interval bounded by the known parameters a1 and a2 [60],

0 < a1 ≤ |a| ≤ a2. (7.71)

Since the log-likelihood function is quadratic in a, amplitude estimates pro-
duced by (7.68) which fall outside the allowed intervals should be set to the
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closest boundary value of the interval in order to maximize the log-likelihood
function. Thus, the amplitude estimator is similar to that in (7.68) but now
with a clipping operation included,

â(θ) =

⎧⎨⎩
a1 sgn(ȳ(θ)), |ȳ(θ)| < a1;
ȳ(θ), a1 ≤ |ȳ(θ)| ≤ a2;
a2 sgn(ȳ(θ)), a2 < |ȳ(θ)|.

(7.72)

By inserting this expression for â(θ) into the log-likelihood function

ln pv(x; â(θ), θ) ∼ 1
2σ2

v

(2â(θ)y(θ) − â2(θ)Es), (7.73)

we obtain the ML estimator of θ,

θ̂ = arg max
θ

[
Es

2σ2
v

f(ȳ(θ))
]

, (7.74)

where the function f(·) is defined by

f(ȳ(θ)) =

⎧⎨⎩
2a1|ȳ(θ)| − a2

1, |ȳ(θ)| < a1;
ȳ2(θ), a1 ≤ |ȳ(θ)| ≤ a2;
2a2|ȳ(θ)| − a2

2, a2 < |ȳ(θ)|.
(7.75)

This function constitutes a memoryless, nonlinear transformation in which
the filtered signal ȳ(θ) is rectified whenever the amplitude estimate falls
outside the allowed interval, defined in (7.71), whereas the signal is squared
when the amplitude is within the limits.

For the special case when the amplitude a is assumed to be a priori
known except its polarity,

a = ±a0, (7.76)

the nonlinear transformation becomes a rectifier,

f(ȳ(θ)) = 2a0|ȳ(θ)| − a2
0. (7.77)

On the other hand, complete elimination of the amplitude constraint yields
the squarer in (7.69),

f(y(θ)) = ȳ2(θ). (7.78)

Hence, it can be demonstrated that the two most common types of nonlinear
transformations—rectifier and squarer—are intimately related to the model
in (7.63) with unknown occurrence time and amplitude of s(n).
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Unknown occurrence time, amplitude, and duration. Yet another
generalization of the observation model is to account for the fact that QRS
complexes exhibit considerable variation in duration. While the normal QRS
duration is around 120 ms, beats originating from foci in the ventricles may
be twice as wide, or even more. For the continuous-time case, variations in
duration of a waveform sc(t) can be easily modeled by the scaling parame-
ter β,

sc

(
t

β

)
, β > 0,

where the duration thus increases as β becomes larger. A discrete-time
waveform s(n) can be obtained from sc(t) by periodic sampling,

s(n) = sc

(
nT

β

)
, n = 0, 1, . . . ,

where the ratio T/β can be interpreted as the sampling period. As a result,
different QRS durations can be modeled by sampling sc(t) at slightly dif-
ferent sampling periods. This can, for example, be achieved by considering
uniformly spaced values of the duration, obtained according to the following
expression,

βl = βmin + l · ∆β, l = 0, 1, . . . , lmax, (7.79)

where βmin corresponds to the shortest duration of physiological interest,
and ∆β is the duration step size. The resulting discrete-time waveform is
indexed by the duration parameter l such that

sc

(
nT

βl

)
→ s(n, l), n = 0, 1, . . . .

Discretization of β does not necessarily have to be uniform as suggested
by (7.79); another approach is to use a dyadic sequence {βl = 2l, l =
0, 1, 2, . . .} resulting in rather coarse discretization of the duration. It should
be pointed out that the continuous-time waveform sc(t) is rarely available
a priori, but the discrete-time waveform s(n), assumed to be known in the
model (7.58), is instead available. However, this limitation can be overcome
by appropriate use of interpolation and decimation in order to increase the
time resolution of s(n) so that waveforms s(n, l) with different durations can
be determined.

An example of a QRS waveform with different durations is presented
in Figure 7.18. From the most narrow waveform, the remaining waveforms
are obtained by increasing the original sampling rate with rational factors
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Figure 7.18: An example of QRS waveforms with identical morphology but dif-
ferent durations. The duration is increased in steps of 10% until twice the initial
duration is reached.

11/10, 12/10, and so on. The increase in sampling rate is implemented by
first performing interpolation by the numerator factor and then decimating
the interpolated signal by the denominator factor. For example, an increase
in sampling rate of a factor of 1.1 is obtained by interpolation by a factor of
11 followed by decimation by a factor of 10.

The procedure of finding an estimate of the occurrence time θ is similar
to that in (7.69), except that we now have to include the estimation of l. As
before, we can first determine an estimate of the amplitude a as a function
of θ and l and then perform the maximization with respect to θ and l. The
resulting ML estimator is

θ̂ = arg max
θ

(
1

2σ2
v

max
l

[
Es(l)ȳ2(θ, l)

])
, (7.80)

where the energy of s(n) is now a function of l,

Es(l) =
θ+D−1∑

n=θ

s2(n − θ, l), (7.81)

and can, therefore, no longer be omitted from the maximization with respect
to θ and l. The output signal ȳ(θ, l) can be viewed as the output of a bank
of lmax different filters, with each filter being matched to a waveform with a
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Figure 7.19: Maximum likelihood estimation of the occurrence time θ when the
amplitude and duration of the waveform are unknown. Each filter h(n, l) is matched
to a certain duration defined by the parameter l. The output signal at θ̂ is then fed
to the decision rule of the QRS detector.

certain duration. The filter output is obtained from

ȳ(θ, l) =
1

Es(l)

θ+D−1∑
n=θ

x(n)s(n − θ, l). (7.82)

The block diagram in Figure 7.19 presents the ML estimator in (7.80) which
produces θ̂ and l̂ .

Another, much simpler approach to model duration is to consider s(n)
as being composed of two identical waveforms q(n), of which one is shifted
l samples in time and has the opposite sign,

s(n, l) = q(n) − q(n − l), (7.83)

where l = lmin, . . . , lmax. The waveform s(n, l) is assumed to be completely
contained in the observation interval for all durations. To determine the
ML estimator based on the earlier assumptions on noise, it is helpful to first
introduce some notations related to the model in (7.83),

ȳ(θ, l) = ȳq(θ, l) − ȳq(θ − l, l), (7.84)
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where

ȳq(θ, l) =
1

Es(l)

θ+D−1∑
n=θ

x(n)q(n − θ). (7.85)

The energy of s(n) can be expressed as

Es(l) = 2Eq(1 − ρq(l)), (7.86)

where the function ρq(l) denotes the energy-normalized autocorrelation func-
tion of q(n),

ρq(l) =
1
Eq

D−1∑
n=0

q(n)q(n − l), (7.87)

and Eq denotes the energy of q(n). Using these notations, we can express
the ML estimator in (7.80) as

θ̂ = arg max
θ

(
Eq

σ2
v

max
l

[
(1 − ρq(l)) (ȳq(θ) − ȳq(θ − l))2

])
. (7.88)

Although the estimator in (7.88) can be implemented along the same
lines as the one in (7.80), it is interesting to observe that local extreme
values of the filtered signal ȳq(θ) enter the maximization in (7.88). It is
evident that the term (ȳq(θ) − ȳq(θ − l))2 is maximized when ȳq(θ) and
ȳq(θ − l) are selected from among local extreme values with opposite sign,
i.e., positive maximum and negative minimum, and separated by a distance
within the interval [lmin, lmax]. An approximate, but computationally much
more efficient, implementation of the ML estimator in (7.88) is, therefore,
to determine the local extreme values of the filtered signal and to use these
values for the estimation of θ.

Independently of the above approximate ML technique, the idea of using
local extreme values as a basis for QRS detection is well-established and is
sometimes referred to as a peak-and-valley picking strategy. In fact, several
QRS detectors have been presented which take into account the properties of
adjacent pairs of local extreme values with opposite signs [61–64]; for such
pairs to be considered an event, the distance between two extreme values
must be within certain limits to qualify as a heartbeat. The peak-picking
procedure is also central to certain methods of ECG data compression which
will be described in Section 7.6.

7.4.3 Detector Preprocessing

Linear filtering. We will now describe certain linear, time-invariant filters
which may be used for QRS detection. The earliest attempts to condition
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the ECG signal employed differentiation in order to emphasize segments of
the signal with rapid transients, i.e., the QRS complex [65–67]. In discrete-
time, differentiation can be approximated by a filter H(z) that produces the
difference between successive samples,

H(z) = 1 − z−1. (7.89)

Such a differencing filter may perhaps be an acceptable choice when ana-
lyzing resting ECGs; however, it accentuates high-frequency noise and is,
therefore, inappropriate in situations with moderate or low SNRs.

A better approach is to combine differentiation with lowpass filtering so
that noise activity above a certain cut-off frequency ωc = 2πfc is attenu-
ated [68, 69]. The frequency response of the ideal lowpass differentiator is
given by

H(ejω) =
{

jω, |ω| ≤ ωc;
0, ωc < |ω| < π,

(7.90)

and the corresponding impulse response is

h(n) =
1
2π

∫ ωc

−ωc

jωejωndω

=

⎧⎨⎩ 0, n = 0;
1

πn

(
ωc cos(ωcn) − 1

n
sin(ωcn)

)
, n �= 0.

(7.91)

Before the filter is used in practice, its infinite impulse response must be
truncated using windowing or, better, by determining the coefficients of an
FIR filter so that the error between its magnitude function and H(ejω) in
(7.90) is minimized in the MSE sense [69].

The large variability in signal and noise properties of the ECG implies
that the requirements on frequency response have to be rather loose, and, as
a result, simple structured filters can be applied. One family of such filters
is defined by [60]

H(z) =
(
1 − z−L1

) (
1 + z−1

)L2 , (7.92)

where L1 and L2 are two integer-valued parameters. The corresponding
frequency response is given by

H(ejω) = j2L2+1e−jω(L1+L2)/2 sin
(

ωL1

2

)
cosL2

(ω

2

)
. (7.93)

The first part, (1− z−L1), forms the difference between the input signal and
the delayed input, whereas the second part, (1 + z−1)L2 , is a lowpass filter
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Figure 7.20: The magnitude function of the filter in (7.92), defined by the two
integer parameters L1 and L2, displayed for the combinations (1,1), (1,2), (3,2),
and (4,3). Each magnitude function has been normalized so that its maximum gain
corresponds to 0 dB. The sampling rate is assumed to be 100 Hz.

whose bandwidth decreases as L2 increases. Filters belonging to the family
in (7.92) can be implemented without multipliers, thus only requiring addi-
tion and subtraction. Consequently, these filters are attractive for systems
which analyze long-term ECG recordings. For example, good detection per-
formance has been reported for (L1, L2) = (1, 2), resulting in a bandpass
filter with a rather large bandwidth and a center frequency of 20 Hz, assum-
ing a sampling rate of Fs = 100 Hz, see Figure 7.20 [70]. The filter defined
by (L1, L2) = (1, 1) has been employed in [71–73], and a filter defined by
(L1, L2) = (1, 3) has been employed in [74]. The use of a filter with a lower
center frequency, such as that of (L1, L2) = (4, 3), increases the number of
false detections due to large-amplitude T waves. The filter (L1, L2) = (5, 4)
may be a suitable choice for a higher sampling rate of 250 Hz, resulting in a
filter with a center frequency of 20 Hz [75].

The idea of designing a filter matched to a certain waveform s(n), as sug-
gested by the ML estimator of an unknown occurrence time θ, is not feasible
in practice due to the widely different QRS morphologies, as well as different
noise characteristics. Instead, the notion of an “optimal” linear filter may be
realized for a given filter structure by optimizing detector performance with
respect to the filter parameters, for example, by selecting appropriate values
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of L1 and L2 in (7.92). Such an optimization approach was pursued in [76]
where the center frequency and bandwidth of a second-order, Butterworth
bandpass filter were selected in order to produce the largest SNR. Based on
a large database with QRS complexes, it was found that a bandpass filter
with a center frequency of 17 Hz, and a relatively small bandwidth, yielded
the highest SNR.

Perhaps the most straightforward approach to designing a matched filter
has not yet been mentioned, namely, to identify the impulse response with
the detected QRS complexes (tacitly assuming that the noise is white). By
initially using a filter with a fixed impulse response, the impulse response
may subsequently be updated as new beats are detected using exponen-
tial averaging, or any other recursive technique [77]. An advantage of this
approach is that the filter is better matched to the QRS morphology of in-
dividual ECGs and, therefore, can be expected to yield better performance
than does a fixed filter. On the other hand, the degradation in performance
that results when beats with deviating morphologies are encountered may
be unacceptable since such beats can have special importance from a clinical
viewpoint.

Although certain variability in QRS morphology is accounted for by
allowing different amplitudes and durations, the filter h(n) remains mis-
matched to a range of morphologies. Without going into details of the
resulting ML estimator, it is interesting to point out that different QRS
morphologies s(n) can be modeled through linear combinations of a set of
K basis functions (cf. Section 4.5),

s(n) =
K∑

i=1

aiϕi(n), (7.94)

where the amplitude ai of each basis function has to be estimated. The cor-
responding ML estimator includes a bank of K filters in which each subfilter
is matched to a certain basis function ϕi(n) [78–80].

Nonlinear transformations. The common objective in nonlinear trans-
formation is to produce a single, positive-valued peak for each QRS complex,
which allows the use of peak detection or a one-sided detection threshold.
Similar to the case with linear filtering, the transformation should be de-
signed so that it produces a signal in which QRS complexes are enhanced
relative to the background of P and T waves, noise, and artifacts.

The QRS detector previously derived with ML estimation techniques
includes a squarer as nonlinear transformation. Alas, the squarer introduces
additional peaks and valleys in the output signal which may cause spurious
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Figure 7.21: Various waveforms s1(n), . . . , s4(n) obtained using the signal model
in (7.96). The waveforms all have envelopes identical to the leftmost Gaussian
waveform b(n).

events. It is, therefore, advisable to smooth y2(n) through linear filtering,

z(n) =
n∑

k=n−L+1

y2(k)hs(n − k), (7.95)

where hs(k) denotes a lowpass FIR filter whose length is L. The smoothing
of the signal should be such that only large-amplitude peaks of sufficient
duration, i.e., the QRS complexes, are preserved in z(n). Simple structured
smoothing filters have been used, for example, those defined by a rectangu-
lar [74, 81] or a triangular impulse response [82, 83].

Another approach to the design of a nonlinear transformation is based
on a model in which the QRS complex is described by the deterministic,
positive-valued, lowpass signal b(n), modulated by a cosine function defined
by the modulation frequency ωm and the phase angle φ,

s(n) = b(n) cos(ωmn + φ). (7.96)

The lowpass signal b(n) is commonly referred to as the envelope of s(n). By
varying the two parameters ωm and φ, a wide variety of waveform morpholo-
gies can be modeled which resemble different QRS complexes. Figure 7.21
displays a number of waveforms for which the common envelope b(n) is de-
fined by the Gaussian function.

It is of great interest to develop a technique with which the envelope
b(n) can be extracted from s(n) without any prior knowledge of ωm or φ.
In order to solve this problem, we start by expressing s(n) in the frequency
domain,

S(ejω) =
1
2

(
B

(
ej(ω−ωm−φ)

)
+ B

(
ej(ω+ωm+φ)

))
, (7.97)
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Figure 7.22: Spectral operations required to obtain the envelope of s(n). (a) Spec-
trum of the original signal s(n), (b) spectrum after cancellation of negative frequen-
cies using the Hilbert transform, and (c) spectrum of the frequency-shifted signal.

where B(ejω) and S(ejω) denote the DTFTs of b(n) and s(n), respectively.
The envelope B(ejω) can be obtained by introducing a technique which can-
cels out negative frequencies and shifts the remaining spectrum to the ori-
gin, as illustrated in Figure 7.22. Such a technique is well-known from the
representation and demodulation of bandpass signals in the area of commu-
nication [84].

In order to cancel out frequencies in the interval −π ≤ ω < 0, we intro-
duce the function SA(ejω), defined by

SA(ejω) = S(ejω) + jH(ejω)S(ejω)

= S(ejω) + jŠ(ejω), (7.98)

where H(ejω) is a linear, time-invariant filter whose transfer function is de-
fined by

H(ejω) =
{

−j, 0 ≤ ω < π;
j, −π ≤ ω < 0.

(7.99)

This filter is known as the Hilbert transformer and has a unit magnitude
frequency response and a phase response equal to −π/2 for 0 < ω < π and
π/2 for −π < ω < 0 [46]. The output of the Hilbert transformer is thus a
90o phase-shifted version of s(n) which, in the following, is denoted š(n) and
is thus the Hilbert transform. The one-sided spectrum SA(ejω) that results
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from the operation in (7.98) is expressed as

SA(ejω) =
{

2S(ejω), 0 ≤ ω < π;
0, −π ≤ ω < 0,

=
{

B
(
ej(ω−ωm)

)
, 0 ≤ ω < π;

0, −π ≤ ω < 0.
(7.100)

The time domain signal sA(n), known as the analytic signal, represents
a frequency-shifted version of the envelope b(n),

sA(n) = b(n)ejωmn.

By computing the absolute value of sA(n), we obtain the positive-valued
envelope b(n) without knowledge of ωm or φ, since

b(n) = |sA(n)|
=

√
s2(n) + š2(n), (7.101)

where the last equality in (7.101) is due to the complex-valued definition
in (7.98) which, in the time domain, equals sA(n) = s(n) + jš(n). The
Hilbert transform and the envelope for a number of QRS complexes with
different morphologies are presented in Figure 7.23.

The impulse response of the Hilbert transformer in (7.99) is

h(n) =

⎧⎨⎩
2
π

sin2(πn/2)
n

, n �= 0;

0, n = 0.

(7.102)

Since this impulse response is infinite and noncausal, it must be approxi-
mated before the envelope can be computed. In its simplest version, the
approximation involves truncation and appropriate time shifting in order to
make the filter causal.

When the squaring and square-root operations of the envelope computa-
tion are undesirable for implementational reasons, for example, in the con-
text of a pacemaker where strict demands are put on low power consumption,
the Euclidean distance in (7.101) can be approximated by the “city block”
distance, √

s2(n) + š2(n) ≈ |s(n)| + |š(n)|.

By truncating the impulse response of the Hilbert transformer to the shortest
possible length, an approximate envelope b̂(n) can be computed from

b̂(n) = |s(n)| + 2
π
|s(n + 1) − s(n − 1)|. (7.103)
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Figure 7.23: (a) An example of different QRS complex morphologies and their
corresponding (b) Hilbert transforms and (c) envelope functions.

This approximation is associated with a certain amount of ripple which can
be eliminated with lowpass filtering before the envelope is suitable for thresh-
old detection [85], see also [86–88].

In addition to the above-mentioned nonlinear transformations, several
others have been described which exploit the degree of changes that are
characteristic of the ECG signal, see, e.g., [89–92].

7.4.4 Decision Rules

A decision rule must be applied to the output of the preprocessor to de-
termine whether or not a QRS complex has occurred. The decision rule
in (7.62) or (7.70) was synonymous with a test where the preprocessed sig-
nal was compared to a fixed threshold η. However, it is highly desirable
to incorporate adaptivity into the threshold because QRS amplitude and
morphology may change drastically during the course of just a few seconds
(Figure 7.17); the detection of low-amplitude QRS complexes with a fixed
threshold inevitably implies accepting several false detections. Although the
focus here is on amplitude-related decision rules, it is certainly possible to
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introduce additional rules which relate to other signal properties, such as
the duration of a waveform.

The interval-dependent QRS detection threshold is updated once for each
new detection at θi and is held fixed during the subsequent interval until the
threshold is exceeded and a new QRS is detected. A popular structure of
the interval-dependent threshold ηI(n) is the one based on the exponentially
updated peak amplitude z̃e,i of the previously detected QRS complexes,

ηI(n) = µz̃e,i, n = θi, θi + 1, . . . , (7.104)

with

z̃e,i = z̃e,i−1 + α (z(θi) − z̃e,i−1) , i ≥ 1, (7.105)

where z̃e,i is the exponential average, and z(θi) represents the amplitude
in the preprocessed signal of the most recently detected QRS complex at
time θi. The parameter µ in (7.104) determines the fraction of the ampli-
tude z̃e,i to be used in the threshold computation; typically, µ is chosen
within the interval 0.5–0.7. The parameter α defines the speed with which
the amplitude threshold can change, cf. the exponential averager defined
in (4.35). The recursion in (7.105) may be initialized by setting z̃e,0 to a
fixed value. Alternative techniques for tracking the QRS amplitude include
the mean or median value of the most recently detected beats [93].

The QRS detector using an interval-dependent threshold can be extended
to become a time-dependent threshold for the purpose of improving the re-
jection of large-amplitude T waves, while still allowing low-amplitude ectopic
beats to be detected. Subsequent to detection of a QRS complex at θi, the
time-dependent threshold η(n) may be assigned the following structure:

η(n) =

⎧⎨⎩
ηmax, n = θi + 1, . . . , θi + D0;
g(n − θi − D0 − 1), n = θi + D0 + 1, . . . , θi + D1;
µz̃e,i, n = θi + D1 + 1, . . . ,

(7.106)

where ηmax is a constant, and g(n) is a function defined such that it decreases
over the transition interval [θi +D0 +1, θi +D1] until it reaches the interval-
dependent threshold ηI(n),

ηmax = g(0) > g(1) > . . . > g(D1 − D0 + 1) = µz̃e,i. (7.107)

The most common choice of (7.106) involves the eye-closing period during
which nothing is detected until θi + D1, i.e., ηmax = ∞ and D0 = D1 − 1.
The length of the eye-closing period is chosen within the interval 160–200 ms,
motivated by the existence of an absolute refractory period during which the
heart is unresponsive to electrical stimuli.
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Figure 7.24: Time-dependent thresholding in QRS detection. Following each
detected QRS, the threshold is initially set to a fixed level ηmax during D0 samples,
after which it decreases linearly until a lower level µz̃e,i is reached after D1 samples.
In this case, the original ECG signal itself is used as the threshold signal z(n).

The obvious risk of missing premature ventricular ectopic beats neces-
sitates choosing a value of D1 which is not too large. On the other hand,
a very short eye-closing interval will increase the number of false detections
due not only to T waves, but also to very wide ectopic beats. A compromise
between these conflicting demands may be to use a finite value of ηmax in
(7.106), but still with D0 = D1 − 1 [94]. Another possible choice of η(n) is
given by ηmax = ∞ and with g(n) chosen as a linearly decreasing function
in the interval [θi + D0 + 1, θi + D1] [95]. While the eye-closing period D0

should be independent of heart rate, the transition period D1 may be related
to the length of the average RR interval such that g(n) decreases faster as
the heart beats faster. From an electrophysiological viewpoint, g(n) cor-
responds to the relative refractory period, following the absolute refractory
period, during which the cardiac cells can respond to a stronger than normal
stimulus, but with abnormally slow conduction. Thresholding based on a
finite value of ηmax, combined with linearly decreasing g(n), is illustrated in
Figure 7.24.

The signal fed to the decision rule is typically processed in a sequential
fashion, implying that QRS complexes are detected in temporal order despite
the fact that the entire recording may be available from a storage device.
A detector which, to a certain degree, incorporates both past and future
signal properties is one that first delimits an observation interval and then
detects QRS complexes in their order of magnitude rather than in temporal
order [60]. Owing to this “noncausal” property, eye-closing periods of equal
length may be applied both before and after each detected beat. The detec-
tion threshold could be adapted with respect to the properties of the QRS
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complexes which delimit the interval. This approach allows the detector to
find the QRS complexes even when a sudden decrease in amplitude occurs.

Various add-on techniques may be used to improve detection perfor-
mance. Since the spectral content of muscle noise overlaps that of the QRS
complex, such noise causes the performance to deteriorate. To cope with
this situation, noise measurements are of great value and can, in combina-
tion with information on QRS amplitude, be used to better adjust the level
of the detection threshold [74, 81, 93, 96]. When including such measure-
ments, it is crucial to make sure that the measurement interval is positioned
so that it only contains noise.

The above described decision rules do not impose any constraints on
heart rhythm, except that a certain time must elapse between two successive
beats. In fact, an inherent property of any QRS detector is its restrictive
use of information available from the pattern of preceding RR intervals; even
though a regular rhythm has prevailed for a long time, the next QRS complex
to be detected must be treated as if it could occur at almost any time in
the observation interval. Still, certain basic information on rhythm may
be employed to control a look-back detection mode to avoid low-amplitude
beats that are being missed [97, 98]. The occurrence of an RR interval of
approximately twice the length of the average interval length may, in cases
of a stable sinus rhythm, be explained by a missed low-amplitude ectopic
beat. The processing of a prolonged RR interval in look-back mode by using
a lower detection threshold may result in detection of the beat which was
initially missed.

Although we have presented approaches to single-lead QRS detection,
detection based on multilead ECG recordings is preferable since this is asso-
ciated with a substantial improvement in performance. Noise and artifacts
tend to occur independently in different leads, so improved immunity can be
achieved with a multilead approach. Detection of ectopic beats will, in ad-
dition, be more reliable since ectopic beats of low amplitude in one lead are
usually larger in another. Multilead QRS detectors may incorporate either
a single decision function, for example, the sum of the preprocessed signals
of the different leads [88, 90, 99], or decision logic based on the outcome of
QRS detection in individual leads [79, 100].

7.4.5 Performance Evaluation

Before a QRS detector can be implemented in a clinical setting, suitable
parameter values must be determined, and the performance for the chosen
set of parameter values must be evaluated. It may be tempting to choose
the parameter values which were found useful during algorithm development
rather than the values that would result from a separate performance opti-
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mization. In doing this, however, one runs the serious risk of choosing values
that are too attuned to the training data, but not necessarily well-suited to
subsequent data.

A large number of parameter values must usually be fixed within each
detector structure. Joint optimization of all parameters with respect to a
suitable performance measure may imply a massive amount of computation
which may be unrealistic. A natural way to cope with this problem is to
optimize only those parameters that have the most profound effects on de-
tector performance. Other values can be fixed on physiological grounds or
determined by various ad hoc decisions.

Detector performance is commonly measured in terms of

• PD, the probability of a true beat being detected, and

• PF , the probability of a false beat being detected.

The probability of a missed beat PM is related to the probability of detection
through PD = 1− PM . Although these probabilities may be calculated the-
oretically for certain statistical models of the ECG signal and noise, it is, in
practice, much more interesting to estimate them from the performance that
results from a database of ECGs with a large variety of QRS morphologies
and noise types. In this case, the estimation is based on ratios that include
the number of correctly detected QRS complexes ND, the number of false
alarms NF , and the number of missed beats NM . The probability of false
detection can be estimated from

P̂F =
NF

ND + NF
, (7.108)

where the denominator includes the term NF to assure that P̂F is always
between zero and one. The probability of detection is estimated from

P̂D =
ND

ND + NM
. (7.109)

Since each probability is determined for each of the ECG recordings in the
database, it is customary to compute a “gross” average of the estimates in
order to reflect the overall performance of the QRS detector.5

The numbers ND, NF , and NM can only be computed once the database
has been subjected to manual annotation. Such annotation is typically a
laborious process, involving one or several skilled ECG readers, and leads to

5In clinically oriented literature, different terminology is used to describe detector
performance, in which PD is referred to as sensitivity, PF is referred to as 1–positive
predictivity, and NT , NF , and NM are referred to as the number of true positives, false
positives, and false negatives, respectively.
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Figure 7.25: Comparison of the QRS detector output to the manual annotations,
in this case indicating that all beats are correctly detected except the beat occurring
at θ6 which is missed. A noise wave is falsely detected at θ̂6. The matching window,
with length ∆θ, is displayed for the beat at θ3 but is, of course, equally applicable
to the other beats.

every QRS complex being assigned its correct occurrence time θi. A beat
is said to have been detected when the difference between the estimated
occurrence time θ̂j and the annotation time θi is within a certain matching
window defined by ∆θ,

|θ̂j − θi| ≤ ∆θ.

A false detection is produced when θ̂j is located at a distance larger than ∆θ
from any θi, and a beat is considered to have been missed when no detection
occurs closer than ∆θ to θi. The process of comparing the detector output
with the annotated QRS complexes is illustrated in Figure 7.25.

To study the behavior of the QRS detector for different parameter val-
ues, the estimate P̂D can be displayed versus P̂F in a receiver operating
characteristic (ROC), see Figure 7.26. From such a diagram, we may choose
suitable parameter values for the detector in order to achieve an acceptable
trade-off between the two counterbalancing measures P̂D and P̂F ; the cho-
sen trade-off will differ from application to application [70, 101]. The ROC
offers, among other things, a very practicable means of investigating and
comparing the performance of different QRS detectors with respect to their
robustness against noise and artifacts.
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Figure 7.26: Receiver operating characteristics (ROCs) of a QRS detector using
three different frequency responses of its linear filter. Each symbol corresponds to a
certain value of an amplitude detection threshold. The performance was determined
on a set of ECG recordings with very low SNRs [58].

7.5 Wave Delineation

A method of wave delineation determines the boundaries of each wave within
the PQRST complex so that, with the resulting time instants, wave dura-
tion can be computed. Once the wave has been delineated, other measures
characterizing the wave, such as amplitude and morphology, can be easily
computed. Such a method must also be able to detect when a certain wave is
absent; this situation is commonly encountered since, for example, only the
R wave or the S wave is present in certain leads or pathologies. Although
delineation is primarily applied to beats originating from the sinus node,
it may be applied to any type of beat to produce measurements for use in
automated beat classification.

The classical definition of a wave boundary is the time instant at which
the wave crosses a certain amplitude threshold level. Unfortunately, this
definition is not well-suited for the common situation when the ECG con-
tains baseline wander, and, therefore, this definition is rarely applied in
practice. Instead, many methods for wave delineation exploit the change in
slope that occurs at a boundary to avoid the problems due to low-frequency
noise. Hence, the first derivative of the signal is calculated and analyzed
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Figure 7.27: Determination of the QRS end using slope information. The QRS end
is the time at which the differentiated signal crosses a threshold after the maximum
slope has occurred. The threshold level is usually expressed as a percentage of the
maximum slope.

with respect to zero crossings and extreme values.6 This type of delineation
is illustrated by Figure 7.27 where the aim is to find the end of the S wave;
the other wave boundaries of the PQRST complex can be found in a similar
way. In this example, the search for the end point starts when the steepest
upslope of the S wave occurs and continues until the derivative of the signal
falls below a certain threshold value. The time instant at which the level
is crossed defines the QRS end. Since the above search procedure is based
on the assumption that each of the different waves is present, it is necessary
to first establish which waves are absent to ensure meaningful delineation.
Such wave detection is usually done by analyzing the pattern of successive
peak amplitudes and interpeak distances of the differentiated signal in an
interval positioned around the QRS complex.

The threshold level which determines the position of a wave boundary
may be fixed and chosen with reference to a slope value that is representa-
tive of the boundary to be determined [102–104]. Alternatively, the threshold
may be related to signal morphology so that its level is set to a certain per-
centage of the maximum slope [100, 105]. The latter type of thresholding is

6We remind the reader that a zero crossing of the derivative signal coming from be-
low corresponds to a minimum of the original signal, while that from above corresponds
to a maximum. The maximum of the derivative signal corresponds to the point of the
original signal with the steepest upslope, while the minimum corresponds to the steepest
downslope.
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more suggestive of a cardiologist’s approach to delineation since the bound-
aries of a large-amplitude wave with steep slopes and a low-amplitude wave
with less steep slopes will occur at about the same position; this is not the
case when fixed thresholding is applied.

In noisy ECG signals, wave delineation from the differentiated signal per-
forms poorly since an already low signal amplitude at the wave boundary is
disturbed by noise. The performance can, to a certain degree, be improved
by combining signal differentiation with lowpass filtering to attenuate high-
frequency noise, cf. (7.90). The cut-off frequency of the lowpass filter may
be fixed or, better, adapted to the spectral content of the wave to be delin-
eated [69]. For example, delineation of the QRS complex should be based
on a filter with a higher cut-off frequency than the filter used to find the
end of the T wave, reflecting the fact that the T wave contains much less
high-frequency components, see Figure 7.28. Furthermore, wave delineation
can be made more robust to noise by replacing thresholding with template
matching [50]. While thresholding relates to highly local signal behavior,
and in that way becomes vulnerable to noise, the matching of a template
waveform to the lowpass differentiated signal through correlation makes use
of more information in the signal.

The threshold levels, or the shapes of the waveform templates, should be
chosen such that the resulting delineation agrees with those obtained by car-
diological expertise. Following training of the delineation method to obtain
suitable parameter values, its performance should be evaluated on a database
with P, QRS, and T wave boundaries having been manually annotated; such
databases are today publicly available [106, 107]. Delineation performance
is described in terms of the mean and standard deviation of the error be-
tween the boundaries produced by the method and the experts [108, 109].
It is important to realize that a zero value of the standard deviation can
never be attained since a certain dispersion will always exist even among ex-
perts. However, a method’s performance is judged as satisfactory when the
dispersion is approximately on the same order as that among experts [110].

Wave delineation is especially problematic when determining the end of
the T wave, which is often characterized by a very gradual transition to the
isoelectric line of the ECG, see, for example, the T wave in Figure 7.28. In
fact, its delineation is problematic even among cardiologists, and differences
between cardiologists may occasionally approach as much as 100 ms [110].
Despite these difficulties, the end of the T wave is an extremely important
boundary, required to compute the length of the QT interval, i.e., the to-
tal duration of ventricular depolarization and repolarization, cf. page 429.
Due to the importance of this measurement, several special techniques have
been developed for the purpose of robustly determining the T wave end,
see, e.g., [111–116]. Multiresolution signal analysis of the ECG using the
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Figure 7.28: Wave delineation based on lowpass differentiated signals. The
original signal (top) is differentiated and lowpass filtered to yield the QRS onset and
end (middle) and the T wave end (bottom). The threshold level which determines
each wave boundary is indicated by the horizontal line. A higher cut-off frequency
of the lowpass differentiator was used for QRS complex delineation than for the
T wave.

dyadic wavelet transform in which the signal is analyzed at different time
resolutions, has proven to be particularly well-suited for T wave delineation.
By first determining a robust, but preliminary, boundary position from a
smooth approximation of the original signal, the position can be refined by
analyzing the properties of better approximations in an interval positioned
around the preliminary boundary [62, 63, 117, 118]. The wavelet-based ap-
proach can, with an appropriate choice of wavelet function, be viewed as a
filter bank of lowpass differentiators with varying cut-off frequencies. Evalu-
ating the performance of the methods based on either lowpass differentiation
or wavelet analysis, the latter method has been found to produce T wave
ends in better agreement with those produced by cardiologists [118].
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7.6 Data Compression

Since a wide range of clinical examinations involve the recording of ECG
signals, huge amounts of data are produced not only for immediate scrutiny,
but also for storage in a patient database for future retrieval and review. It
is well-known that the availability of one or several previous ECG record-
ings improves diagnostic accuracy of various cardiac disorders, including
myocardial infarction. Today, such serial ECG comparison encompasses
short-duration recordings acquired during rest, but may in the future en-
compass long signals, for example, acquired during stress testing or ambu-
latory monitoring. Although hard disk technology has undergone dramatic
improvements in recent years, increased disk size is parallelled by the ever-
increasing wish of physicians to store more information. In particular, the
inclusion of additional ECG leads, the use of higher sampling rates and finer
amplitude resolution, the inclusion of other, noncardiac signals such as blood
pressure and respiration, and so on, lead to rapidly increasing demands on
disk size. It is evident that efficient methods of data compression will be
required for a long time to come.

Another important driving force behind the development of methods for
data compression is the transmission of ECG signals across public telephone
networks, cellular networks, intrahospital networks, and wireless communica-
tion systems (“telemetry”). Such data transmission may be initiated from an
ambulance or a patient’s home to the hospital and has, among other things,
been found to be valuable for early diagnosis of an infarct. The transmission
of uncompressed data is today too slow, making it incompatible with the
real-time demand that often accompanies such ECG applications.

Any signal can be subjected to data compression as long as it contains
a certain amount of redundancy—a fact that applies to virtually all sig-
nals of practical interest and to the ECG signal in particular. The notion
of redundancy has already been touched upon when the samples of a sig-
nal were considered to be correlated; thus, decorrelation would represent a
potential approach to designing a method for data compression. The over-
all goal is to represent a signal as accurately as possible using the fewest
number of bits, by applying either lossless compression, in which the com-
pressed/reconstructed signal is an exact replica of the original signal, or lossy
compression, in which the reconstructed signal is allowed to differ from the
original signal. With lossy compression, a certain amount of distortion has
to be accepted in the reconstructed signal, although the distortion must re-
main small enough not to modify or jeopardize the diagnostic content of the
ECG.

Data compression is today a well-established area of technology, resting
on a solid theoretical basis, and has found its way into a wide range of ap-
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plications, from voice communication to image/video processing. Instead of
presenting the general theory on data compression, as has already been done
in a number of textbooks [119–121], we will describe the major approaches to
ECG data compression which, to various degrees, have been developed with
reference to the specific characteristics of the ECG signal. Electrocardio-
graphic data compression must take into account the fact that both small-
and large-amplitude waveforms are present in the signal, carrying important
diagnostic information, while the isoelectric line contains negligible informa-
tion. Preferably, the design process should also take into account the fact
that the signal contains recurrent heartbeats, often with similar morphology,
and that the signal is, almost invariably, a multilead recording.

The outcome of data compression is critically dependent on the sampling
rate and the number of bits used to represent each sample of the original
signal. For example, a signal acquired at a low sampling rate contains less
redundancy than one acquired at a high rate; as a result, the compression
ratio, defined as the bit size of the original signal divided by the bit size
of the compressed signal, is lower for a signal acquired at a lower sampling
rate. Other factors that influence the outcome of data compression are the
signal bandwidth, the number of leads, and the noise level. For example, a
signal sampled at a rate of 500 Hz but bandlimited to 50 Hz is associated
with a better compression ratio than is a signal bandlimited to the Nyquist
frequency of 250 Hz. Consequently, it is imperative that any comparison of
performance for different compression methods is based on identical values
of the system parameters.

In the presentation below, methods for data compression are categorized
according to the following three main types of data redundancy found in
ECG recordings.

• Intersample or, equivalently, intrabeat redundancy is exploited by em-
ploying either direct or transform-based methods as described in Sec-
tions 7.6.2 and 7.6.3, respectively.

• Interbeat redundancy is manifested, within each lead, by successive,
similar-looking heartbeats. As a result, their occurrence times must
be determined by a QRS detector before interbeat redundancy can be
exploited (Section 7.6.4).

• Interlead redundancy is due to the fundamental fact that a heartbeat is
“viewed” concurrently in different leads. Therefore, waveforms exhibit
varying degrees of interlead correlation which depend on the distance
between electrodes on the body surface (Section 7.6.5).

It should be noted that many methods of data compression have been de-
signed to solely deal with the first type of redundancy. However, methods
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Figure 7.29: Data compression of ECG signals. The output of the block perform-
ing redundancy reduction is a sequence of data coefficients. The output may also
include side information which, for example, describes the set of basis functions
used for computing the data coefficients. The encoder translates the input into an
efficiently coded bit stream.

which deal with all three types combined are becoming increasingly com-
mon. The block diagram in Figure 7.29 presents the two main steps in data
compression. In the first step, the redundancy of the original signal is re-
duced so that a more compact signal representation is obtained. The output
data is then fed to an encoder whose purpose is to produce an efficiently
coded bit stream suitable for storage or transmission. Although this section
is primarily focused on methods of redundancy reduction, data compression
performance cannot be properly evaluated unless the performance of the
encoder is also taken into account.

The above-mentioned measure, compression ratio, is frequently used to
describe a method’s performance. Unfortunately, this measure does not
provide sufficient detail on the performance when lossy data compression
is used since it does not reflect the distortion of the reconstructed signal;
thus, an excellent compression ratio may be achieved at the expense of a
severely distorted signal. A crucial aspect of ECG data compression is,
therefore, to define complementary performance measures which reflect the
accuracy with which the diagnostic information in the original ECG signal
is preserved, see Section 7.6.7. It is essential to point out that the amount of
distortion acceptable differs from application to application. For example,
more distortion may be accepted if all the detailed signal analysis is done
prior to data compression, while the reconstructed signal is only used for
overall visual review [122].

Another important aspect of performance evaluation is the choice of ECG
database. Since the performance of a method depends on the noise level,
the evaluation should be based on data representative of the application in
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H(z)
1

H(z)

Figure 7.30: Block diagram of lossless data compression based on linear prediction.
The output of the filter with transfer function H(z) is the sequence of prediction
errors ep(n). The predictor coefficients a1, . . . , ap may have to be included as side
information for reconstruction.

question. The amount of ectopic beats and arrhythmias are other factors
which, to various degrees, influence the outcome of an evaluation.

7.6.1 Lossless Compression

The use of lossless data compression seems very well-suited for applications
where the demands on preserving diagnostic details are high. At an early
stage, such compression was also applied to ECG signals, but proved to
be relatively inefficient in achieving high compression ratios. Therefore, we
will not delve into lossless compression techniques except to briefly mention
linear prediction, which has been considered in the context of ECG signal
processing [123–127]. With this technique, intersample redundancy is re-
duced by predicting the current sample x(n) by a linear combination of the
p previous samples,

x̂p(n) = −a1x(n − 1) − · · · − apx(n − p), (7.110)

so that the prediction error

ep(n) = x(n) − x̂p(n) (7.111)

only needs to be considered. Since ep(n) has a magnitude which is typically
much smaller than that of x(n), fewer bits are required for its representation.
Hence, the compressed data is represented by the sequence of prediction er-
rors ep(n), possibly in combination with the predictor coefficients a1, . . . , ap

as side information when these coefficients are not a priori known, see Fig-
ure 7.30.

In its simplest form, x(n) may be predicted by the preceding sample
x(n − 1) so that the predictor computes the first difference,

e1(n) = x(n) − x(n − 1), (7.112)
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where a1 = −1. Hence, the transfer function of the prediction error filter
producing e1(n) is equal to H(z) = 1 − z−1. Another simple structured
predictor is the one which predicts x(n) by extending the straight line defined
by x(n − 1) and x(n − 2) so that

e2(n) = x(n) − 2x(n − 1) + x(n − 2)
= e1(n) − e1(n − 1), (7.113)

where (a1, a2) = (−2, 1); obviously, this predictor computes the second dif-
ference of the signal. Both these predictors have been applied to the com-
pression of ECG data [123].

A systematic approach to determining the predictor coefficients is through
minimization of the MSE

E
[
(x(n) − x̂p(n))2

]
,

assuming that x(n) is a zero-mean stationary process characterized by its
correlation function rx(k). The set of linear equations which yields the opti-
mal MSE coefficients is well-known from AR-based spectral analysis and is
presented in Section 3.4. Using, for example, the autocorrelation/covariance
estimation method, the predictor coefficients can be determined by solving
the normal equations given in (3.126).

The output signals of the two simple structured predictors, together with
the output signal of a third-order MSE predictor, are displayed in Figure 7.31
for an ECG signal sampled at a rate of 200 Hz. While all three predictors
remove the P and T waves, the third-order predictor is, in this particular
example, markedly better at predicting the QRS complexes. Predictors with
orders higher than three have been found to offer only minor improvements
in performance when the sampling rate is 200 Hz [124].

The original signal x(n) can be reconstructed from the prediction errors
ep(n) through inverse filtering with 1/H(z) (Figure 7.30). To make recon-
struction successful, however, the zeros of H(z) must be located inside or,
possibly, on the unit circle; if not, the inverse filter becomes unstable since
its poles are located outside the unit circle. Of the three methods described
in Section 3.4, Burg’s method is preferred since it always produces a function
H(z) whose zeros are inside the unit circle.

Although linear prediction represents a lossless compression technique,
the end result may nonetheless be lossy since ep(n) has to be rounded off
to a number of bits which, in general, is lower than the number of bits used
for the internal computation of H(z). This is often the situation for MSE
predictors since, in contrast to the two simple structured predictors above,
their coefficients are almost invariably nonintegers.
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(a)

(b)

(c)

(d)

Figure 7.31: Reducing intersample redundancy with linear prediction. (a) The
ECG signal, sampled at a rate of 200 Hz, was processed by (b) the first difference
predictor, (c) the second difference predictor, and (d) a third-order predictor whose
coefficients (a1, a2, a3) = (−2.15, 1.86,−0.63) were chosen so as to minimize the
MSE.

7.6.2 Lossy Compression—Direct Methods

Direct methods operate in the time domain by extracting a set of K “signif-
icant” samples x(nk) from the original signal x(n) such that

(n, x(n)), n = 0, . . . , N − 1 → (nk, x(nk)), k = 0, . . . , K − 1,

where K < N . The resulting subset of K samples is retained for data
compression, while the other samples are discarded. Reconstruction of the
samples between the significant samples is achieved by interpolation using
the following general expression:

x̃(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x(n), n = n0, . . . , nK−1;
fn0,n1(n), n = n0 + 1, . . . , n1 − 1;

...
...

fnK−2,nK−1(n), n = nK−2 + 1, . . . , nK−1 − 1.

(7.114)

The first and last significant samples of the signal x(n) are usually chosen
to be n0 = 0 and nK−1 = N − 1, respectively. The interpolating function
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fnk−1,nk
(n) usually has a polynomial form of low order, approximating the

signal with zero- or first-order polynomials, i.e., by a sequence of plateaus
or straight lines. First-order (linear) interpolation has become especially
popular since the signal can be completely reconstructed from the set of
significant samples x(nk). The reconstructed signal has by some been labeled
a “polygon,” and, therefore, the significant samples are sometimes referred
to as “vertices”. Although more advanced interpolating functions can be
used, e.g., rational or trigonometric functions, additional parameters need
to be stored as side information to reconstruct the signal. As a result,
improvements in performance may still be lost due to the additional cost of
representing the interpolating function.

The selection of significant samples can be viewed as an “intelligent” sub-
sampling of the signal in which the isoelectric segments are approximated
by a small number of samples, whereas the QRS complex is much more
densely sampled so that the essential information contained in the ECG is
preserved. A simplistic approach would be to select the significant samples
from among the turning points of the signal, i.e., its peaks and valleys; how-
ever, the error between the original and reconstructed signal may at times be
quite considerable. Therefore, the selection of significant samples is usually
based on a criterion assuring that the reconstruction error remains within
a certain tolerance. The selection process can be performed sequentially so
that the next significant sample is selected with reference to the properties
of preceding signal properties. Alternatively, a larger block of samples can
be processed at the same time so that significant samples are selected with
reference to the enclosing signal properties. While the block-based approach
can be expected to yield better performance, it is less suitable for real-time
processing.

The performance of direct methods is particularly influenced by the noise
level of the ECG, since the number of significant samples required to meet the
maximal error tolerance increases as the noise level increases. Accordingly,
poorer compression ratios are achieved at high noise levels. While direct
methods work satisfactorily when processing ECGs acquired during resting
conditions, the very idea of selecting significant samples can be questioned
in noisy recordings.

In the following, we will describe two methods, called AZTEC and SAPA,
which belong to the family of direct methods. In addition to these methods,
which have both been extensively studied, several other direct methods have
been presented in the literature [128].

AZTEC. For many years, the amplitude zone time epoch coding (AZTEC)
method represented a popular approach to ECG data compression due to
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its very modest computational requirements [129, 130]. With AZTEC, the
original signal is converted into a sequence of plateaus and slopes which,
following reconstruction, may be useful in certain types of automated ECG
analysis, but hardly for diagnostic interpretation.

The definition of a plateau is based on two sequences, xmin(n) and
xmax(n), which describe the extreme values of the signal from the starting
time nk−1 and onwards:

xmin(n) = min{x(nk−1), x(nk−1 + 1), . . . , x(n)}, (7.115)
xmax(n) = max{x(nk−1), x(nk−1 + 1), . . . , x(n)}. (7.116)

A plateau extends in time as long as the difference between the maximum
and minimum values does not exceed a certain preset error tolerance ε,

xmax(n) − xmin(n) ≤ ε. (7.117)

The last sample n for which (7.117) holds true is denoted nk. Rather than
retaining x(nk) for storage or transmission, it is replaced by the average
of the maximum and minimum values, considered to be representative of
the plateau’s amplitude. Since the plateau representation is inadequate for
waveforms with steep slopes, AZTEC also includes a procedure for retaining
slopes whenever (nk − nk−1) is less than a certain distance. In such cases,
the sample x(nk) is retained in place of the two-sample average. The recon-
structed signal x̃(n) results from expanding the series of plateaus and slopes
by

x̃(n) =

⎧⎪⎨⎪⎩
xmin(nk) + xmax(nk)

2
, for a plateau;

x(nk−1) + (n − nk−1) ·
x(nk) − x(nk−1)

nk − nk−1
, for a slope,

(7.118)

where n = nk−1, . . . , nk, and k = 0, . . . , K − 1.
Figure 7.32 illustrates the performance of AZTEC for different values of

the error tolerance ε. For large values, it is evident that the reconstructed sig-
nal exhibits a disturbing, nonphysiological staircase appearance. Although
the discontinuities can be smoothed with lowpass filtering, amplitude distor-
tion is inevitable and leads to the wave amplitudes being underestimated.

A number of modifications of the AZTEC method have been suggested in
order to improve signal reconstruction. For example, the tolerance ε can be
made time-dependent so that the isoelectric line is associated with a larger
value of ε than are intervals with diagnostic information [131]. Another ap-
proach to dealing with the two types of intervals is to let AZTEC operate
only on isoelectric segments while another algorithm is applied to intervals
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Figure 7.32: Reconstruction using the AZTEC method. The original ECG signal
is reconstructed for three different values of the error tolerance ε. Slopes are stored
if the interval (nk − nk−1) is less than 10 ms. Of the 500 samples in the original
ECG, 42, 66, and 245 significant samples are retained for ε = 0.1, 0.05, and 0.01,
respectively.

with high-frequency content. One such algorithm is the turning-point algo-
rithm which compares pairs of samples, always retaining the second sample
unless the first sample represents a turning point, i.e., a sample where the
slope of the signal is changing [132], see also [133, 134]. Thus, the turning-
point algorithm always downsamples the signal by a factor of two while still
preserving the peak amplitudes of the different waves. The combined data
compression method is designed to produce plateaus whenever their lengths
exceed a certain minimum length and, otherwise, turning points [135, 136].

SAPA. Another well-known method for data compression is the scan-along
polygonal approximation (SAPA) [137]. The leading principle behind this
method is that the signal is represented by consecutive straight lines, thus
avoiding the plateau representation of AZTEC. Assuming that a significant
sample (vertex) has been found at nk−1, the next vertex at nk is the sample
that is furthest away from nk−1 for which the error between x(n) and the
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straight line reconstruction x̃(n) remains within the error tolerance ε,

|x(n) − x̃(n)| < ε, n = nk−1, . . . , nk. (7.119)

The straight line x̃(n) is defined by the two enclosing samples x(nk−1)
and x(nk),

x̃(n) = x(nk−1) + (n − nk−1) ·
x(nk) − x(nk−1)

nk − nk−1
, n = nk−1, . . . , nk.

(7.120)

Linear interpolation is then repeated by starting at vertex nk and continu-
ing until x(n) is completely processed. The result is a sequence of vertices
x(n0), . . . , x(nK−1) for which the value of K depends on the properties of
the analyzed signal.

Determination of the next vertex at nk is facilitated by the introduction
of a “slope” function g(n, ε) which involves ε,

g(n, ε) =
x(n) + ε − x(nk−1)

n − nk−1
, n = nk−1, . . . . (7.121)

The next vertex may be found as soon as the maximum value of all slopes at
the lower tolerance −ε exceeds the minimum value of all slopes at the upper
tolerance ε,

max
m

g(m,−ε) > min
m

g(m, ε), (7.122)

where the search for extreme values is assumed to start at m = nk−1. Unfor-
tunately, the test in (7.122) produces a reconstruction error whose magnitude
may be as large as 2ε; therefore, the test is replaced by two other slope tests
which require that the slope g(n, 0) of the straight line between x(nk−1) and
x(n) either falls below the maximum value of all slopes at −ε,

g(n, 0) < max
m

g(m,−ε), (7.123)

or exceeds the minimum value of all slopes at ε,

g(n, 0) > min
m

g(m, ε). (7.124)

The newly found vertex is defined by the sample that immediately precedes
the sample violating any of these two tests. The above procedure is then
repeated by starting from nk to find the next vertex, and so on, see Fig-
ure 7.33. The performance of the SAPA method is illustrated in Figure 7.34
for three different values of the error tolerance ε. It can be observed from
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Figure 7.33: Determination of a vertex using the SAPA method. (a) With an
existing vertex at nk−1 = 1, the next vertex occurs at n = 10 since the straight line
from nk−1 to n = 11 is partially outside the corridor defined by the error tolerance ε.
All straight lines up to n = 10 are within the tolerance. (b) In this example, the
test in (7.123) determines the next vertex since g(n, 0) is smaller than the maximum
value of all slopes at −ε at n = 11.

this example that the Q wave disappears in the reconstructed ECG when ε
becomes too large.

The SAPA method assures that the magnitude of the reconstruction er-
ror in (7.119) is always less than ε. However, it may occasionally fail to find
the very last sample which remains within the error tolerance and, there-
fore, a search terminating too early may lead to less efficient compression.
This minor deficiency can be addressed by including additional tests on the
slope [137].7 Improved compliance with the error tolerance does not, how-
ever, imply better reconstruction of the signal; in fact, the additional tests
were found to smooth out small Q waves, and, as a result, these tests have
never been considered.

7The SAPA method with additional tests on the slope is originally named SAPA–3,
while the method involving the tests in (7.123)–(7.124) is named SAPA–2. The SAPA–1
method is defined by the single test in (7.122).
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Figure 7.34: Reconstruction using the SAPA method. The original ECG signal
is reconstructed for different error tolerances ε. Of the 500 samples in the original
ECG, 21, 33, and 187 significant samples are retained for ε = 0.1, 0.05, and 0.01,
respectively.

Similar to SAPA, the fan method draws straight lines between signifi-
cant samples selected so that the signal reconstruction is always within a
certain error tolerance. This method was presented already in the 1960s
for use in telemetry of ECG data [138] and was later claimed to be iden-
tical to the SAPA method described above [139]. The performance of the
fan method has been studied in considerable detail [140, 141], as has the
efficient implementation of the method in a microprocessor for real-time op-
eration [142–144]. Other methods closely related to the SAPA/fan method
have also been presented [145–147].

A salient property of the SAPA/fan method is its sequential selection of
vertices, implying that the resulting vertices are not necessarily associated
with the minimal reconstruction error. By instead employing a block-based
optimization criterion in which, for example, one cardiac cycle is processed at
a time, it is possible to find the vertices that produce the minimal reconstruc-
tion error, for example, in the root mean-square (RMS) error sense [148–150].
It can be shown that the solution to this optimization problem is identical
to finding the shortest path from one point to another in a graph, subject to
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the constraint that the path can only intersect a certain number of vertices;
the details of this algorithm can be found in [148]. At a fixed compression
ratio, the block-based optimization approach produces a lower reconstruc-
tion error than does the SAPA/fan method—a performance improvement
which is accompanied by increased processing time.

7.6.3 Lossy Compression—Transform-based Methods

Transform-based data compression assumes that a compact signal represen-
tation exists in terms of the coefficients of a truncated orthonormal expan-
sion. The idea of representing a signal x =

[
x(0) x(1) · · · x(N − 1)

]T by
a set of orthonormal basis functions ϕk is already familiar to us since it was
used for single-trial analysis of EPs in Section 4.5: an estimate of the signal
is obtained from truncation of the complete series expansion so that only K
out of the N terms are included. In the context of data compression, the
transform-based approach is closely related since the coefficients w1, . . . , wK

are retained for storage or transmission, hopefully providing adequate signal
reconstruction, while the remaining (N − K) coefficients, being near zero,
are discarded. The coefficients wk are obtained by correlating x with each of
the basis functions, i.e., the inner product wk = ϕT

k x, cf. (4.195). Hence, the
subset of K coefficients constitutes the information to be compressed and
from which the signal is later reconstructed. If the basis functions are a priori
unknown, the set of coefficients must be supplemented with the samples of
the required basis functions. Figure 7.35 illustrates the property of a trans-
form domain, i.e., the domain defined by ϕk, which offers a more compact
representation than that of the time domain samples, packing the energy
into a few coefficients wk. Following data compression, the reconstructed
signal x̃K is obtained from

x̃K =
K∑

k=1

wkϕk. (7.125)

In contrast to most direct methods, transform-based methods require
that the ECG first be partitioned into a series of successive blocks, where
each block is subsequently subjected to data compression. The signal may
be partitioned so that each block contains one heartbeat, and, therefore,
QRS detection must always precede such compression methods. Each block
is positioned around the QRS complex, starting at a fixed distance before
the QRS which includes the P wave and extending beyond the end of the
T wave to the beginning of the next beat. Since the heart rate is not constant,
the distance by which the block extends after the QRS complex is adapted
to the prevailing heart rate. Hence, the resulting blocks vary in length,



Section 7.6. Data Compression 527

0 50 100 150 200 250
-2

-1

0

1

n

A
m

p
li
tu

d
e 

(m
V

)

0 50 100 150 200 250
-2

-1

0

1

2

3

k

w
k

(a) (b)

Figure 7.35: Transform-based data compression. (a) The original ECG and (b) the
corresponding coefficients in the transform domain (here defined by Karhunen–
Loève basis functions). In the transform domain, the signal energy is concentrated
to a few coefficients with low index, implying that the signal is well-reconstructed
by a much truncated series expansion of basis functions. The sample index n is
here used, rather than time, to underline the fact that the transform coefficients are
equal in number to the time domain samples.

introducing a potential problem in transform-based compression where a
fixed block length is assumed. This problem may be solved by padding too
short blocks with a suitable sample value, whereas too long blocks can be
truncated to the desired length. It should be noted that partitioning of the
ECG is bound to fail when certain chaotic rhythms are encountered, most
notably ventricular fibrillation during which no QRS complexes are present.

A fixed number of basis functions are often considered for data compres-
sion, with the value of K being chosen from considerations concerning overall
performance expressed in terms of compression ratio and reconstruction er-
ror. While serving as an important guideline to the choice of K, such an
approach may occasionally produce an unacceptable representation of cer-
tain beat morphologies. Since the loss of morphologic detail causes incorrect
interpretation of the ECG, the choice of K can be adapted for every beat to
the properties of the reconstruction error (x − x̃K) [151]. For example, the
value of K may be chosen such that the RMS value of the reconstruction
error does not exceed the error tolerance ε or, more demanding, that none
of the reconstruction errors of the entire block exceeds ε. It is evident that
the value of K sometimes becomes much larger than the value suggested
based on considerations on overall performance; however, it sometimes also
becomes smaller. By letting K be variable, we can fully control the quality
of the reconstructed signal, while also being forced to increase the amount
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Figure 7.36: Quality control and data compression using a transform-based
method. (a) A fixed number of basis functions (K = 6) are used for signal re-
construction. (b) The number of basis function is chosen so that the RMS error,
denoted ε, between the original and reconstructed signal is always below 40 µV.
The basis functions were defined by the KL transform.

of side information since we must keep track of the value of K for every data
block. If the basis functions are a priori unknown, a larger number of basis
functions must also be part of the side information. Figure 7.36 illustrates
signal reconstruction for a fixed number of basis functions and a number
determined by an RMS-based quality control criterion. In this example,
the indicated error tolerance is attained by using different numbers of basis
functions for each of the three displayed beats.

The Karhunen–Loève transform. The most important question to ad-
dress is, of course, which set of basis functions to choose for data compres-
sion. We know from Section 4.5.3 that the Karhunen–Loève (KL) expansion
is optimal in that it minimizes the MSE of approximation, and, therefore,
the KL basis functions have become popular [122, 151–154]. Unlike the de-
velopment of the KL expansion in Section 4.5.3, no distinction is made here
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between signal and noise, but our aim is instead to find the set of ϕk that
makes x̃K resemble x as closely as possible. Since this aim is identical to
setting x = s, the derivation of the matrix equation in (4.235) holds without
modification, and, thus, the basis functions are obtained as eigenvectors of
the correlation matrix Rx. The coefficient vector w of the Karhunen–Loève
transform (KLT) of x is defined by

w = ΦTx, (7.126)

where the columns of Φ contain the KL basis functions, and the coefficient
vector w defines the transform domain.

The performance of the KLT may be described by the index R, defined
in (4.243), which reflects how well the original signal is approximated by the
basis functions. While this index describes the performance on the chosen
ensemble of data as an average, it does not provide information on the recon-
struction error in individual beats. Therefore, it is appropriate to include a
criterion for quality control when the number of basis function K is chosen,
see Figure 7.36.

The calculation of Rx can be based on different types of data sets. The
basis functions are labeled universal, when the data set originates from a
large number of patients, or subject-specific, when the data originates from
a single recording. While it is rarely necessary to store or transmit uni-
versal basis functions, subject-specific functions need to be part of the side
information. Still, subject-specific basis functions offer superior energy con-
centration of the signal because these functions are better tailored to the
data, provided that the ECG contains few beat morphologies. Figure 7.37
illustrates the latter observation by presenting the reconstructed signal for
both types of basis functions. It can be seen in this figure that two subject-
specific basis functions produce a much lower reconstruction error than do
eight universal functions.

When calculating either type of basis function, it is important that the
beats are well-aligned in time before estimating the correlation matrix Rx.
If they are not, the data ensemble exhibits artificial morphologic variability
which makes the basis function representation less efficient. The occurrence
times θ̂i, produced by the QRS detector, can be further improved by aligning
the ensemble of beats with respect to the QRS complex interval using, for
example, Woody’s method.

Noise reduction of the reconstructed signal is an interesting side effect
when KL basis functions are employed for data compression—a property
presaged by the results presented earlier in the context of single-trial EP
analysis. This property is attributed to the fact that the most significant
basis functions represent most of the signal energy, whereas noise is mostly
represented by the basis functions excluded through truncation.
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Figure 7.37: Transform-based data compression using the KL basis functions de-
rived from either (a) a huge database including thousands of ECGs from different
subjects or (b) subject-specific data. The basis functions ϕk and associated eigen-
values λk are presented, as are the 30 largest coefficients of the original ECG’s KLT.
The ECGs are reconstructed with K = 8 and 2 for universal and subject-specific
basis functions, respectively.
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A limitation of the KL basis functions comes to light when compressing
ECGs with considerable changes in heart rate and, consequently, changes in
the position of the T wave. Such ECG changes are observed during the course
of a stress test. Since the basis functions account for the T wave occurrence
at a fixed distance from the QRS complex, the basis functions become ill-
suited for representing beats whose T waves occur earlier or later than this
interval. As a result, additional basis functions are required to achieve the
desired reconstruction error, thus leading to a reduction in performance.

Wavelets and wavelet packets. Although the KLT is optimal in the
MSE sense, a certain amount of side information is required, especially for
subject-specific basis functions, implying the possibility that other sets of
basis functions may produce better performance. Moreover, the KLT is a
signal-dependent transform, and, therefore, no algorithm exists which offers
fast implementation.

The discrete wavelet transform (DWT), described in Section 4.7.2, has
been found useful for compression of ECG signals since the information is
concentrated into a fairly small number of coefficients [155–163]. Similar
to the KLT approach, coefficients of large magnitude are retained first for
compression because they convey most of the signal energy: cf. Section 4.7.6
which describes techniques for signal denoising. However, wavelet coefficients
often exhibit a temporal relationship across scales which may be analyzed
to facilitate the selection of coefficients.

The discrete wavelet packet transform (DWPT) represents a powerful
generalization of the DWT [164]. While the DWT successively decomposes
the scaling coefficients cj(k) which define the approximation signals at dif-
ferent scales, see Figure 4.44, the DWPT successively decomposes both the
scaling coefficients cj(k) and the wavelet coefficients dj(k) which define the
detail signals. As a result, the DWPT produces N coefficients at each scale,
whereas the DWT produces a total of N coefficients. From the different
scales of the wavelet packet decomposition, a total of K, out of N , coeffi-
cients are selected to represent the signal in the transform domain.

Like the DWT, the DWPT can be implemented by the filter bank with
highpass and lowpass filters shown in Figure 4.43. However, decomposition
of both scaling and wavelet coefficients means that the output of each branch
of the filter bank is split into lowpass and highpass filters. Therefore, the
dyadic tree structure of the DWT is replaced by a binary structure with one
two-channel filter bank at the first stage, two two-channel filter banks at the
second stage, four two-channel filter banks at the third stage, and so on.

The calculation of the DWPT is illustrated in Figure 7.38(a) for a signal
of length N = 8; in this particular example, the eight transform coefficients



532 Chapter 7. ECG Signal Processing

c3(0), c3(1), c3(2), c3(3), c3(4), c3(5), c3(6), c3(7)

Scale

j = 3

j = 2

j = 1

j = 0

c3(0), c3(1), c3(2), c3(3), c3(4), c3(5), c3(6), c3(7)j = 3

j = 2

j = 1

j = 0

(a)

(b)

Figure 7.38: (a) The discrete wavelet packet transform (DWPT) and one particu-
lar choice of transform coefficients (indicated by shaded boxes); note that both scal-
ing and wavelet coefficients are successively decomposed by this transform. (b) The
DWPT and another choice of transform coefficients identical to those produced by
the discrete wavelet transform. No truncation of coefficients was performed in these
two examples.
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were selected from scales j = 1 and 0. Figure 7.38(b) presents another signal
decomposition for which the coefficients were selected exactly so that the
DWT results. With the possibility of selecting coefficients in various ways,
the DWPT offers a flexible signal representation which allows adaptation to
individual signals. The selection of DWPT coefficients is often based on an
information measure, like entropy, which concentrates as much information
in as few coefficients as possible [165]. Another approach is to select the
coefficients so that a distortion measure does not exceed a certain error
tolerance [166], see below.

Interestingly, it has been shown that the DWPT is a good approximation
of the KLT while, at the same time, circumventing the disadvantage of the
KLT as a signal-dependent transform [164]. Rather than coding the total
basis functions, as the KLT does, the DWPT only requires that the binary
tree structure be coded.

Other transforms. It should be mentioned that many signal-independent
transforms have, over the years, been considered for ECG data compression.
These transforms include the discrete Fourier transform [125, 167, 168], the
Walsh transform [169–172], the discrete cosine transform [173–175], the dis-
crete Legendre transform [176], the Hermite transform [177], and the opti-
mally warped transform [178]. While these transforms exhibit performances
inferior to the KLT and DWPT transforms, some of them have the advan-
tage of being efficiently calculated thanks to the existence of a fast algorithm
such as the FFT implements the discrete Fourier transform.

7.6.4 Interbeat Redundancy

The above compression methods are designed to reduce intersample redun-
dancy of the ECG, while not dealing with the fact that successive beats
often have almost identical morphology. A simplistic approach to dealing
with interbeat redundancy is to use the previous beat to predict the next
beat. To proceed, we assume that the ith beat xi(n) starts at a fixed time
∆ before θ̂i and lasts for N samples,

xi(n) = x(n + θ̂′i), n = 0, . . . , N − 1, (7.127)

where

θ̂′i = θ̂i − ∆. (7.128)

The distance ∆ is chosen to be large enough to make sure that the onset of
the beat, i.e., the P wave, is included. The error ei(n) when predicting xi(n)
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by x̂i(n) is then given by

ei(n) = xi(n) − x̂i(n), n = 0, . . . , N − 1, (7.129)

where x̂i(n) is defined by the previous beat [179],

x̂i(n) = xi−1(n) = x(n + θ̂′i−1), n = 0, . . . , N − 1. (7.130)

The prediction is initialized by

x̂1(n) = 0, n = 0, . . . , N − 1, (7.131)

which means that e1(n) is identical to the first beat x1(n). By repeating
the prediction for all beats, a signal is produced whose magnitude is much
smaller than the original one, thus requiring fewer bits for its representation;
the resulting signal is commonly referred to as the residual ECG.

For a perfectly periodic heart rhythm, where all interval lengths are
identical to N samples, it is easily realized that the original signal can be
perfectly reconstructed by

xi(n) = ei(n) + x̂i(n), (7.132)

from which we then obtain x̂i+1(n) = xi(n), and so on. Again, the initializa-
tion in (7.131) is used. Since heart rate always varies, care must exercised
in situations when the end of the beat to be predicted overlaps with the
onset of the next. If this happens, the prediction interval must end earlier,
immediately preceding the onset of the next beat. When x̂i(n) is too short
to allow the prediction of xi(n), it may be padded with zeros so that the
original samples at the end of the beat are retained for compression.

A drawback of the simple “previous-beat” predictor in (7.130) is its vul-
nerability to noise, a property which can be improved by instead using a
predictor based on averaging of the J most recent beats [180–182],

x̂i(n) =
1
J

J∑
j=1

x(n + θ̂′i−j), n = 0, . . . , N − 1. (7.133)

When this particular predictor is employed, the prediction is often referred to
as average beat subtraction.8 Ensemble averaging can, of course, be replaced

8Average beat subtraction has been found useful in other applications as well, such as
for the purpose of extracting the f waves of the ECG which reflect atrial activity during
atrial fibrillation (Section 6.3.3). Due to the fact that atrial and ventricular activity are
uncoupled, subtraction of the average QRST complex will produce a residual ECG which
essentially contains only the fibrillatory f waves [183–185].
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Figure 7.39: The influence of time alignment on the residual ECG. The original
ECG (top), the residual ECG resulting from the use of θi produced by the QRS de-
tector (middle), and θi improved by performing energy minimization between xi(n)
and x̂i(n) (bottom). The residuals are considerably smaller after time alignment.

by any of the techniques presented for noise reduction in Section 4.3, for ex-
ample, by exponential averaging which allows faster adaptation to the most
recent beats. Using average beat subtraction, interval length considerations
similar to the above should be applied to achieve appropriate reconstruction.
An extra long average beat, for example, of 2 s length, facilitates the pre-
diction process, on condition that the average beat is only updated during
the relevant interval of the beats xi(n) [180].

A fundamental assumption of the beat subtraction approach is that the
beats used to compute x̂i(n) exhibit similar morphology. To ensure this, it
is necessary to first categorize the beats according to their respective mor-
phology so that several average beats can be initialized [180, 186, 187], see
also [188]. A straightforward approach to such beat categorization (cluster-
ing) would be to consider the energy of the prediction error

∑
n e2

i (n) in a
beat interval: a new average beat is initialized if the energy exceeds a cer-
tain threshold, unless the current beat matches an already existing average
beat category. Methods which cluster different beat morphologies are briefly
considered in Section 8.5.

It is essential that the estimation of θi be accurate so that it relates to
same fiducial point in all beats having similar morphology. It is usually
necessary to improve the occurrence time of the QRS detector by optimally
aligning the average beat with the beat to be predicted so that, for exam-
ple, the energy of the prediction error is minimized. Figure 7.39 illustrates
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the importance of time alignment by displaying the residual ECG when no
further alignment is done after QRS detection and when the error energy is
minimized. With time alignment, it is obvious from Figure 7.39 that large
prediction errors, costing several bits to represent, are considerably reduced.
An issue intimately related to time alignment is the choice of sampling rate,
since with too low a sampling rate, the residual ECG will contain large
prediction errors [180].

The above predictors for reducing interbeat redundancy can be further
generalized to a predictor which also accounts for intersample correlation—
an approach suggested in [127] and later developed in detail in [189, 190].
In this approach, intersample correlation within the prediction interval is
modeled by an AR model of order p0 with regression parameters a1, . . . , ap0 ,
whereas intersample correlation within the (i − j)th beat is modeled by an
AR model of order pj with parameters aj,1, . . . , aj,pj . Combining these, the
long-term predictor is defined by [190]

x̂i(n) =
p0∑

k=1

akx(n + θ̂′i − k) +

J∑
j=1

pj−1∑
k=0

aj,kx(n + θ̂′i−j − k), n = 0, . . . , N − 1. (7.134)

The parameters of the long-term predictor can be obtained by minimizing the
prediction error, using techniques similar to those presented in Section 3.4
for AR power spectral analysis [190]; the details of the predictor parameter
estimation problem are worked out in Problem 7.24.

It is interesting to observe that the previous-beat predictor, defined in
(7.130), results from choosing the parameters values

p0 = 0, J = 1, p1 = 1, a1,0 = 1, a2,0 = · · · = aJ,0 = 0,

whereas the average beat predictor in (7.133) results from p0 = 0 and the J
most recent beats using

p1 = · · · = pJ = 1, a1,0 = · · · = aJ,0 = 1/J.

Finally, we note that the above time domain techniques for reducing
interbeat redundancies can be equally applied in the transform domain, as
defined by the coefficients w1, . . . , wK .

7.6.5 Interlead Redundancy

Since considerable correlation exists between different ECG leads, data com-
pression of multilead ECGs would benefit from exploring interlead redun-
dancy rather than just applying the previously described methods to one
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lead at a time. Direct methods for single-lead data compression have turned
out to be not easily extended to multilead compression, although a few adap-
tations have been presented, for example, of the AZTEC method [191].

With transform-based methods, interlead correlation may be dealt with
in two steps, namely,

1. a transformation which concentrates the signal energy spread over the
available L leads into a few leads, followed by

2. compression of each transformed lead using a single-lead technique.

Since the first step is exactly what the KLT is designed to do, its original
definition in (7.126) is modified to suit the case of interlead correlation.
Defining the L × 1 lead vector x(n) as

x(n) =

⎡⎢⎢⎢⎣
x1(n)
x2(n)

...
xL(n)

⎤⎥⎥⎥⎦ , (7.135)

an L × 1 transformed lead vector w(n) is obtained by

w(n) = ΦTx(n), n = 0, . . . , N − 1, (7.136)

where the columns of the matrix Φ are now defined by the eigenvectors of
an L × L matrix Rx describing the correlation between leads. This matrix
is estimated by

R̂x =
1
Nt

Nt−1∑
n=0

x(n)xT (n), (7.137)

where Nt denotes the total number of samples of several beats. Figure 7.40
illustrates the transformation in (7.136) when applied to the standard 12-
lead ECG (recall that only 8 leads are unique for this lead system, whereas
the remaining 4 are obtained as linear combinations). Using the samples
of the displayed signal to estimate Rx, the energy of the original leads is
redistributed so that only three out of the eight transformed leads contain
significant energy; the remaining five leads mostly account for noise. Since
the KLT is orthonormal, we can easily reconstruct the original signal from
the transformed leads using

x(n) =
(
ΦT

)−1
w(n) = Φw(n). (7.138)

Following concentration of the signal energy using (7.136), different ap-
proaches to data compression may be applied to the transformed leads, of
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(a) (b)

Figure 7.40: (a) The standard 12-lead ECG (V1, . . . , V6, I, and II from top to
bottom) and (b) its KL transform, obtained using (7.136), which concentrates the
signal energy to only three of the leads.

which the simplest one is to only retain those leads whose energy exceeds a
certain limit. Each retained lead is then compressed using any of the direct
or transform-based methods described above. If a more faithful reconstruc-
tion of the ECG is required, leads with less energy can be retained, although
they will be subjected to more drastic compression than the other leads [192].

A unified approach, which jointly deals with intersample and interlead
redundancy, is to pile up all the segmented leads xi,1, . . . ,xi,L into a single
LN × 1 vector (Figure 7.41),

x′
i =

⎡⎢⎢⎢⎣
xi,1

xi,2
...

xi,L

⎤⎥⎥⎥⎦ , (7.139)

where xi,l denotes an N × 1 vector containing the ith beat of the lth lead.
The vector x′

i is then subjected to compression by any of the transform-
based methods described above [153, 193]. Applying the KLT, the piled
vector approach provides a more efficient signal representation than does
the two-step approach, although the calculation of basis functions through
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Figure 7.41: Concatenation of a two-lead ECG signal containing two beats. (a)
Each beat of the two leads is concatenated (“piled up”) into (b) one single vector.

diagonalization of the LN × LN correlation matrix is much more costly,
in terms of computational measures, than for the L × L matrix in (7.137).
Figure 7.42 shows the different processing blocks of transform-based data
compression which together account for all three types of redundancy.

Finally, we note that the long-term predictor in (7.134) can be modified
to also incorporate information from different leads [194]. This is done by
augmenting the sum in (7.134) so that it not only accounts for interbeat
correlation, but also for interlead correlation. Hence, the ith beat of the lth

lead is predicted by

x̂i,l(n) =
p0∑

k=1

ak,lxl(n − k) +

L∑
q=1

J∑
j=1

pj−1∑
k=0

aj,k,qxq(n + θ̂i−j − k), n = 0, . . . , N − 1, (7.140)

where the interlead correlation properties are assumed to remain the same
from beat to beat.

7.6.6 Quantization and Coding

The design of a system for ECG data compression must involve consider-
ations on how to quantize and code the data resulting from redundancy
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Figure 7.42: The processing steps of transform-based data compression where
account is taken of all three types of redundancy, namely, intersample, interbeat,
and interlead redundancy. Heavier arrows signify multilead processing of the data.

reduction. While it would seem natural to preserve the original bit resolu-
tion of the significant samples retained when a direct method is applied, it
is not equally evident how many bits should be allocated to represent the
truncated transform coefficients. It is appropriate to quantize the coeffi-
cients so that more bits are allocated to coefficients with large magnitude,
being important for accurate reconstruction, than to coefficients with small
magnitude. The process of mapping the transform coefficients into another
alphabet (“codebook”) is referred to as quantization.

Quantization is said to be scalar when the coefficients are quantized on
an individual basis, using either a uniform or nonuniform grid [119]. The
uniform quantizer is optimal for amplitudes which obey a uniform PDF and
is often employed in practice because its design only requires determination
of the quantization step size and the number of quantization levels; “op-
timality” here refers to finding the particular quantizer that minimizes the
distortion in the MSE sense for a given number of quantization levels. When
the PDF is nonuniform, the steps of the optimal quantizer are nonuniform
and are defined by several parameters. While the distortion associated with
nonuniform quantizers is less than that of uniform ones, the side informa-
tion needed for coding a nonuniform codebook is larger—an effect which
may be burdensome if the quantizer needs to be periodically updated to
track nonstationary characteristics of the ECG signal.

Quantization can also be done on a vector basis in which several data
samples are quantized at a time [120]. Vector quantization has theoreti-
cally been shown to produce a compression performance superior to scalar
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quantization and has, as a result, been studied for compression of ECG sig-
nals [191, 195–198]. However, if the coefficients are uncorrelated, as is the
case with coefficients of the KLT, cf. (4.242), vector quantization does not
improve the performance [120].

7.6.7 Performance Evaluation

The compression ratio PCR is a crucial measure when evaluating the perfor-
mance of data compression methods and is defined as

PCR =
#bits to represent x(n)
#bits to represent x̃(n)

. (7.141)

Another measure is the bit rate PBR, defined as the average number of
bits required per second to represent the ECG, and is, in contrast to PCR,
independent of sampling rate and word length. However, the definitive com-
pression performance can only be evaluated when any of these two measures
are used in combination with another measure reflecting distortion of the
reconstructed signal.

The percentage root mean-square difference (PRD) is a frequently em-
ployed distortion measure which quantifies the error between the original
signal x(n) and the reconstructed x̃(n),

PPRD =

√√√√√√√√√√
N−1∑
n=0

(x(n) − x̃(n))2

N−1∑
n=0

x2(n)

· 100, (7.142)

where it is assumed that the mean value of x(n) has been subtracted prior
to data compression. The measure PPRD has become popular because of its
computational simplicity and the ease with which distortion can be compared
from one signal to another. However, PPRD has certain flaws which make it
unsuitable for performance evaluation. For example, less distortion would
result from artificially adding baseline wander to the ECG since a lower
PPRD would then result. Furthermore, compression of ECGs with large-
amplitude QRS complexes results in less distortion than does compression
of an ECG with small-amplitude QRS complexes, even if the squared error
(x(n) − x̃(n))2 is identical in both cases. These disadvantages can, to a
certain degree, be mitigated by replacing the energy normalization in PPRD

with a fixed normalization so that the modified measure, denoted PRMS,
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Figure 7.43: Rate distortion curves for data compression based on the KLT and
the DWPT, where account is taken of the required side information when calculat-
ing PBR. The results were obtained from 10 minutes of ECG data, selected from
the MIT–BIH database (the diagram is adapted from [193]).

describes the error in absolute terms,

PRMS =

√√√√ 1
N

N−1∑
n=0

(x(n) − x̃(n))2. (7.143)

Such a description is somewhat more suggestive of diagnostic ECG inter-
pretation where criteria are expressed in terms of millivolt wave amplitudes
rather than in percentages of signal energy.

Performance is often presented as a rate distortion curve where signal
distortion measurements are displayed as a function of the bit rate PBR.
Such curves are shown in Figure 7.43 for two different transform-based com-
pression methods, the KLT and DWPT, with PRMS as the chosen distortion
measure. With this type of curve, the operating point of a compression
method can be easily defined, specifying the bit rate at which acceptable
distortion of the reconstructed signal is achieved.

By requiring the distortion to be low, e.g., a PPRD of only 1% or a PRMS

of only 10 µV, it is tempting to believe that the diagnostic information in the
reconstructed signal is preserved. However, both these distortion measures
suffer from an inability to reflect loss of diagnostic information; instead,
all samples are treated equally whether located in the QRS complex or in
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the uninformative isoelectric segment. While the loss of a tiny Q wave in
the reconstructed signal essentially goes unreflected in PPRD or PRMS, the
absence of a Q wave represents an essential loss from a diagnostic point of
view when, for example, diagnosing myocardial infarction.

The weighted diagnostic distortion (WDD) measure PWDD is one of the
very few mathematically defined measures which addresses the limitations of
distortion measures based on the error between samples of the original and
reconstructed signal [199, 200]. The measure PWDD is composite since it
involves various wave parameters essential to ECG interpretation, especially
wave amplitudes and durations of the PQRST complex. Assuming that
measurements of the kth ECG parameter have been obtained from the origi-
nal and reconstructed signals, denoted βk and β̃k, respectively, a normalized
error ∆βk can be defined,

∆βk =
|βk − β̃k|

max(|βk|, |β̃k|)
, (7.144)

which is constrained to the interval 0 < ∆βk ≤ 1; it is tacitly assumed
that any meaningful ECG measurement has a nonzero value. When several
beats are available for measurement, the resulting values of ∆βk are averaged
before further processing is done.

For a set of P different parameters on amplitude and duration, the WDD
measure is defined as [199]

PWDD =

P∑
k=1

αk(∆βk)2

P∑
k=1

αk

· 100, (7.145)

where the coefficients αk make it possible to weight the parameter measure-
ment errors ∆βk in relation to their overall significance. Such weighting
can be used to emphasize measurements of particular significance, such as
ST segment measurements in ischemia monitoring. When all measurements
are considered to be equally significant, we have α1 = · · · = αP = 1.

A prerequisite for making use of PWDD is the availability of an algorithm
that computes the desired set of diagnostic measurements. Once available,
the algorithm must produce accurate and reproducible measurements so as
to avoid PWDD reflecting a poorly performing measurement algorithm rather
than distortion of the reconstructed signal.

We conclude this section by presenting two examples which illustrate the
fundamental differences between PPRD and PWDD in characterizing signal
distortion, see Figure 7.44. In this example, PWDD includes measurements
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(a) (b)

Figure 7.44: Distortion characterized by PPRD and PWDD. (a) An example of
poor-quality signal reconstruction where the original ECG (top) has been com-
pressed by AZTEC (bottom); the corresponding values of PPRD and PWDD are
10.6 and 30.1%, respectively. (b) An example of good-quality signal reconstruction
where the original ECG (top) has been compressed by an algorithm based on long-
term prediction (bottom); the corresponding values of PPRD and PWDD are 15.4
and 3.5%, respectively. (Reprinted from Zigel et al. [199] with permission.)

on the RR interval, QT interval, P wave duration and amplitude, QRS
duration and amplitudes, T wave amplitude, and ST segment slope [199].
Figure 7.44(a) presents a reconstructed signal which, following application
of AZTEC, contains unacceptable distortion manifested by a staircase ap-
pearance. While PPRD is not alarmingly high for this signal, PWDD clearly
indicates that the reconstructed signal is useless for diagnostic purposes.
Figure 7.44(b) presents a reconstructed signal which closely resembles the
original ECG, an observation well-reflected by the WDD measure which is
equal to 3.5%; on the other hand, PPRD is as high as 15.4% and, therefore, in-
correctly indicates that the reconstructed signal is severely distorted. In Fig-
ure 7.44(b), data compression was performed using a method based on long-
term prediction and an error control algorithm (“analysis-by-synthesis”)
which compressed the signal so that PWDD never exceeded a certain
limit [200].
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Problems

7.1 Explain the sentence, “In case of too high a cut-off frequency, the output of
the highpass filter contains an unwanted, oscillatory component strongly cor-
related with the prevailing heart rate”, using, for example, the continuous-
time Fourier series as a starting point,

x(t) =
a0

2
+

∞∑
k=1

(ak cos(kΩ0t) + bk sin(kΩ0t)),

where Ω0 is the repetition rate (i.e., the “heart rate”).

7.2 Determine the number of multiplications required for implementing

a. an FIR filter with a symmetric impulse response of length N ,

b. forward/backward filtering using an N th order IIR filter, and

c. sampling rate decimation and interpolation (the decimator and inter-
polator are of order M).

7.3 Develop an approach by which forward/backward filtering can be imple-
mented for use in real-time processing [17]. Comment on the resulting time
delay of the output signal.

7.4 A second-order IIR filter is defined by a pair of conjugate poles. Describe
how the poles change when the sampling rate is increased for a fixed value
of the cut-off frequency, and comment on potential problems that may arise.

7.5 The design of a time-varying lowpass filter for baseline removal (see page 468)
may involve a tunable filter and a rule which relates the cut-off frequency of
the filter to the observed signal.

a. The design of a tunable lowpass filter is based on the impulse response
of the ideal lowpass filter with cut-off frequency at ωc0 ,

h0(n) =
sin(ωc0n)

πn
.

Show that the impulse response h(n) of a linear, time-invariant filter
with cut-off frequency ωc can be expressed in terms of h0(n) by the
following expression [201],

h(n) =
{

c(0)ωc, n = 0;
c(n) sin(ωcn), n = ±1,±2, . . . ,±N,

where the sequence c(n) is to be determined. Explain the advantage
with this approach.
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b. With the impulse response h(n) available, propose a rule how the cut-
off frequency ωc can be adapted to the properties of the ECG signal.

7.6 The properties of an interpolator can be analyzed in terms of its impulse
response and related magnitude function. In this problem, it is assumed
that the input signal, acquired at a sampling rate of 1/T , is to be linearly
interpolated by a factor of L. The signal processing is illustrated by the
block diagram below for L = 3.

Interpolator
T T/L

L=3

h(n)

a. Determine the transfer function for the linear interpolator, and inter-
pret the result in terms of filtering.

b. Determine the –3 dB cut-off frequency as a function of the interpolation
order L.

c. Determine the corresponding cut-off frequency Fc when the sampling
interval is T = 1 s. Comment on the consequences of an altered sam-
pling interval T , which is the case when the interval between successive
heartbeats, i.e., Ti = ti+1 − ti, is varying.

7.7 The cubic spline method for estimation of baseline wander can be made
efficient by introducing a state-space formulation [26].

a. From the Taylor expansion in (7.23), determine the matrix A which
relates ⎡⎢⎣ y(t)

y(1)(t)
...

⎤⎥⎦ = A

⎡⎢⎣ y(t0)
y(1)(t0)

...

⎤⎥⎦ .

b. Determine A when t is equal to the sampling interval T = 1. Describe
how the resulting algorithm can be used to estimate the baseline wan-
der at any sample.
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7.8 Find the transfer function in (7.45) for the 50/60 Hz powerline interference
filter when the update equation of the nonlinear filter is linear, i.e., defined
by (7.44) [40].

7.9 Derive the bandwidth of the second-order FIR and IIR filters for removal of
50/60 Hz powerline interference.

7.10 Show that the LMS algorithm in Figure 7.15 for adaptive removal of 50/60 Hz
powerline interference is identical to a first-order filter with two coefficients.

7.11 Show that the matrix H in (7.55) for removal of 50/60 Hz powerline inter-
ference, using the estimation–subtraction technique, has the form

H = − 2
N

⎡⎢⎢⎢⎢⎢⎢⎣
1 − N

2 cos ω0 cos 2ω0 · · · cos ω0(N − 1)
cos ω0 1 − N

2 cos ω0 · · · cos ω0(N − 2)

cos 2ω0 cos ω0 1 − N
2 · · · ...

...
...

...
. . . cos ω0

cos(N − 1)ω0 cos(N − 2)ω0 . . . cos ω0 1 − N
2

⎤⎥⎥⎥⎥⎥⎥⎦ .

7.12 It could be argued that the rows of the matrix H in (7.55) constitute impulse
responses which are asymmetric, implying filters with nonlinear phase. Show
that such an argument is incorrect, i.e., all rows of H correspond to filters
with linear phase.

7.13 Determine the zeros and poles of (7.56).

7.14 The design of a filter for EMG attenuation can be made time-varying by
adjusting the cut-off frequency with respect to the intervals of the heartbeat;
a higher cut-off frequency is used for the QRS interval than for the P and
T wave intervals. One approach to designing such a filter is to estimate the
noise level ε of the observed signal and to use the obtained ε as the maximal
acceptable error tolerance between the observed and filtered signals [50].
This approach preserves high-frequency components of the original signal at
the same level as low-frequency components. The time-varying, Gaussian
impulse response has been suggested for this purpose, defined by

h(k, n) =
(

β(n)
π

)1/2

e−β(n)k2
,

where β(n) controls the cut-off frequency of the filter and is normalized such
that

∞∑
k=−∞

h(k, n) = 1.
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a. From a Taylor series expansion of the observed signal x(n), evaluated
around n, determine a closed-form expression of the filter output y(n)
such that y(n) = x(n) + ε.

b. From the closed-form expression in part (a.) it is evident that ε de-
pends on β(n). Propose a procedure to estimate β(n) from x(n) so that
the difference between x(n) and the filtered signal is always guaranteed
to be lower than ε. Hint: Make use of the result∫ ∞

−∞
t2me−β(n)t2dt =

1 · 3 · 5 · · · (2m − 1)
2m

(
π

β(n)2m+1

)1/2

.

7.15 In designing time-varying filters for EMG attenuation, the result in Sec-
tion 4.5.4—stating that a truncated orthonormal series expansion of a signal
can be interpreted in terms of a linear, time-variant filtering—can be ex-
ploited. For each segmented PQRST complex of N samples, denoted xi,
the EMG-attenuated signal yi results from orthogonal transformation and
truncation (cf. (4.206)),

yi = ΦsΦT
s xi,

where Φs is given in (4.204). The K columns of Φs (K < N) contain the
basis functions which are used to estimate the signal.

Propose a rule to determine the number of basis functions K so that the
difference between xi and yi is always guaranteed to be lower than a certain
tolerance ε.

7.16 QRS detection: The purpose of hypothesis testing is to select the most likely
hypothesis assuming the model

H0 : x(n) = v(n), n = 0, . . . , N − 1;
H1 : x(n) = s(n) + v(n), n = 0, . . . , N − 1,

where s(n) is a deterministic, known waveform, and v(n) is white, Gaussian
noise with variance σ2

v .
Define a likelihood ratio

L(x) =
p(x|H1)
p(x|H0)

,

then the following test can be used to decide H1,

L(x) > η.
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The threshold can be used to attain a certain performance (and possibly
related to a priori probabilities for the two hypotheses). Conclude that this
detector is identical to the estimation-based approach presented in the text.

7.17 The binomial–Hermite family of filters is defined by the following transfer
function [202],

H(z) =
(
1 − z−1

)K (
1 + z−1

)L−K

and is, evidently, closely related to the filters introduced in (7.92) for use in
QRS detection.

a. Find the frequency response of the binomial–Hermite filters.

b. For which values of K and L will the filter have lowpass, bandpass,
and highpass characteristics?

7.18 Morphologic variability of the QRS complex has been found to convey clin-
ically valuable information. One approach to quantify such variability is to
study the ensemble variance using the estimator in (4.17), provided that the
QRS complexes have been first time-aligned so that an ensemble of signals
can be created.

a. It is assumed that a QRS complex is modeled by

xi(n) = s(n) + vi(n), i = 1, . . . , M,

where s(n) is fixed from beat-to-beat, whereas vi(n) is a zero-mean
component which accounts for morphologic variability. Show that the
ensemble variance can be estimated by

σ̂2(n) =
1
M

M∑
i=1

v2
i (n).

b. When the ensemble of QRS complexes are misaligned, the observed
signal is modeled by

xi(t) = s(t − τi) + vi(t).

For this model, show that an estimator of the ensemble variance is

σ̂2(n) =
1
M

M∑
i=1

v2
i (n) + s′2(n)σ2

τ ,
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where s′(n) denotes the derivative of s(n). It is assumed that morpho-
logic variability and misalignment are statistically independent and
that s(t − τi) can be approximated, for small values of τi around t,
with a first-order Taylor series expansion. Hint: Make the derivation
in continuous-time and convert the result to discrete-time.

c. In part (b.) it was shown that σ̂2(n) is essentially composed of two
components related to morphologic variability and misalignment. Here,
the purpose is to find that sampling rate Fs which assures that the in-
fluence of misalignment due to sampling is sufficiently small. When τi

has a uniform PDF, it has been shown that the standard deviation στ

is related to the sampling rate Fs by [203]

στ =
1

2
√

3Fs

.

The power of σ̂(n),

P =
1
N

N−1∑
n=0

σ̂2(n),

is used as a measure of morphologic variability; the power of s(n), s′(n),
and vi(n), denoted Ps, Ps′ , and Pv, respectively, is defined analogously.
In this example, it is assumed that

Ps = 1,
Ps

Pv
= 10−3, Ps′ = 1.9 × 104.

Determine the sampling rate Fs which assures that the misalignment
contribution in P is lower than 10%.

7.19 Late potentials represent a high-frequency activity which occurs in the ter-
minal part of the QRS complex (Section 6.6.5) and requires ensemble aver-
aging for their detection. Since late potentials are obscured by the waves of
the normal QRST complex, the averaged signal is usually highpass filtered
before detection is performed.

a. Comment on possible problems with such linear filtering considering
the location of late potentials relative to the QRS complex.

b. With bidirectional filtering the signal is filtered in the forward direc-
tion until the middle of the QRS complex is reached and then filtered
backwards from the end of the T wave until the middle of the QRS
complex is again reached. Explain why this type of filtering mitigates
problems associated with conventional causal filtering.
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7.20 Noise reduction by ensemble averaging requires that the QRS complexes first
be aligned in time. Since alignment is limited by the sampling resolution it
is of interest to study the effects on the ensemble average (Section 4.3.6). It
is assumed that the sampling rate is Fs = 2000 Hz and that the time jitter
is uniformly distributed in the sampling interval.

a. Which is the standard deviation of the misalignment error?

b. Which is the maximum frequency that can be studied, assuming that
the –3 dB cut-off frequency is acceptable?

c. What is the more restrictive factor of high-frequency estimation in this
case: sampling or ensemble averaging?

7.21 A simplified decision rule for vertex determination in the SAPA data com-
pression algorithm is the so-called SAPA–1 algorithm. With this strategy,
the net vertex to n0 is determined as the sample immediately preceding the
first n sample that satisfies

min
n0>m>n

g(m, ε) > max
n0>m>n

g(m,−ε).

Show that the reconstruction error has a tolerance of 2ε with this strategy.

7.22 In ECG data compression, average beat subtraction is a technique which
reduces the amplitude of a signal (see page 534). For this technique to
be efficient, it is important that the average beat ŝ(t) is well-aligned in
time with the current beat s(t); otherwise, the residual signal will include
an additional component due to misalignment. Assuming that the observed
signal is modeled by xi(t) = s(t)+vi(t) and that ŝ(t) is taken as the previous
beat xi−1(t) (cf. 7.130), the residual ECG can be written as

yi(t) = xi(t) − ŝi(t) = s(t) + vi(t) − s(t − τi) + vi−1(t).

The alignment error τi is uniformly distributed in the interval [−0.5T, 0.5T ],
where T denotes the length of the sampling interval. The noise vi(t) is
assumed to be uncorrelated from beat to beat.

Determine the power spectrum of the residual signal, and comment on
how the spectrum of s(t) is modified by poor time alignment.

7.23 Amplitude quantization of the signal x(n) should be considered when deal-
ing with data compression. The error introduced by an analog-to-digital
converter is given by

eq(n) = x(n) − Q[x(n)] = x(n) − xq(n),
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where Q[·] denotes a function that describes the quantizer. Average beat
subtraction reduces the dynamic range of x(n) so that fewer bits are needed
for representing the residual ECG, while still yielding a quantization error
eq(n) which is acceptable. Various strategies can be pursued for residual
estimation and quantization [180], of which two are developed below. It is
assumed that previous ECG beats are identical, i.e., si(n) = s(n), and per-
fectly aligned. The noise vi(n) is additive and stationary across beats, with
zero-mean and variance σ2

v . Furthermore, it is assumed that the quantiza-
tion error eq(n) is uncorrelated with s(n) and with variance σ2

e = ∆2/12,
where ∆ denotes the quantization step. The noise at the averager output
is assumed to be negligible (the number of averaged beats is large enough)
except for the roundoff error.

a. The input signal x(n) is coarsely quantized into xq(n) with the quan-
tizer Qc, and average beat subtraction is based on xq(n) (upper block
diagram below). Determine the power of the residual signal.

b. The input signal x(n) is finely quantized into xq(n) with the quantizer
Qf , while average beat subtraction is based on a coarsely quantized
residual signal (lower block diagram below). Determine the power of
the residual signal, and compare the result with that obtained for the
other quantization strategy.

x(n)

x(n)

xq(n)

xq(n) yq(n)

yq(n)

ŝq(n

+

+

+

+

–

–

)

ŝq(n)

N -beat
averager

N -beat
averager

Qc

Qf Qc

Q−1
c
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7.24 Interbeat redundancy can be addressed by using a long-term prediction strat-
egy. This strategy has been applied by restricting the long-term prediction
to only include the previous beat at θ̂i−1 and without AR modeling of the
running beat. Thus, a long-term prediction of the current beat xi(n) is
obtained by

x̂i(n) =
p∑

k=−p

akx(n + θ̂i−1 − k), n = −N1, . . . , N2 − 1.

Derive the coefficients {ak}p
k=−p which minimize the least-squares error

Ei =
N2−1∑

n=−N1

e2
i (n) =

N2−1∑
n=−N1

(
x(n + θ̂i) − x̂i(n)

)2
,

where x(n), n = θ̂i − N1, . . . , θ̂i + N2 − 1, denotes the current beat.

7.25 Evaluation of data compression techniques using a performance measure
defined by a mathematical norm, such as PRMS in (7.143), runs the risk of
misjudging performance so that PRMS is larger than one would expect. This
behavior can be observed when a noisy signal is compressed by a transform-
based method such as the Karhunen–Loève transform; the reconstructed
signal is essentially noise-free, while the observed signal noise and, therefore,
an unreasonably large value of PRMS results.

Propose a new performance measure for transform-based compression
which does not suffer from the above-mentioned problem. Hint: The pro-
posal can be based on the model x = s+v, where the noise v is assumed to
be white with variance σ2

v . Since the white property implies that the noise
is evenly spread in the transform domain, we can, for a low truncation value
K (<< N), neglect the noise component in the reconstructed signal,

x̂ = ŝ + v̂ ≈ ŝ.

7.26 For each beat, the performance measure PWDD is defined as the weighted,
quadratic norm of the normalized error ∆βk of the kth measurement, see
(7.145). Since the normalization factor is beat-dependent, it is influenced
by beat-to-beat changes of a measurement, for example, as observed in QRS
amplitude. Another property is that the normalization factor is relative,
implying that it may exhibit widely different magnitudes which depend on
the specific measurement; the magnitude may range from the low amplitude
of a P wave to the much larger of a QRS complex.

Another approach to developing a performance measure is to start by ob-
taining several measurements of a certain parameter from different human
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annotators. From these measurements, an estimate of the inter-annotator
variability can be computed which can be considered as the expected vari-
ability of a certain parameter. Based on this information, propose a perfor-
mance measure which is less sensitive to beat-to-beat variations as well as
to widely differing magnitudes [204].



Chapter 8

ECG Signal Processing:
Heart Rate Variability

Heart rate variability (HRV) has, in recent years, received widespread re-
search interest since the state of the autonomic nervous system, and related
diseases, can be investigated noninvasively using relatively basic signal pro-
cessing techniques. Despite the seeming simplicity of deriving the series of
RR intervals from the ECG signal and defining related measures of disper-
sion, it is nonetheless essential to assure that HRV is analyzed accurately.
Several definitions of signals for representing the heart rhythm have been
suggested which characterize variability either in terms of successive RR in-
tervals or instantaneous heart rate.1 In particular, spectral analysis of heart
rhythm signals has received considerable attention since oscillations embed-
ded in the rhythm, for example, due to respiratory activity or variations in
blood pressure, can be quantified from the corresponding peaks in the esti-
mated power spectrum. The oscillations are characterized by low-frequency
components which typically are located in the interval below 0.5 Hz. These
low-frequency components will remain in the ECG signal despite the inclu-
sion of baseline wander removal based on, for example, a highpass filter with
a cut-off frequency at 0.5 Hz. Since HRV is solely characterized by the pat-
tern of heartbeat occurrence times, and baseline wander is related to the
morphology of the ECG signal, baseline wander removal does not alter the
HRV information.

The present chapter is dedicated to the analysis of HRV. Following an
overview in Sections 8.1 and 8.2 of the demands on data acquisition for HRV
analysis, the conditioning of RR intervals, and simple time domain measures,
the most important signals for representing the heart rhythm are presented

1The term “heart rate variability” here signifies fluctuations in both RR intervals and
instantaneous heart rate [1].
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in Section 8.3. These signals form the basis for HRV measures which are
more advanced than the time domain measures and which quantify the cor-
relation that usually exists between different RR intervals. Spectral analysis
of a heart rhythm signal may, in addition to the straightforward application
of Fourier-based analysis, be implemented by techniques which directly ac-
count for the fact that the heart rhythm derives from an unevenly sampled
signal (Section 8.4). Section 8.6 contains a description of methods developed
for the correction of the RR interval series when ectopic beats are present;
such correction requires that sinus beats and ectopic beats first be separated
into different clusters with respect to their morphologies (Section 8.5). Fi-
nally, Section 8.7 discusses briefly the interaction between heart rate and
other physiological signals, and how such interaction can be mathematically
modeled. We remind the reader that a brief physiological background to
HRV is found on page 431.

8.1 Acquisition and RR Interval Conditioning

The analysis of HRV is based on the series of occurrence times θ0, . . . , θM ,
originally produced by the QRS detector, but usually refined by an algo-
rithm for time alignment.2 Since an important purpose of HRV analysis is
to investigate the influence of autonomic activity on the sinoatrial node, the
onset of the P wave is actually a more appropriate fiducial point of the heart-
beat than a fiducial point related to the QRS complex. However, a fiducial
point related to the P wave is extremely difficult to determine with sufficient
accuracy since the P wave has a low amplitude; sometimes the P wave is
completely missing. Therefore, the fiducial point is commonly related to the
QRS complex—evidently under the assumption that the QRS fiducial point
has been determined by a reliable technique. The use of the RR intervals
instead of the PP intervals has been generally accepted because the PR in-
terval can be considered as relatively fixed, and thus, the RR intervals reflect
the activity of the sinoatrial node.

The requirements on data acquisition are primarily concerned with the
sampling rate by which the ECG signal should be acquired; subtle beat-to-
beat variations in rhythm will be lost if the signal is too coarsely discretized
in time. The sampling rate commonly used in resting ECG analysis, i.e.,
250–500 Hz, is sufficient for most types of HRV analysis. However, certain
clinical HRV investigations have been based on Holter recordings, digitized
at a considerably lower sampling rate, i.e., 100–125 Hz. Methodological
studies have shown that such low sampling rates are inappropriate and cause,

2For pedagogical reasons, the indexing of events in this chapter starts from zero rather
than from one as otherwise assumed.
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when spectral analysis of the heart rhythm signal is of interest, exaggeration
of the high-frequency components of the power spectrum [2]. Based on a
simple statistical model of the RR interval series, the error introduced in the
power spectrum for different sampling rates of the ECG signal is discussed
in Problem 8.1.

While HRV analysis is essentially unproblematic when analyzing record-
ings acquired during rest, artifacts are usually present in Holter recordings
which pose some serious limitations on the analysis. For example, noise
bursts may cause the QRS detector to produce false detections as well as to
miss low-amplitude QRS complexes, thus resulting in an RR interval series
with invalid intervals. Hence, the exclusion of non-normal RR intervals rep-
resents an important step in conditioning the series in order to make HRV
analysis more reliable. The resulting interval series is commonly referred to
as the normal-to-normal intervals (NN intervals). Since manual editing of a
24-hour Holter recording, containing approximately 100 000 RR intervals, is
extremely laborious, automated exclusion procedures have been developed in
order to accomplish rejection of artifacts. A simple approach is to apply an
exclusion criterion by which an RR interval is considered abnormal if it devi-
ates more than 20% from the mean length of the preceding RR intervals [3].
Such an approach is based on the assumption that the physiological mech-
anisms controlling the heart during sinus rhythm do not abruptly change
the heart rate. Other, more complex decision criteria for exclusion of non-
normal intervals have been presented in which the shape of the distribution
of beat-to-beat differences in interval length is investigated [4, 5]. However,
more complex approaches have not necessarily been found to result in a more
valid RR interval series, but may rather produce the opposite result [5].

One particular aspect of artifact rejection is to handle the presence of ec-
topic beats which interrupt fluctuations in heart rate modulated by changes
in autonomic balance. Since an ectopic beat interrupts the sinus rhythm
by its premature occurrence, i.e., prior to the time when the next normal
beat is expected to occur, it is necessary to correct for both the preceding,
shorter than normal RR interval and the subsequent, longer than normal,
compensatory pause before HRV analysis can be adequately performed (Sec-
tion 8.6).

It should be emphasized that different techniques for HRV characteri-
zation are, to varying degrees, sensitive to the presence of artifacts in the
RR interval series. Simple time domain measures, derived from the RR inter-
val distribution, are less sensitive to the presence of artifacts than measures
derived from the power spectrum. The “brute force” approach, based on
minute-length ECG segments completely free of artifacts, may, in fact, be
the sole approach when power spectral analysis of HRV is required.
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8.2 Time Domain Measures

Clinical studies of HRV have frequently been synonymous with the use of
simple time domain measures such as the standard deviation of the RR in-
tervals. Although a variety of heart rhythm representations may be used,
the series of RR intervals is the preferred starting point for the design of
time domain measures. An important consideration is whether the measure
should reflect long- or short-term HRV so as to convey information primar-
ily related to parasympathetic or sympathetic activity. This consideration is
particularly important when Holter recordings are analyzed and may be ad-
dressed by calculating the time domain measures from successive segments
of shorter lengths or from the entire ECG recording [1]. Figure 8.1 illustrates
the large variability in heart rate that may be observed during one day and
night.

A straightforward way to quantify HRV is to calculate the standard de-
viation of the available NN intervals,

SDNN =

√√√√ 1
M − 1

M∑
k=1

(rk − TI)
2, (8.1)

where rk denotes the kth NN interval, see (7.17), and TI denotes the mean
length of the M intervals rk. For long-term recordings, SDNN only provides
a rough characterization of HRV since the mean heart rate changes consid-
erably from the active parts of the day to sleep during the night. Another
commonly used measure is the standard deviation of the average length of
NN intervals in 5-minute segments, abbreviated to SDANN, which, due to
the 5-minute averages, primarily reflects very slow, circadian variations in
heart rate. Since the resulting values of SDNN and SDANN depend, to a
certain degree, on the length of the ECG recording, such information must
also be taken into account to make a comparison of results meaningful.

Since both SDNN and SDANN reflect long-term variability in heart rate,
additional dispersion measures have been suggested which reflect short-term
variability through analysis of the difference between successive NN intervals.
The effect of the difference operation is to accentuate the high-frequency con-
tent of the NN interval series. Hence, the standard deviation of successive
NN interval differences is a frequently used dispersion measure in clinical
studies; this measure is commonly referred to as the root mean-square of
successive differences (rMSSD). The proportion of intervals differing more
than a certain limit value from the preceding interval represents another
measure which reflects short-term variability. Since the limit value is typi-
cally set to 50 ms, this HRV measure is referred to as “pNN50”. Comparing
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Figure 8.1: The series of RR intervals observed during almost one day and night.
During this time span, the RR intervals vary in length from about 0.3 to 1.5 s.
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Table 8.1: Common time domain measures for characterization of HRV, using the
abbreviations which have become generally accepted in clinical studies. The table
is a shortened version of the one presented in a task force paper on HRV [1].

Measure Definition
SDNN Standard deviation of all NN intervals.
SDANN Standard deviation of the averages of NN intervals in

all 5-minute segments of the entire ECG recording.
rMSSD Root mean-square of successive differences of

adjacent NN intervals.
pNN50 Percentage of pairs of adjacent NN intervals differing by

more than 50 ms.
TINN Triangular interpolation index. The base of a triangle fitted

to the RR interval histogram (see text and Figure 8.2).

rMSSD and pNN50, it is evident that rMSSD provides a more detailed de-
scription of short-term variability, whereas pNN50 is much less vulnerable
than rMSSD to artifacts that may be present in the RR interval series [6].
A list of common time domain measures, and their respective definitions, is
presented in Table 8.1.

Time domain measures reflecting long-term variability in heart rate have,
in certain patient groups, such as alcoholics and diabetics suffering from neu-
ropathy, offered better performance in detecting abnormalities in autonomic
function than short-term measures. In a similar fashion, the prediction of
mortality in patients who have suffered from an earlier myocardial infarc-
tion has improved when the very slow variability in heart rate is investigated.
Both these results were found in studies which were based on the analysis
of Holter recordings [7].

Another group of time domain measures that deserves mentioning is
that which is derived from the geometrical properties of the RR interval his-
togram [8]. The main idea behind such measures is the observation that the
histogram often contains a dominant peak which can be well-characterized
in terms of some simple geometrical shape such as a triangle. After finding
the best fit of the triangle to the dominant peak, for example, expressed in
the least-squares sense, a robust measure of the variability in heart rate is
given by the width of the triangle base; this measure is referred to as the
triangular interpolation index (TINN) [9], see Figure 8.2.

One important motivation for developing histogram-based HRV methods
is their relative robustness to inclusion of non-NN intervals caused by ectopic
beats or artifacts; such intervals often tend to fall outside the dominant
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Figure 8.2: (a) An RR interval histogram with two dominant peaks, one reflecting
the predominant RR interval lengths and the other reflecting the very short intervals
due to falsely detected T waves and whose lengths are about 300 ms. (b) The RR
interval histogram after removal of the T wave intervals using a criterion based on
the triangular index.

peak of the interval histogram. However, the application of these methods
is limited to Holter recordings, preferably of 24 hour duration or more, in
order to get a sufficient number of intervals to construct a reliable histogram.
Since a 24-hour recording contains periods from day activities as well as from
rest during night-time, the histogram may become bimodal and sometimes
multimodal. As a result, the use of triangular methods is no longer suitable
since they tend to overestimate the variability in heart rate [8].

The use of histogram-based methods is not restricted to the study of
variability in normal sinus rhythm, but has also been found valuable for
studying mechanisms behind certain arrhythmias. For example, the shape
of the RR interval histogram has been analyzed during atrial fibrillation to
better understand the random behavior of electrical impulses that occasion-
ally propagate through the atrioventricular node and activate the ventri-
cles [10, 11].

8.3 Heart Rhythm Representations

The purpose of a heart rhythm representation is to produce a signal which
accurately reflects variations in heart rhythm and which lends itself to differ-
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ent types of HRV analysis. We have already touched upon the representation
issue when mentioning that the heart rhythm can be represented in terms of
either interval or rate (the latter entity defined by the inverse of the RR in-
tervals). Other representations have also been put forward which take their
starting point in the series of occurrence times of the QRS complexes (“event
series”) rather than in the series of successive RR intervals. The distinction
between these two types of series is important from a conceptual viewpoint,
although the latter series is easily derived from the former. An overview of
the different approaches to represent the heart rhythm is provided in this
section.

The heart rhythm signal is based on the times at which the QRS com-
plexes occur and, consequently, on a process that is “sampled” at unevenly
spaced time instants. As a result, it is highly desirable to regularize the sam-
pling rate of the heart rhythm signal in order to make the signal compatible
with the multitude of analysis methods which require an evenly sampled
signal. It is crucial not to confuse the sampling rate inherent to the heart
with the one used for digitizing the ECG signal. The latter sampling rate
determines the resolution of the QRS occurrence times θk and is, in the
following, assumed to be sufficiently high so that it can be replaced by its
continuous-time counterpart tk [2]. It should be noted that while the ECG is
typically sampled at a rate of 500–1000 Hz, the evenly sampled heart rhythm
signal has a much lower sampling rate of only a few hertz. This lower rate
is not only sufficient to completely characterize HRV, but it also results in
a substantial reduction of the number of samples required to perform the
analysis.

The performance requirement mentioned above of a heart rhythm rep-
resentation that “well reflects variations in heart rhythm” is, unfortunately,
not easily expressed in exact terms. However, by developing a mathematical
model of HRV, it is possible to not only model the autonomic nervous in-
fluence on the heart rate, but also to provide a tool which helps to indicate
which representation exhibits the better performance. One such model is the
integral pulse frequency modulation (IPFM) model which has gained wide
popularity in the field of HRV analysis.

8.3.1 The Integral Pulse Frequency Modulation Model

The IPFM model is used to generate an event series, such as the series of
heartbeat occurrences, and assumes the existence of a continuous-time input
signal with a particular physiological interpretation. Figure 8.3 presents a
block diagram of the IPFM model and illustrates the signals as they may
appear in different steps of the model. In this model, the input signal is
integrated until a threshold R is reached at which an event is generated at
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Figure 8.3: (a) The integral pulse frequency modulation (IPFM) model, (b) the
input function m0 + m(t) which modulates the variation in interval length, (c) the
output y(t) of the integrator assuming a threshold level at R, and (d) the resulting
event series du

E(t) at occurrence times t0, t1, . . . , tM .
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time tk. The integrator is then reset to zero, the procedure is repeated, and
so on. The threshold R defines the mean interval length between successive
events. The input signal, being positive-valued, is the sum of two quantities,
namely, a DC level m0 and a modulating function m(t) whose DC component
is equal to zero and whose amplitude is bounded such that |m(t)| � m0 to
assure that the input signal always remains positive. Assuming that the
IPFM model is valid, our objective is to design a method which can retrieve
information on m(t) from the observed series of event times tk, represented
by the signal

du
E(t) =

M∑
k=0

δ(t − tk), (8.2)

where the superscript “u” denotes that the events occur unevenly in time
(and later also denoting uneven sampling). A definition of the unit impulse
function δ(t) and the impulse-train sampling in (8.2) can be found in most
textbooks covering the fundamentals on signals and systems, see, e.g., [12].

In physiological terms, the output signal of the integrator in Figure 8.3
can be viewed as the charging of the membrane potential of a sinoatrial pace-
maker cell [13]. The membrane potential increases until a certain threshold
is exceeded and then triggers off an action potential which, when combined
with the effect of many other action potentials, initiates a new heartbeat.
The input to the integrator consists of m0, which defines the mean heart rate,
and the modulating signal m(t), which describes the variations in heart rate
as modulated by the autonomic activity on the sinoatrial node. In general,
m(t) is bandlimited such that spectral components above 0.4–0.5 Hz can
be neglected during resting conditions. The assumption |m(t)| � m0 is in-
cluded in order to assure that the HRV is small when compared to the mean
heart rate.

In mathematical terms, the event series is defined by the following equa-
tion which is central to the IPFM model,∫ tk

tk−1

(m0 + m(τ))dτ = R, k = 1, . . . , M. (8.3)

The modulating function m(t) determines the variation in interval length
between two successive events occurring at tk−1 and tk. Without any modu-
lation, i.e., for m(t) ≡ 0, the resulting event series is perfectly regular and has
a constant interval length equal to R/m0; the corresponding unmodulated
mean repetition frequency FI = 1/TI is given by

FI =
m0

R
. (8.4)
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The constant m0 is usually set to one, implying that the inversely-related
threshold R specifies the mean repetition frequency FI in units of hertz; also,
R is identical to the mean RR interval length TI ,

R =
1
FI

= TI . (8.5)

Hence, the “heart rate” of the IPFM model is equal to 60 events/minute
when TI is chosen to be 1 s.

Assuming that the initial event occurs at t0 = 0, the integral in (8.3) can
alternatively be expressed as∫ tk

0
(1 + m(τ))dτ = kTI , k = 0, . . . , M, (8.6)

where k is an integer that indexes the kth event. Furthermore, rather than
having the IPFM model defined for only those time instants tk when the
threshold TI is exceeded, it can be generalized to a continuous-time function
by introducing the following definition [14],∫ t

0
(1 + m(τ))dτ = κ(t)TI . (8.7)

Here, integration up to a certain time t is proportional to a continuous-valued
indexing function κ(t), whose value at tk is identical to the integer-valued
event index k, i.e., κ(tk) = k. The generalization of the IPFM model in (8.7)
will later make it possible to develop a heart rhythm representation known
as the heart timing signal.

The behavior of the modulating function m(t) conveys essential infor-
mation on the HRV. No prior knowledge of m(t) is, however, available, and,
therefore, m(t) has to be estimated from the occurrence times of the ob-
served event series. When evaluating the performance of various methods
developed for heart rhythm representations, it is commonly assumed that
m(t) is defined as a sum of P sinusoids with amplitudes mp and frequen-
cies Fp,

m(t) =
P∑

p=1

mp sin(2πFpt). (8.8)

The multiple sinusoid model may account for HRV caused by respiration,
changes in blood pressure, and other physiological factors. The amplitudes
m1, . . . , mP in (8.8) are commonly assumed to have a value much smaller
than one. Naturally, the modulating function m(t) can be assigned other
structures than the one suggested in (8.8). For example, it may be defined by
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t0 t1 t2 t3 t4 t5 t6

dIT(1) dIT(2) dIT(3) dIT(4) dIT(5) dIT(6)

Figure 8.4: Definition of the interval tachogram dIT(k), which is identical to the
series of RR intervals. Note that indexing of dIT(k) starts at k = 1.

a bandlimited AR process whose spectral peaks correspond to the frequencies
F1, . . . , FP , introduced in the multiple sinusoid model in (8.8) [14, 15].

The IPFM model is an important tool for simulation studies and to bet-
ter understand the mechanisms behind HRV [14, 16–21]. Nonetheless, it
should be remembered that this model does not provide an exact descrip-
tion of sinoatrial activity; more sophisticated models may be of interest to
consider [22–25]. It should also be pointed out that the IPFM model is,
by no means, restricted to the study of HRV, but has been found equally
useful in other biomedical applications where an event series is observed, for
example, in the area of neurophysiology [26–28].

8.3.2 Interval Series Representions

A frequently used heart rhythm representation is the interval tachogram
dIT(k) in which the events, occurring at t0, . . . , tM , are transformed into a
discrete-time signal consisting of the successive intervals, i.e., the RR inter-
vals,

dIT(k) = tk − tk−1, k = 1, . . . , M, (8.9)

see Figure 8.4. Hence, the interval tachogram is the heart rhythm represen-
tation upon which the simple time domain measures rest (Section 8.2), and it
has been extensively used in the literature on HRV analysis, see, e.g., [29–31]
(note that the interval tachogram dIT(k) is identical to rk in (8.1)). The in-
verse interval tachogram dIIT(k) is the “companion” representation to the
interval tachogram and is defined by

dIIT(k) =
1

tk − tk−1
, k = 1, . . . , M, (8.10)
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which thus reflects instantaneous heart rate.
A major drawback when using either dIT(k) or dIIT(k) is that both these

signals are indexed by an interval number rather than by a sample number
as is commonly the case with the discrete-time signal, evenly sampled in
time. Consequently, power spectral analysis of these two signals cannot be
expressed in units of “cycles per second” (Hertz), but can be expressed by
the far less attractive unit of “cycles per interval”.

Transformation of the tachogram signals into evenly sampled time do-
main signals is essential not only for obtaining a spectral description in
hertz, but also for more advanced variability analysis when the heart rate is
cross-correlated with other physiological time domain signals such as blood
pressure and respiration. These signals are often sampled at time instants
which differ from those of the beat occurrences. Yet another motivation
is provided by the situation in which heart rhythm response is studied in
relation to certain types of stimulus, such as when solving a mental task
or rising from a recumbent to standing position. In such situations, time-
synchronized averaging of heart rhythm signals from several successive stim-
uli may be necessary to establish a reliable response, and, therefore, a signal
evenly sampled in time is required.

In contrast to the above tachogram representations, the interval function
dIF(t) is defined on a continuous-time basis such that the QRS complex,
occurring at time tk, is represented by a unit impulse function δ(t − tk)
scaled by the length of the preceding RR interval [32, 33],

du
IF(t) =

M∑
k=1

(tk − tk−1) δ(t − tk)

=
M∑

k=1

dIF(t)δ(t − tk). (8.11)

Similar to dIIT(k) in (8.10), the inverse interval function dIIF(t) is inversely
related to the length of the RR interval,

du
IIF(t) =

M∑
k=1

(
1

tk − tk−1

)
δ(t − tk)

=
M∑

k=1

dIIF(t)δ(t − tk), (8.12)

and reflects instantaneous heart rate [34]. The heart rhythm representations
based on the tachogram or the interval function are exemplified in Figure 8.5.

Since both du
IF(t) and du

IIF(t) represent unevenly sampled signals, it is
desirable to resample these functions to become evenly spaced. Resampling
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Figure 8.5: (a) An ECG signal with the beat occurrence times tk. The heart
rhythm is represented by (b) the interval tachogram dIT(k), (c) the inverse interval
tachogram dIIT(k), (d) the interval function du

IF(t), and (e) the inverse interval
function du

IIF(t). The functions displayed in (d) and (e) are unevenly sampled.
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can be implemented by employing interpolation between the existing sam-
ples, thereby resulting in a signal denoted di(t), where the superscript “i”
denotes interpolated. Regular sampling of the interpolated signal is then
performed at the desired rate. The simplest approach to interpolation is to
hold the interval value at tk until the next occurrence time tk+1, and so on.
Such a technique is referred to as zero-order, or sample-and-hold, interpola-
tion. The function that results from zero-order interpolation of the inverse
interval function di

IIF(t) can be expressed as

di
IIF(t) =

1
t1

u(t − t1) +
M∑

k=2

(
1

tk − tk−1
− 1

tk−1 − tk−2

)
u(t − tk), (8.13)

and its shape is exemplified in Figure 8.6(b). In (8.13), we have assumed
that the first beat occurs at t0 = 0. The unit step function, denoted u(t), is
defined by

u(t) =
{

1, t ≥ 0;
0, t < 0.

(8.14)

It is obvious from Figure 8.6(b) that a short RR interval, such as the one
occurring at about 5 s, causes a disproportionately long, delayed interval
with a large value in the interpolated signal di

IIF(t). This undesirable effect
can be mitigated by introducing a minor modification to (8.13); by shifting
the RR intervals one step such that the interval (tk+1 − tk) is instead used
to scale u(t) at time tk, the interpolated function in (8.13) becomes

di
IIFs(t) =

1
t1

+
M−1∑
k=1

(
1

tk+1 − tk
− 1

tk − tk−1

)
u(t − tk). (8.15)

Figure 8.6(c) shows that the use of di
IIFs(t), instead of di

IIF(t), leads to an
instantaneous heart rate with better tracking properties and has therefore
been found to be more suitable for power spectral analysis [18, 35]. The
advantage of using di

IIFs(t) over di
IIF(t) has also been supported by the use

of the IPFM model, with results showing that m(t) is better estimated from
di

IIFs(t) [35].
It is well-known from the design of digital-to-analog converters that the

staircase signal, resulting from the sample-and-hold operation, contains high-
frequency components. Hence, it is necessary to bandlimit the signal before
resampling in order to avoid aliasing. Although the bandlimiting operation,
strictly speaking, calls for the design and use of a continuous-time lowpass
filter, there are filtering approaches which, fortunately, can be implemented
digitally.
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Figure 8.6: (a) The inverse interval function du
IIF(t), (b) the corresponding zero-

order interpolation using (8.13), and (c) the zero-order interpolation using (8.15)
with a delay of one RR interval. The functions displayed in (b) and (c) have been
multiplied by a factor of 60 to allow for interpretation in terms of “beats per minute”
(bpm). The first beat is assumed to occur at t0 = 0.

Other, more sophisticated interpolation techniques than the zero-order
interpolation may also be considered, e.g., involving polynomial fitting. Since
the signal is unevenly sampled, the interpolation operation can be interpreted
in terms of time-varying filtering, an aspect detailed in Problem 8.7.

8.3.3 Event Series Representation

The heart rhythm representations previously described are redundant since
the information on occurrence times tk and scale factors (tk − tk−1) are
closely knit together. This observation may serve as an important motivation
for instead considering an event series representation of the heart rhythm,
defined by

du
E(t) =

M∑
k=0

δ(t − tk). (8.16)
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This expression is identical to the one in (8.2), introduced in connection
with the IPFM model, but has a different interpretation since tk is now esti-
mated from the heartbeats, whereas tk in (8.2) was produced by the IPFM
model. The very low-frequency components of du

E(t) contain the informa-
tion which completely characterizes the variability in heart rate, whereas the
high-frequency components can be discarded from further analysis. There-
fore, it has been suggested that a useful heart rhythm representation results
from lowpass filtering of du

E(t) using a linear, time-invariant filter h(t) whose
cut-off frequency is chosen well below the mean heart rate [33, 36, 37], see
also [38]. The output signal dLE(t) of h(t) is obtained from the following
convolution,

dLE(t) =
∫ ∞

−∞
h(t − τ)du

E(τ)dτ

=
M∑

k=0

h(t − tk). (8.17)

Hence, dLE(t) is computed for any value of t by simply summing the values
of the impulse response h(t) at (M + 1) different points in time (t− tk), see
Figure 8.7.

Considering an ideal, continuous-time, lowpass filter, the impulse re-
sponse h(t) is defined by a sinc function,

h(t) =
sin(2πFct)

πt
, −∞ < t < ∞, (8.18)

where the cut-off frequency is denoted Fc. The cut-off frequency is usually
chosen within the interval of 0.4–0.5 Hz in order to comply with heart rates
being typical at rest. Alternatively, Fc can be related to the prevailing
heart rate which sometimes allows the use of a higher cut-off frequency and,
consequently, the analysis of frequency components which describe faster
fluctuations in heart rate.

Since the tails of the sinc function in (8.18) drop off to zero, it is possible
to truncate the number of terms in the sum of (8.17) once the distance
between t and tk has exceeded a certain value. The accuracy of the lowpass
filtered signal dLE(t) decreases when M is small or when output values close
to the interval end points t0 or tM are to be computed. Another property of
the lowpass filtered event series is its noncausal computation; however, this
property does not impose any serious limitation as long as the ECG signal
is subjected to off-line analysis which is usually the case.

When the event series is assumed to be produced by the IPFM model
and a sinusoidal modulating function m(t) with frequency F1, an ideal low-
pass filter can be employed to extract F1, provided that F1 < Fc. As a



584 Chapter 8. ECG Signal Processing: Heart Rate Variability

0 1 2 3 4 5 6 7 8 9 10
0

1

0

1

Time (s)

τ

τ

Σ Σ

τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9

d
L
E
(t

)
h
(t

−
τ
)

d
u E
(τ

)

t

Figure 8.7: The transformation of an event series du
E(t) into a lowpass filtered event

series dLE(t) using a filter with impulse response h(t). The computational procedure
for obtaining output samples at t = 3 and 4 is indicated by the summation networks.
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result, the lowpass filtered event series yields an estimate of the modulating
function m(t) [13],

m̂(t) = dLE(t). (8.19)

The case with m(t) being a sinusoid with frequency F1 is further considered
on page 596–597 when the power spectrum of the resulting event series is
derived.

Since dLE(t) in practice is computed by digital techniques, we briefly
summarize its discrete-time version which is based on the occurrence times
θk, estimated from an ECG signal x(n) digitized at the sampling rate Fx.
The sampling rate of dLE(t), denoted Fd, is, of course, chosen to be much
lower than that of x(n) and, without much loss of generality, such that
the sampling interval 1/Fd is an integer multiple L of the interval 1/Fx,
i.e., 1/Fd = L/Fx. Assuming that the impulse response of the discrete-time
lowpass filter h(n) is sampled at the rate Fx, the discrete-time version of
dLE(t) is obtained by

dLE(n) =
M∑

k=0

h(nL − θk). (8.20)
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For the special case when h(n) is a truncated version of an ideal lowpass
filter with a cut-off frequency that exactly matches the Nyquist frequency,
i.e., Fc = Fd/2, an efficient algorithm can be derived for the computation
of the evenly spaced sample values of dLE(t) [36]; the algorithm, known as
the French–Holden algorithm, is discussed in Problem 8.5. This particular
choice of Fc may not, however, provide sufficient attenuation at or above the
Nyquist frequency, and, as a result, aliasing distortion may be introduced
in dLE(n).

Another efficient algorithm has been presented in which the signal is
oversampled by choosing a sampling rate being a factor of two larger than the
maximal frequency of interest, i.e., Fc = Fd/4. Such a choice provides a much
better attenuation of frequency components near the Nyquist frequency and
thus avoids aliasing [39]. Since straightforward truncation of the impulse
response of the ideal lowpass filter does not produce very good attenuation
of the stopband, the use of, for example, windowing techniques is warranted
to improve the filter design [40]; see also page 461. Like the earlier mentioned
problem of baseline wander removal, lowpass filtering of the event series is
synonymous with narrowband filtering which may be efficiently implemented
using a multirate filter structure.

8.3.4 Heart Timing Representation

The heart timing signal is, in contrast to the previous heart rhythm repre-
sentations, based on the IPFM model and is aimed explicitly at estimating
the modulating function m(t) [14]. The heart timing signal du

HT(t) is an
unevenly sampled signal defined as the deviation of the event time tk from
the expected occurrence time, related to the mean RR interval length kTI ,
which in mathematical terms is

du
HT(t) =

M∑
k=0

(kTI − tk)δ(t − tk)

=
M∑

k=0

dHT(t)δ(t − tk), (8.21)

see Figure 8.8. To understand how du
HT(t) is related to the IPFM model,

we rewrite the model equation in (8.6) for a particular time tk such that∫ tk

0
m(τ)dτ = kTI − tk

= dHT(tk). (8.22)

Hence, dHT(tk) and m(t) are linearly related to each other through integra-
tion of m(t) until tk. In order to compute du

HT(t), an estimate of TI is first
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Figure 8.8: (a) An ECG signal and (b) the related event series du
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the beat occurrence times tk. (c) The heart timing signal du
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deviation of the event time tk from the expected occurrence time kTI (dotted vertical
lines). The deviation’s magnitude is indicated by the horizontal bar, as well as by
the amplitude of the arrow. The time base of du

HT(t) is shifted so that its origin is
t = t0 = 0.

required from the available data. This parameter can be obtained by simply
dividing the occurrence time of the last event with the number of events,

T̂I =
tM − t0

M
=

tM
M

, (8.23)

where we have assumed that t0 = 0. Thus, dHT(t) depends on where the
interval [t0, tM ] is positioned within the ECG recording. It should be noted
that the end point values are such that dHT(t0) = dHT(tM ) = 0, see Fig-
ure 8.8(c).

The rationale for using the heart timing signal becomes evident when the
Fourier transform of its generalization to continuous-time, denoted dHT(t),
is determined. To do this, we make use of the generalized IPFM model in
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(8.7), by which the heart timing signal can be expressed as

dHT(t) =
∫ t

0
m(τ)dτ

=
∫ t

−∞
m(τ)dτ. (8.24)

Here, the integration interval has been extended to −∞ due to the nonrestric-
tive assumption that m(t) is a causal function, i.e., equal to zero for t < 0.
The Fourier transform of (8.24) is given by [12]

DHT(Ω) =
∫ ∞

−∞
dHT(t)e−jΩtdt

=
M(Ω)

jΩ
+ πM(0)δ(Ω)

=
M(Ω)

jΩ
, (8.25)

where DHT(Ω) and M(Ω) denote the Fourier transform of dHT(t) and m(t),
respectively, and Ω = 2πF . The term πM(0)δ(Ω) is identical to zero since
m(t) was assumed to have a DC component equal to zero.

Consequently, an estimate of the power spectrum Sm(Ω) of m(t) can be
obtained by multiplying DHT(Ω), calculated from the event times t0, . . . , tM
in the observation interval, by jΩ,

Ŝm(Ω) =
1

(M + 1)TI
|M̂(Ω)|2

=
1

(M + 1)TI
|ΩD̂HT(Ω)|2. (8.26)

The multiplicative factor 1/((M + 1)TI) is included to account for the total
time interval with events. Once the spectrum of dHT(t) has been computed,
it is straightforward to estimate the spectrum of m(t) (further details on
the spectral computations follow below). The modulating function m(t)
is assumed to be bandlimited to a maximal frequency lower than half the
mean heart rate 1/(2TI). As a result, dHT(t) will also be bandlimited, be-
ing the integral of m(t), and can therefore be fully retrieved from the time
instants tk.

The agreement between m(t) and the different heart rhythm represen-
tations, except dLE(t), is illustrated in Figure 8.9, assuming that m(t) is
sinusoidal. Figures 8.9(a)–(c) show the signals at different stages of the
IPFM model, namely, the input signal m(t), the output signal of the inte-
grator κ(t), and the resulting event series du

E(t). In order to interpret dIT(k)



588 Chapter 8. ECG Signal Processing: Heart Rate Variability

-0.4

0

0.4

0

4

8

12

16

20

0

1

1 3 5 7 9 11 13 15 17 19

-0.4
0

0.4

-0.4
0

0.4

≈

Beat index, k

0 2 4 6 8 10 12 14 16 18 20

-0.4

0

0.4

-0.4

0

0.4

-0.4

0

0.4

≈

≈

Time (s)

t1t0 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19

m(t)

κ(t)

dE (t)

dIF(t)

TI
−1

dIT(k)

TI
−1

TIdI I T(k)−1

TIdI I F(t)−1

2πF1dHT(t)

u

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
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Section 8.4. Spectral Analysis of Heart Rate Variability 589

and dIF(t) as estimates of m(t), we scale these signals with the mean heart
rate 1/TI and subtract the mean, which, after scaling, is equal to one (Fig-
ures 8.9(d) and (g)). Similarly, dIIT(k) and dIIF(t) are scaled with TI and
the mean subtracted (Figures 8.9(e) and (h)).

Figure 8.9(f) demonstrates, as expected, that dHT(t) is the preferred rep-
resentation for recovering m(t), although the inverse interval function dIIF(t)
comes close. Another observation is that the representations inversely re-
lated to the interval length are better in estimating m(t) than those propor-
tional to the interval length. This observation can be explained by (8.6),
in which the term (1 + m(t))/TI can be interpreted as the instantaneous
heart rate which, when integrated over time, gives the beat index k. Since
dIIF(t) reflects instantaneous heart rate, dIIF(t)TI − 1 can be interpreted as
an estimate of m(t), thus explaining the better performance than what is
achieved by dIF(t).

Finally, it seems appropriate to point out that although dHT(t) exhibits
superior performance within the context of IPFM modeling than the other
representations, model-based studies do not fully account for HRV observed
in humans. Hence, the performance improvement achieved by using dHT(t)
remains to be demonstrated from a clinical point of view and is possibly
embedded in the IPFM modeling error.

8.4 Spectral Analysis of Heart Rate Variability

The spontaneous variability in heart rate found in healthy subjects during
rest usually exhibits an oscillatory behavior. Such variability is influenced
by respiratory activity as well as by feedback mechanisms of the systems for
regulation of temperature and blood pressure. The different systems oscillate
spontaneously at rest with characteristic frequencies in different intervals: a
thermoregulatory peak in the interval below 0.05 Hz, a peak related to blood
pressure at about 0.1 Hz, and a peak related to respiration in an interval
ranging from 0.2 to 0.4 Hz, see Figure 8.10.

By quantifying the power of the different spectral components, informa-
tion may be inferred on various pathologies related to cardiac autonomic
function. Unfortunately, the oscillations are sometimes poorly pronounced,
especially those reflecting changes in thermoregulation and blood pressure,
and, therefore, it may be difficult to identify the peaks of the estimated
spectrum. This problem is commonly alleviated by instead quantifying the
power of low- and high-frequency components in the two intervals 0.04–
0.15 Hz and 0.15–0.40 Hz. The spectral power measured in these two inter-
vals is closely associated with autonomic balance; an increase in sympathetic
activity is related to an increase of the low-frequency power, whereas an in-
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sympathetic activity as reflected by the increased peak at 0.1 Hz. The peak at
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crease in parasympathetic activity is primarily related to an increase of the
high-frequency power.3 Hence, the ratio between these two spectral power
measures serves as an index of autonomic balance and has, as such, been
extensively used in clinical HRV studies [41–43].

Stationarity is naturally an important consideration when a heart rate
signal is subjected to spectral analysis. Although various stationarity tests
of a signal have been proposed which, for example, test for deviations from
the assumption of a constant mean (“trend shifts”), these tests have rarely
found their way into clinical use. Instead, practical tests have been applied
on the presence of ectopic beats since such beats clearly violate stationarity;
if included for spectral analysis, a false increase in spectral power results
which is distributed over the entire frequency interval.

A crucial insight when investigating the spectral content of a heart rate
signal is that frequencies above half the mean heart rate cannot be ana-
lyzed because the sampling rate is intrinsically defined by the time instants
when the beats occur. In reality, the highest frequency has to be somewhat
lower than half the mean heart rate since the heart rate may fluctuate con-
siderably so that the length of the longest RR interval bounds the highest
frequency [33, 44]. Nevertheless, fruitless attempts have been made to ana-

3These relations have been established through experiments in which, for example,
a substance has been injected which is known to block either the sympathetic or the
parasympathetic activity.
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evenly sampled signal, whereas the other two spectral techniques assume that the
samples are unevenly spaced. Note that lowpass filtering and interpolation are
represented by a single block since interpolation can be interpreted as a lowpass
filtering operation.

lyze frequencies above half the Nyquist frequency despite the fact that this
interval only contains aliased frequency components and, therefore, does not
carry meaningful information.

The interrelationships between different heart rhythm representations
and techniques for spectral analysis are presented in the block diagram of
Figure 8.11. The two tachogram signals dIT(k) and dIIT(k) can be analyzed
using either classical periodogram-based methods or model-based, paramet-
ric methods such as AR modeling; both approaches have been described
within the context of EEG signal processing. These two approaches to
spectral analysis are relatively straightforward to apply and are not fur-
ther described. Studies making use of AR modeling in HRV analysis can,
for example, be found in [15, 31, 45], and its possibilities and limitations are
discussed in [46, 47].

The interval functions du
IF(t) and du

IIF(t) or the heart timing du
HT(t) may

be interpolated and resampled at evenly spaced times and then processed
with the same methods as those used for the tachogram signals. However,
since these signals are unevenly sampled, we may alternatively consider spec-
tral techniques designed to directly handle such sampling. Lomb’s periodo-
gram is one such technique which, based on the least-squares criterion, pro-
duces a nonparametric estimate of the power spectrum; this periodogram
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is identical to the classical definition when an evenly sampled signal is an-
alyzed. Finally, the event series may be spectrally analyzed after lowpass
filtering and resampling. Alternatively, the event series may be inserted di-
rectly into the definition of the Fourier transform and evaluated to yield the
spectrum of counts.

8.4.1 Direct Estimation from Unevenly Spaced Samples

We will start the presentation of different spectral techniques by taking a
closer look at the Fourier transform of a general, unevenly sampled sig-
nal du(t). This signal is conveniently represented by the product of the
sampling function du

E(t), defined by a train of unit impulse functions po-
sitioned at the event times tk, and the continuous-time signal d(t) to be
sampled,

du(t) = d(t)du
E(t), (8.27)

where

du
E(t) =

∞∑
k=−∞

δ(t − tk). (8.28)

Here, the event series is extended to include both negative and positive values
of the index k. The signal d(t) may be defined by any of the presented heart
rhythm signals, i.e., dIF(t), dIIF(t), dHT(t), or dLE(t). Since multiplication in
the time domain corresponds to convolution in the frequency domain, the
Fourier transform of the product d(t)du

E(t) in (8.27) is

Du(Ω) =
1
2π

∫ ∞

−∞
D(ξ)Du

E(Ω − ξ)dξ

= D(Ω) ∗ Du
E(Ω), (8.29)

where

Du
E(Ω) =

∞∑
k=−∞

e−jΩtk . (8.30)

Thus, the spectrum Du(Ω) is related to a version of D(Ω) which is modified
by convolution with Du

E(Ω). Based on a finite-length observation interval
with M +1 events, the power spectrum of du(t) is estimated by the following
expression,

Ŝdu(Ω) =
1

(M + 1)
|D̂u(Ω)|2

=
1

(M + 1)

∣∣∣∣∣
M∑

k=0

du(tk)e−jΩtk

∣∣∣∣∣
2

. (8.31)
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The Fourier transform D̂u(Ω) is obtained from the available series of event
times t0, . . . , tM , which may be viewed as windowing of du(t) using a rect-
angular window. It may be worthwhile to call the reader’s attention to the
fact that the Fourier transform Du(Ω) results from an unevenly sampled,
continuous-time signal represented by delta functions and is not a periodic
function as the Fourier transform of a discrete-time signal. However, the
frequency interval of interest when studying HRV is still limited upwards by
half the mean heart rate.

In general, it is difficult to describe the effect of Du
E(Ω) on the original

spectrum D(Ω) in (8.29). Certain insight may be gained from the special
case when the event times tk are transformed into evenly spaced samples
by interpolation and resampling. Assuming that the event times are integer
multiples of the interval length TI , i.e., tk = kTI , the convolution in (8.29)
becomes

De(Ω) = Di(Ω) ∗
( ∞∑

k=−∞
e−jΩkTI

)
, (8.32)

where Di(Ω) is the spectrum of the interpolated signal, and De(Ω) is the
spectrum of the evenly resampled signal. Poisson’s formula can be used to
express the sum of complex exponentials in (8.32) as a train of equidistantly
spaced impulse functions,

∞∑
k=−∞

e−jkΩTI =
1
TI

∞∑
k=−∞

δ (Ω − kΩI) , (8.33)

where ΩI = 2π/TI . Inserting (8.33) in (8.32), we obtain the well-known
result from sampling theory which states that the spectrum De(Ω) of the
sampled signal is a repetition of the spectrum Di(Ω) of the original signal,

De(Ω) =
1
TI

∞∑
k=−∞

Di (Ω − kΩI) . (8.34)

When the spectrum Di(Ω) is bandlimited, such that its highest frequency
component does not exceed half the repetition rate of tk, i.e., FI = 1/TI , the
sampled signal will not be distorted by aliasing.

8.4.2 The Spectrum of Counts

The spectrum of the event series du
E(t) deserves special mentioning since it

has been widely studied in the literature, commonly referred to as the spec-
trum of counts. From the definition of du

E(t) in (8.28), it is straightforward
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to calculate its Fourier transform,

Du
E(Ω) =

∫ ∞

−∞
du

E(t)e−jΩtdt

=
∞∑

k=−∞
e−jΩtk , (8.35)

by simply inserting the values of the observed event times in the sum. The
corresponding power spectrum is obtained by

Ŝdu
E
(Ω) =

1
(M + 1)

|D̂u
E(Ω)|2

=
1

(M + 1)

⎡⎣(
M∑

k=0

cos(Ωtk)

)2

+

(
M∑

k=0

sin(Ωtk)

)2
⎤⎦ . (8.36)

From (8.35) it is evident that the spectrum of counts is identical to the term
Du

E(Ω) in (8.29) by which the spectrum D(Ω) is convolved. For the event
series representation, the spectrum D(Ω) is equal to δ(Ω) since d(t) is a
constant function with unit amplitude.

Considerable insight on the properties of the spectrum of counts can be
obtained when the event times tk are represented as deviations from the
mean heart rate, i.e., described by the heart timing signal dHT(t) [14]. For
this particular representation, we can derive an analytic expression of the
spectrum Du

E(Ω) in terms of the modulating function m(t) which defines
HRV in the IPFM model. Using the definition of dHT(t) in (8.22), we can
express tk as

tk = kTI − dHT(tk) (8.37)

and, consequently, the event series as

du
E(t) =

∞∑
k=−∞

δ(t − kTI + dHT(tk)). (8.38)

A key step in the derivation of Du
E(Ω) is to use a technique by which tk

in (8.38) can be completely eliminated from the impulse functions, thereby
making further manipulations tractable. It can be shown that for any func-
tion g(t) with a single first-order zero at t = τ , i.e., g(τ) = 0, g(t �= τ) �= 0,
and ∂g(t)/∂t|t=τ �= 0, the time-shifted impulse function can be written as [48]

δ(t − τ) =
∣∣∣∣∂g(t)

∂t

∣∣∣∣ δ(g(t)), (8.39)
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where the right-hand side is independent of the shift τ .
Inspired by the appearance of the impulse functions in (8.38), we define

the function g(t) as

g(t) = t − kTI + dHT(t), (8.40)

which can be shown to satisfy the above requirements at τ = tk. Insertion
of this particular choice of g(t) into (8.39) and setting τ = tk yield

δ(t − tk) =
∣∣∣∣1 +

∂dHT(t)
∂t

∣∣∣∣ δ(t − kTI + dHT(t)). (8.41)

Since dHT(t) is related to m(t) through integration, cf. (8.24), we have that

∂dHT(t)
∂t

= m(t), (8.42)

which, together with the property of HRV being small in comparison with
the mean heart rate (i.e., |m(t)| � 1), enables us to express δ(t − tk) as

δ(t − tk) = (1 + m(t))δ(t − kTI + dHT(t)). (8.43)

Insertion of this result into the definition of the event series yields

du
E(t) = (1 + m(t))

∞∑
k=−∞

δ(t − kTI + dHT(t)), (8.44)

which can be rewritten in a more suitable format using Poisson’s formula,

du
E(t) =

1 + m(t)
TI

[ ∞∑
k=−∞

e
j 2πk

TI
(t+dHT(t))

]

=
1 + m(t)

TI

[
1 +

∞∑
k=1

2 cos
(

2πk

TI
(t + dHT(t))

)]
. (8.45)

The Fourier transform of this expression is equal to

Du
E(Ω) =

(
δ(Ω) + M(Ω)

TI

)
∗

[
δ(Ω) +

∞∑
k=1

DHTk
(Ω)

]
, (8.46)

where the term DHTk
(Ω) denotes the Fourier transform of a frequency mod-

ulated (FM) function dHT(t) whose “carrier frequency” is located at k/TI ,

DHTk
(Ω) = FT

{
2 cos

(
2πk

TI
(t + dHT(t))

)}
. (8.47)
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Recalling that we are only interested in spectral components below half
the mean heart rate, dHT(t) is bandlimited to 1/(2TI), and assuming that
dHT(t) < TI , only frequencies represented by the first term DHT1(Ω) are
located within the interval of interest [44]. Consequently, the expression of
Du

E(Ω) in (8.46) can be well-approximated by

Du
E(Ω) ≈ 1

TI
(δ(Ω) + M(Ω) + DHT1(Ω) + M(Ω) ∗ DHT1(Ω)) . (8.48)

From this expression of the spectrum of counts it can be concluded that,
apart from the desired term M(Ω), three unwanted terms exist in (8.48)
related to the DC component and the term DHT1(Ω). At a first glance, the
DC component does not seem to represent a problem since it is outside the
frequency interval of interest. However, the DC component turns out to be
more problematic since the DC power leaks to adjacent frequencies in the
very low-frequency interval of the estimated spectrum; cf. the leakage effect
of the periodogram described on page 94. In contrast to the usual situation
where the DC component is subtracted prior to spectral analysis in order
to avoid this effect, such subtraction is obviously not meaningful when an
event series is subjected to spectral analysis. It can be concluded from (8.48)
that, using suitable lowpass filtering to compute dLE(t), an estimate of m(t)
is obtained.

For the case when m(t) = m1 sin(2πF1t), the spectrum of the resulting
event series du

E(t) can be determined analytically [26]. In addition to the
expected frequency peaks at FI (the mean heart rate) and F1, it can be
shown that the spectrum also contains a number of spurious peaks centered
around FI at distances which are integer multiples of F1, see Figure 8.12.
The amplitudes of the spurious peaks depend on the degree of modulation;
a large value of m1 causes the spurious peaks to interfere significantly with
the peak at F1.

Returning to the Fourier transform of a general, unevenly spaced heart
rate signal du(t) in (8.29), we recall that the spectrum Du(Ω) is the con-
volution between D(Ω) and Du

E(Ω). Using the approximation of Du
E(Ω) in

(8.48), we obtain the following result,

Du(Ω) = D(Ω) ∗ Du
E(Ω)

≈ 1
TI

(D(Ω) + D(Ω) ∗ M(Ω)), |Ω| <
1

2TI
, (8.49)

where the second step results from neglect of the FM terms since these com-
ponents are mainly located outside the frequency band of interest. Hence,
the term D(Ω) ∗M(Ω) in (8.49) provides the explanation as to why Du(Ω),
i.e., the spectrum of an unevenly sampled signal, differs from the desired
spectrum D(Ω).
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Figure 8.12: The spectrum of the event series generated by the IPFM model with
the modulating function m(t) chosen to be a sinusoid with frequency F1 = 0.1 Hz.
The heart rate is reflected by the peak at FI = 1 Hz.

8.4.3 Lomb’s Periodogram

Lomb’s periodogram [49, 50] is useful for estimating the power spectrum di-
rectly from an unevenly sampled signal and constitutes an alternative to the
classical periodogram combined with interpolation and resampling. Similar
to the classical periodogram, Lomb’s periodogram is a nonparametric esti-
mation technique which does not make any assumptions on the genesis of
the analyzed signal. The main idea behind this approach is the definition
of a spectrum that results from minimization of the squared error between
d(tk) and a sinusoidal model signal s(tk; Ω),

E =
M∑

k=0

(d(tk) − s(tk; Ω))2, (8.50)

where

s(tk; Ω) = a1 cos(Ωtk) + a2 sin(Ωtk). (8.51)

The energy of s(tk; Ω) is a measure which reflects the degree by which a
certain frequency Ω is contained in d(tk). Once estimates of the amplitudes
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a1 and a2 have been computed, the energy is obtained by

M∑
k=0

ŝ2(tk; Ω) =
M∑

k=0

(â1(Ω) cos(Ωtk) + â2(Ω) sin(Ωtk))2, (8.52)

where the dependence on Ω for the two estimates â1(Ω) and â2(Ω) is explic-
itly indicated.

Instead of solving the least-squares (LS) problem in (8.50) by straightfor-
ward minimization of E with respect to a1 and a2, we recast the problem in
matrix notation and derive the general LS solution and the minimum error.
The LS problem can be expressed as

E(a) = (d − Ha)T (d − Ha), (8.53)

where

H =
[
h1 h2

]
=

⎡⎢⎢⎢⎣
cos(Ωt0) sin(Ωt0)
cos(Ωt1) sin(Ωt1)

...
...

cos(ΩtM ) sin(ΩtM )

⎤⎥⎥⎥⎦ (8.54)

and

d =
[
d(t0) d(t1) · · · d(tM )

]T
, (8.55)

a =
[
a1 a2

]T
. (8.56)

The model signal is thus s = Ha. Minimization of E(a) is accomplished by
calculating the gradient with respect to a (see Appendix A for differentiation
of vectors and matrices),

∇aE(a) = −2HT (d − Ha). (8.57)

By setting this gradient equal to zero, the LS estimator is obtained as

â = (HTH)−1HTd. (8.58)

The matrix (HTH)−1 is invertible since H is assumed to have full rank—
an assumption which is fulfilled for the specific choice of H in (8.54). The
minimum LS error is found by rewriting (8.53) such that

E(a) = (d − Ha)T (d − Ha)

= dT (d − Ha) − (Ha)T (d − Ha)

= dTd − dTHa − aTHT (d − Ha) (8.59)
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and by making use of the fact that the last term is equal to the gradient in
(8.57), equal to zero in order to assure optimality. Hence, the minimum LS
error is

Emin = dTd − dTHâ. (8.60)

While it is evident that the first term in (8.60) represents the energy of d,
it is probably not equally evident in what way the other term, dTHâ, should
be interpreted. To shed some light on this, we introduce the rather general
assumptions of additive noise, d = s+v, and vT ŝ = 0; for a stochastic model,
the latter assumption states that signal and noise are uncorrelated. In this
case, the model signal s is the component to be estimated, containing the
frequency Ω, whereas v represents the remaining signal components which
are labeled as “noise”. Then, we may interpret the term dTHâ as an estimate
of the energy of s since

dTHâ = (s + v)T ŝ

= sT ŝ. (8.61)

Since this energy interpretation agrees with the spectral measure suggested
in (8.52), it is not surprising that Lomb’s periodogram is defined as

Ŝdu(Ω) def=
1

M + 1
dTHâ, (8.62)

where both â and H depend on Ω. As we will see later, this definition is
also attractive because it will reduce to the classical periodogram when the
analyzed signal is evenly sampled. Insertion of the LS estimate â into (8.62)
yields an expression of Lomb’s periodogram in terms of H and d,

Ŝdu(Ω) =
1

M + 1
dT

[
h1 h2

] [
hT

1 h1 hT
2 h1

hT
1 h2 hT

2 h2

]−1 [
hT

1

hT
2

]
d. (8.63)

From a computational point of view, however, it would be highly desir-
able if the expression in (8.63) could be simplified such that the cross-terms

hT
1 h2 = hT

2 h1 =
M∑

k=0

cos(Ωtk) sin(Ωtk) (8.64)

of the inverted matrix could be made equal to zero (in general, the cross-
terms are nonzero since the unevenly sampled sine and cosine functions are
not orthogonal). Therefore, the question is whether some technique exists
by which Lomb’s periodogram can be modified to become

Ŝdu(Ω) ?=
1

M + 1

(
(hT

1 d)2

hT
1 h1

+
(hT

2 d)2

hT
2 h2

)
. (8.65)
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In order to answer this question positively, Lomb came up with the idea in
his original paper [49] to introduce a delay τ in the model signal,

Hτ =
[
h1,τ h2,τ

]
=

⎡⎢⎢⎢⎣
cos(Ω(t0 − τ)) sin(Ω(t0 − τ))
cos(Ω(t1 − τ)) sin(Ω(t1 − τ))

...
...

cos(Ω(tM − τ)) sin(Ω(tM − τ))

⎤⎥⎥⎥⎦ , (8.66)

and choose τ such that

hT
1,τh2,τ =

M∑
k=0

cos(Ω(tk − τ)) sin(Ω(tk − τ)) = 0. (8.67)

With the help of certain trigonometric identities, it can be shown (see Prob-
lem 8.9) that the value of τ which makes hT

1 h2 equal to zero is given by

τ =
1

2Ω
arctan

⎛⎜⎜⎜⎜⎜⎝
M∑

k=0

sin(2Ωtk)

M∑
k=0

cos(2Ωtk)

⎞⎟⎟⎟⎟⎟⎠ . (8.68)

Another reason for the introduction of τ is to make Lomb’s periodogram
translation invariant in time [50]. This crucial property implies that identical
periodograms are produced irrespective of where the observed samples are
located in time; such translation invariance is not achieved with the matrix
H initially proposed in (8.54).

Thus, Lomb’s periodogram in (8.62) is, after modification with the delay
parameter τ , given by

Ŝdu(Ω) =
1

M + 1

(
(hT

1,τd)2

hT
1,τh1,τ

+
(hT

2,τd)2

hT
2,τh2,τ

)

=
1

M + 1

⎡⎢⎢⎢⎢⎢⎣

(
M∑

k=0

d(tk) cos(Ω(tk − τ))

)2

M∑
k=0

cos2(Ω(tk − τ))

+

(
M∑

k=0

d(tk) sin(Ω(tk − τ))

)2

M∑
k=0

sin2(Ω(tk − τ))

⎤⎥⎥⎥⎥⎥⎦ .

(8.69)

In contrast to the classical periodogram, Lomb’s periodogram is not a pe-
riodic function, but may convey information on frequencies which span
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slightly above the Nyquist frequency. These higher frequencies may be an-
alyzed when several samples are much closer in time than the “average”
sampling interval. However, such analysis should be exercised with a great
deal of caution and not be interpreted such that any frequency above the
Nyquist frequency is meaningful to study, because aliasing may be present.
Since Lomb’s periodogram is associated with a considerable amount of com-
putation, a fast algorithm has been developed, similar to the FFT algo-
rithm [51, 52].

Lomb’s periodogram reduces to the classical periodogram when the event
times tk are evenly sampled with the sampling interval TI , i.e., tk = kTI , at
the Nyquist rate or higher. Since τ = 0, we have that

M∑
k=0

cos2(ΩkTI) =
M∑

k=0

sin2(ΩkTI) =
M + 1

2
, (8.70)

which, when inserted into (8.69), yields the following well-known expression
of a Fourier power spectrum,

Ŝdu(Ω) =
1

M + 1

(
M∑

k=0

d(kTI) ·
√

2
M + 1

cos(ΩkTI)

)2

+
1

M + 1

(
M∑

k=0

d(kTI) ·
√

2
M + 1

sin(ΩkTI)

)2

. (8.71)

Figure 8.13 presents an example where an event series, generated by the
IPFM model, is analyzed with different spectral estimation techniques. The
input to the IPFM model is a two-tone signal with modulation frequencies
at 0.1 and 0.25 Hz. In this particular example, the best agreement with
the original spectrum is obtained by the classical periodogram based on the
heart timing signal di

HT(t) which follows from interpolation of du
HT(t) and

resampling (the interpolation was based on cubic splines and resampling
was done at a rate of 2 Hz [14]). Lomb’s periodogram, based on either the
interval function du

IF(t) or the inverse interval function du
IIF(t), contains a

number of low-amplitude spurious peaks. The same observation applies to
the classical periodogram, based on interpolated and resampled versions of
du

IF(t) or du
IIF(t), although the high-frequency components (both expected

and spurious ones) are more attenuated due to the lowpass effect of interpo-
lation.

From the example in Figure 8.13, we may conclude that differences in
performance between Lomb’s periodogram and the classical periodogram are
relatively insignificant. Therefore, other aspects such as those related to the
amount of computations, e.g., due to interpolation and resampling, and the
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Figure 8.13: Spectral analysis of data generated by the IPFM model for the two-
tone case with modulation frequencies at 0.1 and 0.25 Hz [14]. The original two-tone
spectrum Sm(F ), the related spectrum of counts of du

E(t), the classical periodogram
based on di

HT(t), Lomb’s periodogram of du
IF(t), the classical periodogram of di

IF(t),
Lomb’s periodogram of du

IIF(t), and the classical periodogram of di
IIF(t). The mean

RR interval length TI is equal to 1 s, and the mean value was subtracted from dIF(t)
and dIIF(t) before the corresponding spectrum was computed.
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handling of gaps due to ectopic beats should be considered when selecting a
method for spectral analysis [53, 54].

We conclude this section on spectral analysis by presenting power spectra
of sinus rhythm and atrial fibrillation computed by Lomb’s method. While
the former rhythm is mainstream to this chapter, the latter rhythm is not
considered in traditional HRV analysis due to the fact that the sinus node is
no longer in control of atrial activation, see page 434. Still, it is instructive
to compare the outcome of spectral analysis for these two rhythms, see Fig-
ure 8.14. While the power spectrum of sinus rhythm exhibits a pronounced
peak at about 0.2 Hz, corresponding to respiration, no such peak can be
discerned from the power spectrum of atrial fibrillation since respiration no
longer modulates heart rate. Furthermore, atrial fibrillation has a consider-
ably larger variability than sinus rhythm which spectrally is manifested by
a larger area under the spectrum, especially at higher frequencies, see Fig-
ure 8.14(b); the flatter power spectrum of atrial fibrillation indicates that
this rhythm contains less structured information than sinus rhythm.

8.5 Clustering of Beat Morphologies

Analysis of HRV requires that sinus beats be labeled as such before the
sinus rhythm can be analyzed. Such labeling is typically accomplished by
clustering heartbeat morphologies in exactly the same way that motor unit
action potentials (MUAPs) are clustered for the purpose of decomposing
intramuscular EMG signals, see the discussion in Section 5.6.1. In contrast
to MUAP clustering, where each cluster is equally important, it is only the
cluster containing the sinus beats which matters in HRV analysis. Although
no prior knowledge is available on which of the clusters contains the sinus
beats, the “sinus” cluster can usually be identified as the cluster with the
largest number of beats. Therefore, in HRV analysis it is not necessary
to find out if, for example, a beat has a P wave and a QRS duration of
about 120 ms or less, two properties characteristic of a sinus beat (such beat
classification is, however, required in certain clinical applications such as
resting ECG analysis and ambulatory monitoring where it is of interest to
assign a label to each cluster with a certain type of ectopic beat).

As described in Section 5.6.1, clustering is based on a set of features
which describe waveform morphology and, possibly, also rhythm properties.
The time domain representation, given in (5.103), has frequently been em-
ployed in ECG signal processing, especially when combined with the cross-
correlation coefficient as a measure of pattern similarity [55–61], defined by

d2(pi,µl) =
pT

i µl

‖pi‖2‖µl‖2
. (8.72)
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Figure 8.14: The inverse interval function and the corresponding power spectrum
for (a) sinus rhythm and (b) atrial fibrillation. Note that the power spectra are
displayed with log-log scales.

The vector pi contains the QRS samples of the current beat, and µl is the
mean of the cluster (i.e., the “template” beat). The ECG signal is usually
bandpass filtered before it is clustered so that the influence of baseline wander
and EMG noise is reduced.

Using the cross-correlation coefficient as a measure of similarity, it is
easily shown that clustering becomes invariant to changes in QRS ampli-
tude. Such a situation is exemplified by Figure 7.17(c) where the sinus
beats, exhibiting a drastic, short-term change, would all be assigned to the
same cluster. Amplitude invariance is an acceptable property in HRV anal-
ysis where the information in demand is restricted to the timing of sinus
beats. However, invariance to amplitude changes, exceeding those induced
by respiration, is undesirable when the purpose is to average the sinus beats
of a cluster for noise reduction as, for example, required in high-resolution
ECG analysis (Section 6.6.5); averaging of similar-shaped beats with widely
differing QRS amplitudes produces a nonrepresentative ensemble average.
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The basis function representation in (5.104) has also been considered
for feature extraction when clustering heartbeats, often expressed in terms
of the Karhunen–Loève or the Hermite functions [62–72]. In such cases, the
Mahalanobi distance, defined in (5.105), is preferable as a measure of pattern
similarity.

Improved accuracy of the occurrence time tk is intimately related to the
clustering process because the current beat pi can be optimally aligned in
time to µl when similarity is measured. The availability of morphologic
information through µl may be used to improve the accuracy of tk, origi-
nally determined by the QRS detector which operates at a lower temporal
resolution (and determined without considering the morphology of previous
beats). When clustering is based on the cross-correlation coefficient, the
samples of pi are correlated to the mean of the cluster µl and shifted in
time until the highest cross-correlation value is obtained; the resulting value
is used for cluster assignment. The procedure for aligning two waveforms is
actually well-known from latency estimation of evoked potentials and is de-
scribed in detail in Section 4.3.7. Once clustering is finished, the occurrence
times of beats contained in the sinus cluster can be further time improved
using Woody’s method.

8.6 Dealing with Ectopic Beats

The presence of ectopic beats perturbs the impulse pattern initiated by the
SA node and implies that the RR intervals adjacent to an ectopic beat
cannot be used for HRV analysis, see Figure 8.15. In such cases, autonomic
modulation of the SA node is temporarily lost, and, instead, an ectopic focus
prematurely initiates the next beat. The location of the ectopic focus gives
rise to different types of RR interval perturbation; a beat of ventricular origin
inhibits the next sinus beat so that a compensatory pause is introduced after
the ectopic beat (Figure 6.14(b)), whereas a beat of supraventricular origin
discharges the SA node ahead of schedule and causes the following sinus
beat to also occur ahead of schedule (Figure 6.14(a)). Another perturbation
is that related to an interpolated ectopic beat, manifested by two short
RR intervals adjacent to the ectopic beat (Figures 6.14(e)). Perturbations
in rhythm may also be due to missed or falsely detected beats; such errors are
usually the result of incorrect decisions made by the QRS detector [73, 74].

Since ectopic beats occur in both normal subjects and patients with heart
disease, their presence represents an important error source to be dealt with
prior to spectral analysis of the heart rate signal. If not dealt with, the analy-
sis of an RR interval series containing ectopic beats results in a power spec-
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Figure 8.15: A premature ectopic beat occurring at time te followed by a com-
pensatory pause. The occurrence times of the sinus beats are denoted t0, . . . , t9.

trum with fictitious frequency components, manifested as a “white noise”
level as illustrated by Figure 8.16. The increased spectral level is caused by
the impulses produced by the two RR intervals adjacent to the ventricular
ectopic beat.

From a signal processing viewpoint, we need, of course, to know if each
beat is of ectopic origin or not before a correction technique can be applied;
beat clustering provides this knowledge in most systems for ECG analysis
(Section 8.5). Ventricular ectopic beats are relatively easy to algorithmically
single out since their morphologies deviate considerably from that of the
normal sinus beat; the same observation is also valid for many types of
artifacts being falsely detected by the QRS detector. On the other hand,
rhythm perturbations primarily manifested by changes in the RR interval
pattern, such as those associated with supraventricular ectopic beats, tend
to be more difficult to detect since interval-based criteria by necessity are
less specific than those which also involve morphology.

A number of techniques have been developed which deal with the pres-
ence of ectopic beats with all techniques conforming to the restriction that
only ECG segments with occasional ectopic beats should be processed. Seg-
ments containing frequent ectopic beats or, worse, runs of ectopic beats
perturb the underlying sinus rhythm and must therefore be excluded from
further analysis [75]. A straightforward approach to correction of an occa-
sional ectopic beat is to delete the aberrant RR intervals from the interval
tachogram dIT(k). However, interval deletion does not try to fill in the inter-
val variation that should have been present, had no ectopic beat occurred,
and, as a result, the “corrected” interval tachogram remains less suitable for
further HRV analysis.

In this section, we describe three vastly different techniques which deal
with the presence of ectopic beats by either modifying an existing processing
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Figure 8.16: (a) The presence of an ectopic beat in di
IIF(t) (top panel) is associated

with high-frequency components (bottom panel). (b) The corrected di
IIF(t) (top

panel) produces a power spectrum with much less high-frequency content (bottom
panel). The mean value of di

IIF(t) was subtracted before the power spectrum was
computed.

block or inserting an additional processing step in the analysis, see the block
diagram presented in Figure 8.17. The main idea behind each of these three
techniques is

1. to modify the very definition of the heart timing signal dHT(tk),

2. to modify the estimator of the correlation function such that only the
NN intervals are included (used in combination with dIT(k), dIIT(k),
dIF(tk), or dIIF(tk)), and

3. to interpolate over the gap caused by the ectopic beat in order to
obtain values of the heart rate signal that align well with the adjacent
NN intervals (used in combination with dIF(tk) or dIIF(tk)).

A technique which may be used in combination with the lowpass fil-
tered event series dLE(t) is considered in Problem 8.11. Other techniques
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ECG QRS

detection

Ectopic
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t0 , . . . , tke
, te , tke+1 , . . . , tM

Modified

dHT(tk)

dI F(tk)

dI I F(tk)

dI T(k)

dI I T(k)

dLE (tk)

Interpolation

Modified

correlation
Spectral

analysis

Figure 8.17: Three different techniques for correction of ectopic beats (marked by
the shadowed boxes). Note that the correlation-based technique is developed for use
in spectral analysis, while no such restriction applies to the other two techniques.
Correction techniques for use with the lowpass filtered event series dLE(t) are not
included in the block diagram.

which deal with ectopic beats have been described in [76, 77], with the latter
reference also including a comparison of performance.

In the presentation below, we will assume that the normal sinus beats
have occurrence times t0, t1, . . . , tM and that only one single ectopic beat
occurs at time te; the time te is not included in the series t0, t1, . . . , tM . From
an indexing point of view, we note that the sinus beat immediately preceding
the ectopic occurs at tke , and the one immediately following occurs at tke+1.
It is assumed that the ectopic beat does not occur at the edges of the signal
but is always preceded by, and followed by, a number of sinus beats. Finally,
the ectopic beat has been classified as such using some suitable clustering
algorithm.

8.6.1 Correlation-based Correction

If the aim is to spectrally analyze the heart rate signal using the nonpara-
metric approach described in Section 3.3, the correlation function estimate
required for the periodogram in (3.79) can be modified to account for ectopic
beats.4 Here, the derivation of the modified estimator is based on the inter-

4A model-based, parametric approach to spectral analysis of data with missing obser-
vations can also be used, see [78].
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val tachogram dIT(k), or its inverse. However, a similar modification can also
be introduced when the interval function, or its inverse, is considered [79].

The interval tachogram dIT(k) reflects the sinus rhythm, here denoted
dSR(k), except in intervals with an ectopic beat where the value of dIT(k) is
considered missing. In mathematical terms, this property can be expressed
by

dIT(k) = o(k)dSR(k), (8.73)

where o(k) denotes a binary variable which is equal to one when an NN inter-
val occurs, but otherwise zero. In order to proceed, we assume that o(k) and
dSR(k) are independent random variables characterized by their respective
correlation functions ro(l) and rdSR

(l). Then, we can write

rdIT
(l) = E[dIT(k)dIT(k − l)]

= E[o(k)dSR(k)o(k − l)dSR(k − l)]
= E[o(k)o(k − l)] · E[dSR(k)dSR(k − l)]
= ro(l)rdSR

(l), (8.74)

where the third equality results from the assumption of independence.
Hence, the result in (8.74) suggests that an estimate of the correlation

function for the desired signal dSR(k) can be obtained by [80]

r̂dSR
(l) =

r̂dIT
(l)

r̂o(l)
, (8.75)

where

r̂dIT
(l) =

1
Mo(l)

Mo(l)∑
k=l

dIT(k)dIT(k − l). (8.76)

The parameter Mo(l) denotes the number of terms dIT(k)dIT(k− l) that are
nonzero; this number depends on the lag l. The correlation estimate of the
binary variables o(k) is obtained in the same way as r̂dIT

(l), but is required
to satisfy r̂o(l) �= 0 in order to avoid division by zero in (8.75). For short
lags, this requirement is usually fulfilled since only ECGs with occasional
ectopic beats are subject to analysis. For large lags, r̂o(l) may become equal
to zero, implying that a truncated version of r̂dSR

(l) should instead be used
in the periodogram computation.

8.6.2 Interpolation-based Correction

Another possibility is to use interpolation in the interval function dIF(tk), or
its inverse dIIF(tk), over the gap caused by the ectopic beat in order to insert
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Figure 8.18: Linear interpolation of du
IF(t) to correct for the presence of an ectopic

beat occurring at te. The two RR intervals altered by the ectopic beat are marked
with asterisks. The interpolated value is positioned at t6 and is marked with “×”.

the samples required for producing an evenly sampled signal, see Figure 8.18.
Since the ectopic beat is assumed to occur in the interval tke < te < tke+1, it
is clear that interpolation must be based on samples up to dIF(tke) and then
from dIF(tke+2) and onwards; the sample dIF(tke+1) cannot be used since it
involves the two times tkeand tke+1 that define the aberrant RR interval.

By means of linear interpolation, the interval function can be interpolated
over the interval tke < t < tke+2 using the following expression,

di
IF(t) = dIF(tke) +

dIF(tke+2) − dIF(tke)
tke+2 − tke

(t − tke), tke < t < tke+2,

(8.77)

where only two samples, i.e., dIF(tke) and dIF(tke+2), are required. Higher-
order polynomial interpolation can also be applied involving additional sam-
ples of dIF(tk) from both sides of the ectopic beat.

Finally, the new samples that result from the interpolation in (8.77) are
merged with the existing values of the interval function so as to define the
corrected signal which is subjected to further analysis.
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8.6.3 The Heart Timing Signal and Ectopic Beats

The definition of the heart timing signal in (8.22) can be modified to account
for the presence of an ectopic beat occurring at te [81, 82], see also [83] for
a similar IPFM-based approach. In the modified definition, the occurrence
times subsequent to the ectopic beat are related to the time basis kTI in-
volving a parameter s such that

dHT(tk) =
{

kTI − tk, k = 1, . . . , ke;
(k + s)TI − tk, k = ke + 1, . . . , M.

(8.78)

The parameter s can be viewed as the jump occurring when the integral in
the IPFM model is reset, defined by

s =
1
TI

∫ tbke

tke

(1 + m(τ))dτ, (8.79)

where tbke
denotes the reset time at which the SA node has been “restarted”

by the wave propagating from the ectopic focus. A value of s close to zero
indicates that the event at te is probably caused by an artifact, whereas a
value close to one probably indicates that the event is a premature ectopic
beat followed by a compensatory pause. Recalling the generalized IPFM
model from (8.7), the continuous-time heart timing signal is defined by

dHT(t) = κ(t)TI − t,

where

κ(t) =
1
TI

∫ t

0
(1 + m(τ))dτ.

With the presence of one ectopic beat, the indexing function κ(t) is, when
sampled at the occurrence times tk, given by

κ(tk) =
{

k, k ≤ ke;
k + s, k ≥ ke + 1.

(8.80)

In order to use the modified definition of dHT(tk) in (8.78), we need to
estimate the parameter s as well as to modify our previous estimator of
the mean RR interval length TI such that it now accounts for the presence
of the ectopic beat (Figure 8.19). The estimator of s requires most of our
attention since the estimation procedure consists of several steps, whereas
the estimator of TI , requiring that ŝ be available, has a very simple structure.

Our starting point is the observation that the indexing function κ(t) can
be estimated from both the occurrence times preceding the ectopic beat and
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t0, . . . , tM

estimation
of TI

estimation
of s

dHT(tk)

Figure 8.19: Correction of an ectopic beat using the modified heart timing signal
in (8.78). The signal can be determined once the estimates of the jump parameter s
and the mean RR interval length TI are available.

the times following the ectopic beat, with the latter times associated with
the offset s. Thus, two different estimators related to κ(t) can be based on
the samples of (t, κ(t)). The “forward estimator”, denoted κ̂f (t), is based on
the occurrences at (t0, 0), . . . , (tke , ke) and produces an estimate of κ(t). The
“backward estimator”, denoted κ̂b(t), is based on (tke+1, ke+1), . . . , (tM , M)
and produces, in contrast to κ̂f (t), an estimate which is offset by s from κ(t),

κb(t) = κ(t) − s. (8.81)

Since the resulting indexing functions κ̂f (t) and κ̂b(t) would differ by an
offset equal to the desired parameter s, it is possible to extrapolate these two
functions forward and backward in time, respectively, to such an extent that
they overlap and, thereby, make it possible to estimate s, see Figure 8.20.

Extrapolation of the indexing functions is done by first forwardly extend-
ing the series of occurrence times t0, . . . , tke with a new time t̂fke+1 under the
assumption that the sinus rhythm continues. In the same way, the series of
occurrence times tke+1, . . . , tM is backwardly extended with t̂bke

under the
assumption that the sinus rhythm precedes tke+1. For now, we will assume
that the new occurrence times t̂fke+1 and t̂bke

are located such that the de-
sired overlap exists, i.e., t̂fke+1 > t̂bke

. If not, the two series have to be further
extended until this requirement is fulfilled. The computation of these two
occurrence times is given by

t̂fke+1 = tke + di
IF(t̂fke+1) (8.82)

and

t̂bke
= tke+1 − di

IF(tke+1), (8.83)
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Figure 8.20: Forward extrapolation of the indexing function κf (t), based on the
occurrences at (t0, 0), . . . , (tke

, ke), and backward extrapolation of κb(t), based on
(tke+1, ke + 1), . . . , (tM , M). The indexing functions are extrapolated until they
overlap in time. An estimate of the jump parameter s is given by the shaded area
divided by its length, cf. (8.88).

where di
IF(t) denotes the interpolated interval function. Before interpolation,

the interval function is given by

dIF(tk) = tk − tk−1, k �= ke + 1, (8.84)

where the intervals adjacent to the ectopic beat have been excluded from
the computation of dIF(tk). From the expression in (8.84), the interpolated
function di

IF(t) can be obtained. In (8.82), the value of t̂fke+1 is obtained by
solving the equation recursively.

Next, the two indexing functions κ̂f (t) and κ̂b(t) are both interpolated
in the interval t̂bke

≤ t ≤ t̂fke+1 using a suitable interpolation function g(·)
that makes use of available occurrence times,

κ̂f (t) = g((t0, 0), . . . , (tke , ke), (t̂
f
ke+1, ke + 1)), (8.85)

κ̂b(t) = g((t̂bke
, ke), (tke+1, ke + 1), . . . , (tM , M)). (8.86)

Although the occurrence times before and after the ectopic beat have been
included in the interpolation functions for the sake of completeness, interpo-
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lation is typically based on only a few occurrence times on each side of the
ectopic beat.

With the estimates of the two indexing functions available, we are now in
a position to define an error criterion by which the value of s, which offsets
κ̂f (t) from κ̂b(t), can be determined. Once again we adopt the LS criterion
which, in the present context, is defined by

J (s) =
∫ t̂fke+1

t̂bke

(
κ̂f (t) − (κ̂b(t) + s)

)2
dt. (8.87)

Differentiation of J (s) with respect to s and setting the result equal to zero
yield the value of s that minimizes J (s),

ŝ =
1

t̂fke+1 − t̂bke

∫ t̂fke+1

t̂bke

(
κ̂f (t) − κ̂b(t)

)
dt. (8.88)

Hence, the estimator is equivalent to the area enclosed by the two indexing
functions within the overlapping time interval and normalized by the length
of the overlap interval. In practice, the integral in (8.88) is approximated by
summation over a discrete set of times.

Once ŝ is available, estimation of the mean RR interval length TI can be
done in a way similar to that in (8.23), except that the occurrence time of
the last event, i.e., tM , must be divided by a factor which accounts for the
perturbation introduced by s,

T̂I =
tM

M + ŝ
. (8.89)

As before, the resulting heart timing signal is finally subjected to interpola-
tion and resampling to become suitable for further HRV analysis.

It has been reported in [82] that the above correction technique for the
heart timing signal avoids the artificial increase in low-frequency components
(i.e., <0.05 Hz) which is accompanied by interpolation-based correction tech-
niques. The difference in performance is increasingly pronounced when the
degree of ectopy increases [84].

8.7 Interaction with Other Physiological Signals

The variability in heart rate is influenced by different physiological signals, of
which respiration and blood pressure are the most dominant ones and whose
presence may be reflected by different peaks in the HRV power spectrum
(see page 589). While such spectral information is very valuable, a deeper
understanding of the mechanisms which control the cardiovascular system



Section 8.7. Interaction with Other Physiological Signals 615

can be achieved by employing multivariate (multichannel) signal models to
characterize the mutual interaction between heart rate and other physiologi-
cal signals. This characterization is referred to as a closed-loop identification
problem since the system of interest must be identified during “operation”,
based on measurements of the different physiological signals. In this section,
we conclude the HRV chapter by very briefly mentioning how the signal in-
teraction can be modeled, while leaving the methods for estimating model
parameters to the interested reader.

The baroreceptor reflex is an essential component to this interaction,
being the control system of the body for rapidly dealing with changes in
blood pressure. Baroreceptors are nerve cells which are specialized to sense
changes in blood pressure. If an increase in blood pressure is sensed, the
heart rate will, through a negative feedback loop, decrease to compensate;
if, on the other hand, a decrease in blood pressure is sensed, the heart rate
will increase. Accordingly, it is not entirely surprising that the variabilities
observed in heart rate and blood pressure are highly correlated [85, 86];
this observation applies to both low- and high-frequency components in the
intervals 0.04–0.15 and 0.15–0.40 Hz, respectively.

By analyzing the interaction between heart rate and blood pressure, valu-
able insight into the dynamics of the baroreceptor mechanisms can be ob-
tained [87–90]. Such analysis starts by obtaining simultaneous measurements
on heart rate and blood pressure; the latter measurement usually being syn-
onymous to the systolic arterial blood pressure which is measured as the
peak amplitude of the pressure signal, see Figure 8.21. Similar to heart rate,
the systolic arterial pressure is sampled at uneven points in time, and, there-
fore, it is necessary to perform interpolation and resampling at even times
before cross-analysis of the signals can be performed (unless the tachogram
is employed as heart rhythm representation when the blood pressure mea-
surements can be used directly).

Before describing a model of the interaction between different physiolog-
ical signals, we will introduce the cross-power spectrum which is a general,
nonparametric approach to characterize the correlation between two sta-
tionary processes x(n) and y(n). The cross-power spectrum is defined as the
DTFT of the cross-correlation function rxy(k),

Sxy(ejω) =
∞∑

k=−∞
rxy(k)e−jωk, (8.90)

where

rxy(k) = E[x(n)y(n − k)]. (8.91)
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0 2 4 6 8

Time (s)

Figure 8.21: Simultaneous recording of the ECG, arterial blood pressure, and
abdominal respiration (top to bottom). In each cardiac cycle, the systolic pressure
is given by the value of the maximal amplitude (marked by dashed lines). The
respiration signal is sampled at the same time instant when a tachogram represen-
tation is used, while it is preferable to sample at evenly spaced times when other
representations are employed.

The cross-power spectrum Sxy(ejω) can be interpreted as the correlation
between x(n) and y(n) at a given frequency. The normalized cross-power
spectrum is defined by

Γxy(ejω) =
Sxy(ejω)√

Sx(ejω)
√

Sy(ejω)
(8.92)

and is known as the coherence function; normalization is done with the
square-root of the two power spectra. However, the magnitude squared co-
herence, given by

|Γxy(ejω)|2 =
|Sxy(ejω)|2

Sx(ejω)Sy(ejω)
, (8.93)

is more often used in practice and has the attractive property of being nor-
malized such that

0 ≤ |Γxy(ejω)|2 ≤ 1. (8.94)
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Figure 8.22: From the signals displayed in Figure 8.21, (a) the interpolated inverse
interval function x(n) = di

IIF(n) of the heart rate (sampled at even times) and (b)
the systolic arterial blood pressure y(n), also obtained from interpolation, are used
to compute (c) the magnitude squared coherence.

The magnitude squared coherence can be viewed as the frequency domain
counterpart of the cross-correlation coefficient earlier used, for example, in
the context of EP subaveraging, see (4.23). The magnitude squared co-
herence is exemplified in Figure 8.22 for two signals describing heart rate
and systolic arterial pressure. From this example it is obvious that the two
signals are strongly correlated around 0.2 Hz since the magnitude squared
coherence is almost one; this frequency actually corresponds to the respira-
tory frequency which can be roughly estimated from the period length of the
respiration signal displayed in Figure 8.21.

Autoregressive modeling is a useful, parametric approach for studying
the interaction between blood pressure and heart rate. Since blood pressure
variability not only influences HRV but is also influenced by HRV through
feedback, a two-channel (bivariate) AR model has been found appropriate
for describing how these signals oscillate around their respective mean val-
ues [91–93]. The bivariate AR model is defined by the following two coupled
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equations,

x1(n) = −
p∑

k=1

a11,kx1(n − k) +
p∑

k=1

a12,kx2(n − k) + v1(n) (8.95)

and

x2(n) = −
p∑

k=1

a22,kx1(n − k) +
p∑

k=1

a21,kx2(n − k) + v2(n), (8.96)

where x1(n) and x2(n) denote blood pressure and heart rate, respectively.
It is assumed that the four subsystems, defined by the four parameter sets
{a11,k}, {a12,k}, {a21,k}, and {a22,k}, have the same model order p. The input
noise sources v1(n) and v2(n) are assumed to be white and uncorrelated with
each other. Note that x1(n) and x2(n) account for variability but not for the
absolute level since they are both zero-mean. In dealing with this model, it is
convenient to combine the two equations into a matrix equation, see (3.24),

x(n) = −
p∑

k=1

Akx(n − k) + v(n), (8.97)

where

Ak =
[

a11,k −a12,k

− a21,k a22,k

]
, (8.98)

and

x(n) =
[
x1(n)
x2(n)

]
, v(n) =

[
v1(n)
v2(n)

]
. (8.99)

The expression in (8.97) thus clearly demonstrates the feedback structure of
the bivariate signal model.

An alternative way of representing the model is in terms of four scalar
transfer functions as illustrated by the block diagram in Figure 8.23. Two
transfer functions Hii(z) relate vi(n) to xi(n) by

Hii(z) =
1

1 +
p∑

k=1

aii,kz
−k

, i = 1, 2, (8.100)

and two cross-transfer functions Gij(z) relate xi(n) to xj(n) by

Gij(z) =

p∑
k=1

aij,kz
−k

1 +
p∑

k=1

aii,kz
−k

, i, j = 1, 2, i �= j. (8.101)
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Figure 8.23: Block diagram of the bivariate AR model used for modeling of the
interaction between blood pressure x1(n) and heart rate x2(n).

In physiological terms, the transfer function G21(z) represents the effect
of variability in systolic arterial pressure on heart rate mediated through
the autonomic nervous system (baroreceptor feedback dynamics), whereas
G12(z) represents the mechanical effect of variability in heart rate on sys-
tolic arterial pressure [92]. With the availability of Gij(z), the gain and
phase relationship between xi(n) and xj(n) can be calculated for different
frequencies.

In order to determine the cross-spectral information related to the bi-
variate AR model, it is helpful to consider its input–output relation which
is given by

X(z) = H(z)V(z), (8.102)

where X(z) and V(z) denote the z-transforms of the two vectors in (8.99).
The multichannel transfer function H(z) is defined by

H(z) =
[
H11(z) H12(z)
H21(z) H22(z)

]
=

[
H11(z) G12(z)H22(z)

G21(z)H11(z) H22(z)

]
, (8.103)

where the second step connects H12(z) and H21(z) to the transfer functions
in (8.100) and (8.101). The cross-power spectral matrix contains all the
spectral information of the model,

Sx(ejω) =
[
Sx1x1(e

jω) Sx1x2(e
jω)

Sx2x1(e
jω) Sx2x2(e

jω)

]
, (8.104)
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and is calculated by the following expression [94, 95],

Sx(ejω) = H∗(ejω)Sv(ejω)HT (ejω). (8.105)

where H(ejω) is obtained by evaluating H(z) on the unit circle, i.e., z = ejω,
and the diagonal matrix Sv(ejω) describes the variance of the input noise,

Sv(ejω) =
[
σ2

v1
0

0 σ2
v2

]
. (8.106)

It should be noted that the scalar counterpart to (8.105) has already been
introduced in (3.19).

Parameter estimation in a multichannel AR model can be approached
by, for example, modifying the single-channel autocorrelation/covariance
method, earlier discussed in Section 3.4, so that a multichannel version of the
normal equations results [94, 95]. If, on the other hand, the model param-
eters are known to vary slowly over time, it may be preferable to employ a
recursive estimation technique similar to the ones presented in Section 3.6.5,
but modified for the multichannel case; for details on such estimation tech-
niques, see [96].

Figure 8.24 presents an example of variability in heart rate and systolic
arterial blood pressure observed during a tilting maneuver, causing syncope
at the end of the recording. Based on the assumption that the data in Fig-
ure 8.24(a)–(b) can be adequately modeled by a bivariate AR model, the
magnitude squared coherence is estimated using a time-varying, recursive
approach [88, 97]. It is evident from Figure 8.24(c) that the coherence is
particularly pronounced at frequencies around 0.4 Hz before the tilting ma-
neuver, but then gradually decreases to much lower frequencies until the
syncope occurs. The syncope is accompanied by a sudden drop in systolic
blood pressure and a sudden decrease in heart rate, i.e., a prolongation of
the RR intervals.

Finally, we note that the above matrix formulation of the bivariate AR
model lends itself well to handle the inclusion of additional physiological
signals. For example, a trivariate model should be considered for the in-
teraction between heart rate, blood pressure, and respiration. In doing so,
certain cross-transfer functions has to be omitted from the model, i.e., set
to zero, since these are not physiologically meaningful. For example, it is
well-known that respiration influences heart rate as reflected by respiratory
sinus arrhythmia (see page 432), and that respiration has a mechanical effect
on systolic blood pressure. However, neither heart rate nor blood pressure
has a significant influence on respiration, and, therefore, the corresponding
cross-transfer functions are omitted.



Bibliography 621

Beat number

F
re

q
u
en

cy
 (

H
z)

S
y
st

o
li
c 

a
rt

er
ia

l
p
re

ss
u
re

 (
m

m
H

g
)

R
R

 i
n
te

rv
a
l 
(s

) T S

(a)

(b)

(c)

Figure 8.24: Interaction between heart rate and blood pressure during a tilting
maneuver which causes syncope. The tachograms of (a) the RR intervals and (b) the
systolic arterial pressure, and (c) the related time-varying magnitude squared coher-
ence, displayed using the isocontour format. The letter “T” marks the time when
the subject is tilted from a resting position, and “S” marks the time when syncope
occurs. (Reprinted from Cerutti et al. [88] with permission.)
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[6] M. A. Garćıa-González and R. Pallàs-Areny, “A novel robust index assess beat-to-
beat variability in heart rate time series analysis,” IEEE Trans. Biomed. Eng., vol. 48,
pp. 617–621, 2001.

[7] R. E. Kleiger, P. K. Stein, M. S. Bosner, and J. N. Rottman, “Time-domain mea-
surements of heart rate variability,” in Heart Rate Variability (M. Malik and A. J.
Camm, eds.), ch. 3, pp. 33–45, Armonk: Futura Publ., 1995.

[8] M. Malik, T. Farrell, T. Cripps, and A. J. Camm, “Heart rate variability in relation
to prognosis after myocardial infarction: Selection of optimal processing techniques,”
Eur. Heart J., vol. 10, pp. 1060–1074, 1989.

[9] T. G. Farrell, Y. Bashir, T. Cripps, M. Malik, J. Poloniecki, E. D. Bennett, D. E.
Ward, and A. J. Camm, “Risk stratification for arrhythmic events in postinfarction
patients based on heart rate variability, ambulatory electrocardiographic variables,
and the signal-averaged electrocardiogram,” J. Am. Coll. Cardiol., vol. 18, pp. 687–
697, 1991.

[10] R. J. Cohen, R. D. Berger, and T. Dushane, “A quantitative model for the ventricular
response during atrial fibrillation,” IEEE Trans. Biomed. Eng., vol. 30, pp. 769–780,
1983.

[11] N. Cai, M. Dohnal, and S. B. Olsson, “Methodological aspects of the use of heart
rate stratified RR interval histograms in the analysis of atrioventricular conduction
during atrial fibrillation,” Cardiovasc. Res., vol. 21, pp. 455–462, 1987.

[12] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems. New Jersey:
Prentice-Hall, 1997.

[13] B. W. Hyndman and R. K. Mohn, “A model of the cardiac pacemaker and its use in
decoding the information content of cardiac intervals,” Automedica, vol. 1, pp. 239–
252, 1975.

[14] J. Mateo and P. Laguna, “Improved heart rate variability signal analysis from the
beat occurrence times according to the IPFM model,” IEEE Trans. Biomed. Eng.,
vol. 47, pp. 997–1009, 2000.

[15] L. T. Mainardi, A. M. Bianchi, G. Baselli, and S. Cerutti, “Pole-tracking algorithms
for the extraction of time variant heart rate variability spectral parameters,” IEEE
Trans. Biomed. Eng., vol. 42, pp. 250–259, 1995.

[16] O. Rompelman, J. B. I. M. Snijders, and C. J. van Spronsen, “The measurement of
heart rate variability spectra with the help of a personal computer,” IEEE Trans.
Biomed. Eng., vol. 29, pp. 503–510, 1982.

[17] R. W. de Boer, J. M. Karemaker, and J. Strackee, “Spectrum of a series of point
event, generated by the integral pulse frequency modulation model,” Med. Biol. Eng.
& Comput., vol. 23, pp. 138–142, 1985.

[18] R. D. Berger, S. Akselrod, D. Gordon, and R. J. Cohen, “An efficient algorithm
for spectral analysis of heart rate variability,” IEEE Trans. Biomed. Eng., vol. 33,
pp. 900–904, 1986.

[19] P. Castiglioni, “Evaluation of heart rhythm variability by heart or heart period: Dif-
ferences, pitfalls and help from logarithms,” Med. Biol. Eng. & Comput., vol. 33,
pp. 323–330, 1995.



Bibliography 623

[20] B. J. TenVoorde, T. J. C. Faes, and O. Rompelman, “Spectra of data sampled at
frequency modulated rates in application to cardiovascular signals: Part 1 Analytical
derivation of the spectra,” Med. Biol. Eng. & Comput., vol. 32, pp. 63–70, 1994.

[21] I. P. Mitov, “Spectral analysis of heart rate variability using the integral pulse fre-
quency modulation model,” Med. Biol. Eng. & Comput., vol. 39, pp. 348–354, 2001.

[22] G. B. Stanley, K. Poolla, and R. A. Siegel, “Threshold modeling of autonomic control
of heart rate variability,” IEEE Trans. Biomed. Eng., vol. 47, pp. 1147–1153, 2000.

[23] S. R. Seydenejad and R. I. Kitney, “Time-varying threshold integral pulse frequency
modulation,” IEEE Trans. Biomed. Eng., vol. 48, pp. 949–962, 2001.

[24] H. Chiu and T. Kao, “A mathematical model for autonomic control of heart rate
variation,” IEEE Eng. Med. Biol. Mag., vol. 20, pp. 69–76, 2001.

[25] E. Pyetan and S. Akselrod, “Do the high-frequency indexes of HRV provide a faithful
assessment of cardiac vagal tone? A critical theoretical evaluation,” IEEE Trans.
Biomed. Eng., vol. 50, pp. 777–783, 2003.

[26] E. J. Bayly, “Spectral analysis of pulse frequency modulation in the nervous system,”
IEEE Trans. Biomed. Eng., vol. 15, pp. 257–265, 1968.

[27] A. M. Bruckstein and Y. Y. Zeevi, “Analysis of ‘integrate to threshold’ neural coding
schemes,” Biol. Cybern., vol. 34, pp. 63–79, 1979.

[28] G. Giunta and A. Neri, “Neural correlation based on the IPFM model,” IEEE Trans.
Syst. Man Cybernetics, vol. 20, pp. 262–268, 1990.

[29] B. McA. Sayers, “Analysis of heart rate variability,” Ergonomics, vol. 16, pp. 17–32,
1973.

[30] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger, and R. J. Cohen,
“Power spectrum analysis of heart rate fluctuations. A quantitative probe of beat-to-
beat cardiovascular control,” Science, vol. 213, pp. 220–222, 1981.

[31] F. Bartoli, G. Baselli, and S. Cerutti, “AR identification and spectral estimate applied
to the R-R interval measurements,” Int. J. Biomed. Comput., vol. 16, pp. 201–205,
1985.

[32] H. Luczak and W. Laurig, “An analysis of heart rate variability,” Ergonomics, vol. 16,
no. 4, pp. 85–97, 1973.

[33] O. Rompelman, A. J. R. M. Coenen, and R. I. Kitney, “Measurement of heart-rate
variability: Part 1—comparative study of heart-rate variability analysis methods,”
Med. Biol. Eng. & Comput., vol. 15, pp. 239–252, 1977.

[34] B. F. Womack, “The analysis of respiratory sinus arrhythmia using spectral analysis
methods,” IEEE Trans. Biomed. Eng., vol. 18, pp. 399–409, 1971.

[35] R. W. de Boer, J. M. Karemaker, and J. Strackee, “Description of heart rate vari-
ability data in accordance with a physiological model for the genesis of heart beats,”
Psychophysiology, vol. 22, pp. 147–155, 1985.

[36] A. S. French and A. V. Holden, “Alias-free sampling of neuronal spike trains,” Ky-
bernetik, vol. 8, pp. 165–175, 1971.

[37] A. J. R. M. Coenen, O. Rompelman, and R. I. Kitney, “Measurement of heart-
rate variability: Part 2—hardware digital device for the assessment of heart-rate
variability,” Med. Biol. Eng. & Comput., vol. 15, pp. 423–430, 1977.

[38] O. Rompelman, “Tutorial review on processing the cardiac event series: A signal
analysis approach,” Automedica, vol. 7, pp. 191–212, 1986.



624 Chapter 8. ECG Signal Processing: Heart Rate Variability

[39] R. J. Peterka, A. C. Sanderson, and D. P. O’Leary, “Practical considerations in
the implementation of the French-Holden algorithm for sampling of neuronal spike
trains,” IEEE Trans. Biomed. Eng., vol. 25, pp. 192–195, 1978.

[40] S. R. Seydenejad and R. I. Kitney, “Real-time heart rate variability extraction using
the Kaiser window,” IEEE Trans. Biomed. Eng., vol. 44, pp. 990–1005, 1997.

[41] M. V. Kamath and E. L. Fallen, “Power spectral analysis of HRV: A noninvasive
signature of cardiac autonomic functions,” Crit. Rev. Biomed. Eng., vol. 21, pp. 245–
311, 1993.

[42] S. Cerutti, A. Bianchi, and L. T. Mainardi, “Spectral analysis of the heart rate
variability signal,” in Heart Rate Variability (M. Malik and A. J. Camm, eds.), ch. 6,
pp. 63–74, Armonk: Futura Publ., 1995.

[43] S. Akselrod, “Components of heart rate variability: Basic studies,” in Heart Rate
Variability (M. Malik and A. J. Camm, eds.), ch. 12, pp. 147–163, Armonk: Futura
Publ., 1995.

[44] P. Laguna, G. B. Moody, and R. G. Mark, “Power spectral density of unevenly
sampled data by least-square analysis: Performance and application to heart rate
signals,” IEEE Trans. Biomed. Eng., vol. 45, pp. 698–715, 1998.

[45] G. Baselli, D. Bolis, S. Cerutti, and C. Freschi, “Autoregressive modeling and
power spectral estimate of R-R interval time series in arrhythmic patients,” Com-
put. Biomed. Res., vol. 18, pp. 510–530, 1985.

[46] R. L. Burr and M. J. Cowan, “Autoregressive spectral models of heart rate variabil-
ity,” J. Electrocardiol., vol. 25 (Suppl.), pp. 224–233, 1992.

[47] D. J. Christini, A. Kulkarni, S. Rao, E. Stutman, F. M. Bennett, J. M. Hausdorff,
N. Oriol, and K. Lutchen, “Uncertainty of AR spectral estimates,” in Proc. Computers
in Cardiology, pp. 451–454, IEEE Computer Society Press, 1993.

[48] A. B. Carlson, Communication Systems. An Introduction to Signal and Noise in Elec-
trical Comunication. New York: McGraw-Hill, 3rd ed., 1986.

[49] N. R. Lomb, “Least-squares frequency analysis of unequally spaced data,” Astrophys.
Space Sci., vol. 39, pp. 447–462, 1976.

[50] J. D. Scargle, “Studies in astronomical time series analysis II. Statistical aspects of
spectral analysis of unevenly spaced data,” Astrophys. J., vol. 263, pp. 835–853, 1982.

[51] W. H. Press and G. B. Rybicki, “Fast algorithm for spectral analysis of unevenly
sampled data,” Astrophys. J., vol. 338, pp. 277–280, 1989.

[52] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing. New York: Cambridge Univ. Press, 2nd ed.,
1992.

[53] G. B. Moody, “Spectral analysis of heart rate without resampling,” in Proc. Comput-
ers in Cardiology, pp. 715–718, IEEE Computer Society Press, 1993.

[54] G. D. Clifford and L. Tarassenko, “Quantifying errors in spectral estimates of HRV
due to beat replacement and resampling,” IEEE Trans. Biomed. Eng., vol. 52,
pp. 630–638, 2005.

[55] G. J. Balm, “Crosscorrelation techniques applied to the electrocardiogram interpre-
tation problem,” IEEE Trans. Biomed. Eng., vol. 14, pp. 258–262, 1967.

[56] C. L. Feldman, P. G. Amazeen, M. D. Klein, and B. Lown, “Computer detection of
ectopic beats,” Comput. Biomed. Res., vol. 3, pp. 666–674, 1971.



Bibliography 625

[57] J. H. van Bemmel and S. J. Hengevald, “Clustering algorithm for QRS and ST–T
waveform typing,” Comput. Biomed. Res., vol. 6, pp. 442–456, 1973.

[58] M. E. Nyg̊ards and J. Hulting, “An automated system for ECG monitoring,” Comput.
Biomed. Res., vol. 12, pp. 181–202, 1979.

[59] J. A. Kors, J. Talmon, and J. H. van Bemmel, “Multilead ECG analysis,” Comput.
Biomed. Res., vol. 19, pp. 28–46, 1986.

[60] K. M. Strand, L. R. Smith, M. E. Turner, and J. A. Mantle, “A comparison of
simple and template variable models for discrimination between normal and PVC
waveforms,” in Proc. Computers in Cardiology, pp. 21–26, IEEE Computer Society
Press, 1980.

[61] S. H. Rappaport, L. Gillick, G. B. Moody, and R. G. Mark, “QRS morphology clas-
sification: Quantitative evaluation of different strategies,” in Proc. Computers in
Cardiology, pp. 33–38, IEEE Computer Society Press, 1982.

[62] T. Y. Young and W. H. Huggins, “On the representation of electrocardiograms,”
IEEE Trans. Biomed. Eng., vol. 10, pp. 86–95, 1963.

[63] S. Karlsson, “Representation of ECG records,” in Dig. 7th Int. Conf. Med. & Biol.
Eng., (Stockholm), p. 105, 1967.

[64] A. R. Hambley, R. L. Moruzzi, and C. L. Feldman, “The use of intrinsic components
in an ECG filter,” IEEE Trans. Biomed. Eng., vol. 21, pp. 469–473, 1974.

[65] L. Sörnmo, P. O. Börjesson, M. E. Nyg̊ards, and O. Pahlm, “A method for evaluation
of QRS shape features using a mathematical model for the ECG,” IEEE Trans.
Biomed. Eng., vol. 28, no. 10, pp. 713–717, 1981.

[66] G. Bortolan, R. Degani, and J. L. Willems, “Neural networks for ECG classification,”
in Proc. Computers in Cardiology, pp. 269–272, IEEE Computer Society Press, 1990.

[67] L. Senhadji, G. Carrault, J. J. Bellanger, and G. Passariello, “Comparing wavelet
transforms for recognizing cardiac patterns,” IEEE Eng. Med. Biol. Mag., vol. 14,
pp. 167–173, 1995.
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Problems

8.1 The QRS detector outputs the discrete-valued occurrence times θk which
provide the basis for HRV analysis. Due to the quantization introduced by
the sampling process, θk will fluctuate around an underlying, continuous-
valued time tk by half the length of the sampling interval T . Determine
how such quantization-related fluctuations influence the spectrum estimated
from dIT(k), dIIT(k), duE(t), dIF(t), dIIF(t), and dHT(t).

8.2 The so-called triangular index, denoted IT, is used in clinical studies of
HRV in order to quantify RR interval dispersion from its histogram [1]. The
triangular index is defined as the ratio between the area under the histogram,
equal to the total number of RR intervals M , and the maximum value of the
histogram,

IT =
M

max (P (r))
,

where P (r) denotes the RR interval histogram.
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a. Comment on how different RR interval resolutions (i.e., bin sizes) of
the histogram influence IT.

b. The triangular interpolation index, denoted ITINN, mitigates the prob-
lems of IT by measuring the RR interval dispersion as the base of a
triangle fitted to the histogram P (r), defined by [1]

ITINN = re − ro,



Problems 629

where ro and re denote the onset and end, respectively, of the his-
togram (see figure). Note that the onset/end are not identical to the
shortest/longest RR intervals but are to some robustly estimated in-
terval lengths. Propose a procedure to estimate the onset and end
required for computing ITINN.

8.3 Many time domain HRV indices are calculated from the interval tachogram
dIT(k) such as the variance (i.e., SDNN squared). In a similar way, the
variance of the inverse interval tachogram dIIT(k) can be used to quantify
variations in heart rate [19]. In order to study the behavior of the variance of
these two heart rhythm representations, we assume that dIT(k) is a random
variable characterized by a uniform PDF with mean mIT,

pIT(x) =

⎧⎨⎩
1

2A
, mIT − A ≤ x ≤ mIT + A;

0, otherwise.

a. Determine the mean and variance of dIT(k) and dIIT(k). Hint: Start
by expressing the probability distribution function of dIIT(k),

PIIT(x) = Probability(dIIT(k) ≤ x),

in terms of the probability distribution function of dIT(k), and then
determine the PDF of dIIT(k).

b. Compare the variances of dIT(k) and dIIT(k) that result from the two
sets of parameters, (mIT, A) = (1.0, 0.2) and (mIT, A) = (0.7, 0.1),
where both parameters have the unit “seconds”.

8.4 Show that the output of the IPFM model for a single sinusoidal input with
modulating frequency F1 is given by

dE(t) =
1
TI

+
m1

TI
cos(2πF1t)

+
2
TI

∞∑
k=1

∞∑
l=−∞

(
1 +

lF1TI

k

)
Jl

(
km1

F1TI

)
cos

(
2π

(
k

TI
+ lF1

)
t

)
.

The function Jl

(
km1
F1TI

)
is a Bessel function of the first kind of order l; for a

definition of this function, see, e.g., [98].

8.5 The computation of the lowpass filtered event series can be made more effi-
cient for certain sampling rates.
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a. Assuming that an ideal lowpass filter is used, show that sampling of
the lowpass filtered event series at exactly the Nyquist sampling rate,
i.e., Fd = 2Fc with Fc being the highest frequency component of the
signal, is given by [36]

dLE(n) = 2Fc

M∑
k=0

(−1)n+1 sin(2πFctk)
π(n − 2Fctk)

.

Explain why this expression is computationally more efficient than the
one valid for a general cut-off frequency Fc.

b. Show that the following expression can be derived for dLE(n) when the
sampling rate is twice that of the Nyquist rate, i.e., Fd = 4Fc [39],

dLE(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Fc

M∑
k=0

(−1)
n+2

2 sin(2πFctk)

π
(n

2
− 2Fctk

) , n even;

2Fc

M∑
k=0

(−1)
n+3

2 cos(2πFctk)

π
(n

2
− 2Fctk

) , n odd.

8.6 A physiologist has questioned the validity of the IPFM model and the way
it accounts for the influence of the autonomic nervous system on the heart
rhythm. Instead, the double integrator is suggested as a more appropriate
model (see below).

1+m(t)

R

Reset

du
E(t)

a. Supposing that the physiologist’s suggestion is correct, how should the
heart timing signal dHT(t) be modified to produce an estimate of the
power spectrum of m(t)?

b. How can the power spectrum be estimated from the new heart timing
signal?
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8.7 For various heart rhythm representations, interpolation is used to obtain
a regularly sampled signal suitable for the Fourier-based estimation of the
power spectrum. In this problem, linear interpolation is used in combination
with the requirement that the frequency content below 0.4 Hz be essentially
unaltered, i.e., the attenuation of these frequency components should be
less than 3 dB. What is the maximal RR interval length acceptable for this
property to hold true?

8.8 In the derivation of the spectrum of the event series signal, denoted Du
E(Ω),

we made use of the relation

δ(t − τ) =
∣∣∣∣∂g(t)

∂t

∣∣∣∣ δ(g(t)),

valid when g(t) is any function with a first-order zero at t = τ , (g(τ) = 0,
g(t �= τ) �= 0), and ∂g(t)/∂t|t=τ �= 0. Prove that this is true by making use
of a Taylor series expansion of the function g(t) around τ .

8.9 Derive the delay τ in (8.68) of Lomb’s method.

8.10 Generalize the estimator of the mean RR interval length TI in (8.89) to
account for multiple ectopics.

8.11 Propose an approach for handling the presence of a single ectopic beat when
the lowpass filtered event series dLE(t) is considered.

8.12 For two stochastic signals x and y, the cross-correlation coefficient ρ is de-
fined as

ρ =
E[xTy]√

E[xTx]
√

E[yTy]
.

Show that ρ can be expressed in terms of the coherence function Γxy(ejω) as

ρ =

1
2π

∫ π

−π
Γxy(ejω)

√
Sx(ejω)

√
Sy(ejω)dω√

E[xTx]
√

E[yTy]
,

where Sx(ejω)and Sy(ejω) denote the power spectra of x and y, respectively.

8.13 Express the magnitude squared coherence Γx1x2(e
jω) for the bivariate AR

model as a function of Hii(ejω) and Gij(ejω) given in (8.100) and (8.101),
respectively; see also the block diagram in Figure 8.23.





Appendix A

Review of Important
Concepts

A.1 Matrix Fundamentals

A.1.1 Definitions

A matrix A is a rectangular array whose elements aij are arranged in m rows
and n columns, referred to as an m × n matrix,

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤⎥⎥⎥⎦ . (A.1)

The matrix is said to be square when m = n, a row matrix when m = 1, and
a column matrix when n = 1. The column matrix has particular significance
and is referred to as a vector.

It may be useful to partition a matrix into smaller submatrices. For
example, an m × n matrix may be written as

A =
[
A11 A12

A21 A22

]
, (A.2)

where A11, A12, A21, and A22 are m1 × n1, m1 × n2, m2 × n1, and m2 × n2

matrices, respectively, such that m1+m2 = m and n1+n2 = n. By denoting
the ith column of A as ai,

ai =

⎡⎢⎢⎢⎣
a1i

a2i
...

ami

⎤⎥⎥⎥⎦ , (A.3)

633
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the matrix A can be written as a partitioned matrix

A =
[
a1 a2 · · · an

]
. (A.4)

The transpose of a matrix A is another matrix AT whose rows and
columns have been interchanged, and thus, if A is m× n then AT is n×m.
The Hermitian transpose of a complex matrix A is another matrix AH which
has been transposed and with all elements complex-conjugated. The inverse
of a square matrix A is a square matrix A−1 for which

AA−1 = A−1A = I, (A.5)

where I is the identity matrix with ones in the principal diagonal and else-
where zeros,

I =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎤⎥⎥⎥⎦ . (A.6)

The rank of a matrix is defined as the number of linearly independent rows
or columns, whichever is less.

The reversal of a vector

a =

⎡⎢⎢⎢⎣
a1

a2
...

an

⎤⎥⎥⎥⎦ (A.7)

is defined by

ã =

⎡⎢⎢⎢⎣
an

an−1
...

a1

⎤⎥⎥⎥⎦ , (A.8)

where the tilde denotes the reversal operation. For the matrix A in (A.1),
its reversal is given by

Ã =

⎡⎢⎢⎢⎣
amn am(n−1) · · · am1

a(m−1)n a(m−1)(n−1) · · · a(m−1)2
...

...
...

a1n a1(n−1) · · · a11

⎤⎥⎥⎥⎦ , (A.9)
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that is, the matrix A is reversed about both its vertical axis and its horizontal
axis.

The inverse of a product of two matrices A and B is the product of the
inverse matrices in reversed order,

(AB)−1 = B−1A−1. (A.10)

Similarly, the transpose of the product of two matrices is given by

(AB)T = BTAT . (A.11)

A matrix is said to be symmetric if

AT = A, (A.12)

and orthogonal if

ATA = I, (A.13)

or, equivalently,

AT = A−1. (A.14)

A square matrix is called diagonal if all elements off the principal diagonal
are zero,

diag(a11, a22, . . . , ann) =

⎡⎢⎢⎢⎢⎢⎣
a11 0 0 · · · 0
0 a22 0 · · · 0
0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

⎤⎥⎥⎥⎥⎥⎦ . (A.15)

A lower triangular matrix has all of its elements above the principal diagonal
equal to zero, ⎡⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0
...

...
...

...
an1 an2 an3 · · · ann

⎤⎥⎥⎥⎥⎥⎦ . (A.16)

An upper triangular matrix is defined as the transpose of a lower triangular
matrix. A matrix is said to be Toeplitz if all of its elements along each
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diagonal have the same value,⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an−2 an−1

a−1 a0 a1 · · · an−3 an−2

a−2 a−1 a0 · · · an−4 an−3
...

...
...

. . .
...

...
a−n+2 a−n+3 a−n+4 · · · a0 a1

a−n+1 a−n+2 a−n+3 · · · a−1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.17)

The matrix is symmetric Toeplitz if a−k = ak.
The product of a transposed vector and another vector of the same di-

mension is a scalar a and is referred to as the inner product or the scalar
product

a = xTy = yTx. (A.18)

The vectors are orthogonal if their scalar product is equal to zero,

xTy = 0. (A.19)

The product of a vector and a transposed vector is a matrix A and is referred
to as the outer product

A = xyT . (A.20)

Note that xyT �= yxT in general.
For a symmetric n × n matrix A, a quadratic form Q is defined as

Q = xTAx =
n∑

i=1

n∑
j=1

aijxixj . (A.21)

A symmetric matrix A is said to be positive definite if

xTAx > 0 (A.22)

for all x �= 0; the matrix A is positive semidefinite if the quadratic form Q
is greater or equal to zero.

The sum of the diagonal elements of a square matrix A is called the trace
of A and is

tr(A) =
n∑

i=1

aii. (A.23)

The trace of the sum of matrices is equal to the sum of the traces

tr(A + B) = tr(A) + tr(B), (A.24)
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and the trace of a matrix product is

tr(AB) = tr(BA). (A.25)

The determinant for an n × n matrix A multiplied with a scalar a is

det(aA) = an det(A), (A.26)

and for a matrix product it is

det(AB) = det(BA). (A.27)

The determinant of a diagonal matrix A is

det(A) =
n∏

i=1

aii. (A.28)

The determinant of an inverse matrix is

det(A−1) = (det(A))−1. (A.29)

A useful relationship for the trace of the outer product of the vectors x and
y is

tr(xyT ) = yTx. (A.30)

The matrix inversion lemma states that

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1, (A.31)

where A is n × n, B is n × m, C is m × m, and D is m × n, with the
assumption that the included inverse matrices exist.

The norm of a vector is a number that characterizes the magnitude of
the vector. The Euclidean norm is one such measure which is defined by

‖x‖2 =

(
n∑

i=1

|xi|2
) 1

2

=
(
xTx

) 1
2 . (A.32)

Similarly, the norm of a matrix is a number that characterizes the magnitude
of the matrix. Several matrix norm definitions exist, of which one of the most
used is the Frobenius norm,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
(
tr

(
AAT

))1/2
. (A.33)
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A.1.2 Matrix Decomposition

A square n × n matrix A has an eigenvector v which satisfies

Av = λv (A.34)

for some scalar λ, also referred to as the eigenvalue corresponding v. The
eigenvectors are normalized to have unit length, i.e., vTv = 1. The n eigen-
values of (A.34) are obtained as the roots of the characteristic equation

det(A − λI) = 0.

With these eigenvalues, the corresponding eigenvectors can be determined
from

(A − λI)v = 0.

When A is symmetric and positive definite (semidefinite), all eigenvalues are
real-valued and positive (non-negative). The corresponding eigenvectors are
orthonormal,

vT
i vj =

{
1, i = j;
0, i �= j.

(A.35)

The relation in (A.34) can be expressed to include all n eigenvalues and
eigenvectors

A
[
v1 v1 · · · vn

]
=

[
λ1v1 λ2v2 · · · λnvn

]
,

or

AV = VΛ, (A.36)

where V =
[
v1 v1 · · · vn

]
and Λ = diag(λ1, λ2, . . . , λn). Since the

columns of V are orthonormal, i.e., VT = V−1, the matrix A can be de-
composed into a weighted sum of rank-one matrices vivT

i ,

A = VΛVT =
n∑

i=1

λivivT
i . (A.37)

Thus, for a matrix defined by an outer product, i.e., A = aaT , it is evident
from (A.37) that only one eigenvalue can be nonzero. The corresponding
eigenvector v1 is, apart from a normalization factor, identical to the vector a.
The remaining eigenvectors must be selected such that these are orthogonal
to v1.
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Based on the expansion in (A.37), the determinant and the trace of a
symmetric matrix A can be related to its eigenvalues,

det(A) = det(VΛVT ) = det(VTVΛ)

=
n∏

i=1

λi, (A.38)

and

tr(A) = tr(VΛVT ) = tr(VTVΛ)

=
n∑

i=1

λi, (A.39)

respectively.
Another, more general type of matrix decomposition is the singular value

decomposition (SVD) by which an m× n matrix A can be decomposed into
two orthogonal matrices, an m × m matrix U and an n × n matrix V such
that

A = UΣVT , (A.40)

where Σ is an m × n non-negative diagonal matrix defined by

Σ =
[
S 0
0 0

]
, (A.41)

and

S = diag(σ1, σ2, . . . , σl), (A.42)

where σ1 ≥ σ2 ≥ . . . ≥ σl > 0 and σl+1 = · · · = σp = 0 denote the
singular values of A; the number of nonzero singular values l does not exceed
p = min(m, n). Similar to eigendecomposition of a symmetric matrix in
(A.37), the matrix A can be decomposed into a weighted sum of rank-one
matrices uivT

i ,

A =
l∑

i=1

σiuivT
i . (A.43)

The nonzero singular values of A are equal to the square-root of the positive
eigenvalues of the matrices ATA and AAT .
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A.1.3 Matrix Optimization

When optimizing matrix equations the following vector differentiation rules
are useful:

∇x(xTy) = y, (A.44)

and

∇x(yTx) = y, (A.45)

where the gradient ∇x of a vector function f(x) is defined as

∇xf(x) def=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f
∂x1

∂f
∂x2
...

∂f
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (A.46)

where x1, . . . , xn are the elements of x. The gradient of a quadratic form is
given by

∇x(xTAx) = 2Ax, (A.47)

where A is symmetric.
It may be necessary to optimize a vector function f(x) subject to a

number of constraints. For a set of L different constraints gl(x) = 0 with
l = 1, . . . , L, optimization with respect to x can be done in the following
way.

1. First, define the Lagrangian function L(x, µ1, . . . , µL),

L(x, µ1, . . . , µL) = f(x) +
L∑

l=1

µlgl(x), (A.48)

where µ1, . . . , µl are called Lagrange multipliers.

2. Then, solve the equation system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇xL(x, µ1, . . . , µL) = ∇x

(
f(x) +

L∑
l=1

µlgl(x)

)
= 0,

∂L(x, µ1, . . . , µL)
∂µ1

= g1(x) = 0,

...

∂L(x, µ1, . . . , µL)
∂µL

= gL(x) = 0,

(A.49)
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where the solutions to the L different equations

∂L(x, µ1, . . . , µL)
∂µl

= 0

are the specified constraints.

A.1.4 Linear Equations

The solution to a set of n linear equations in the m unknowns xi,
i = 1, . . . , m,

a11x1 + a12x2+ · · · + a1mxm = b1,

a21x1 + a22x2+ · · · + a2mxm = b2,

...

an1x1 + an2x2+ · · · + anmxm = bn,

or, equivalently,

Ax = b, (A.50)

depend on various factors such as the relative size of m and n and the rank
of A. When A is a square matrix, i.e., m = n, the solution is defined by

x = A−1b, (A.51)

provided that the inverse matrix A−1 exists.
In many signal processing problems, the number of unknowns xi is less

than the number of linear equations, i.e., m < n, and the solution is said
to be overdetermined. In such cases, the least-squares solution is usually
considered and results from minimizing the error norm

‖Ax − b‖2
2 (A.52)

with respect to x. When the matrix A has full rank, the least-squares
solution is [1–3]

x =
(
ATA

)−1
ATb, (A.53)

where the matrix
(
ATA

)−1 AT is referred to as the pseudo-inverse of A for
the overdetermined problem.
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A.2 Discrete-Time Stochastic Processes

A stochastic process represents an ensemble of possible realizations of a
process. Each realization of the stochastic process is called a time series,
e.g., x(0), . . . , x(N − 1), which in vector form can be written

x =

⎡⎢⎢⎢⎣
x(0)
x(1)

...
x(N − 1)

⎤⎥⎥⎥⎦ . (A.54)

It is assumed that x(n) is a real-valued, stochastic process.

A.2.1 Definitions

A stochastic process can be described using expected values or ensemble
averages which are averages over all realizations. The mean or expected
value of a function f(x) of a random variable X, characterized by its PDF
pX(x), is defined as

E[f(x)] =
∫ ∞

−∞
f(x)pX(x)dx. (A.55)

The mean value function of a stochastic process is defined by

mx(n) = E[x(n)] (A.56)

and contains the averages of all possible outcomes for each individual sample.
In vector representation (A.56) can be written

mx = E[x]. (A.57)

The variance function contains for each sample the ensemble average of the
squared deviation from the mean value for that sample. The variance func-
tion is given by

σ2
x(n) = E

[
|x(n) − mx(n)|2

]
, (A.58)

or in vector form

σ2
x = E

[
|x − mx|2

]
. (A.59)

The covariance function (also called the autocovariance function) de-
scribes the average joint deviation from the mean value for two samples n1

and n2 and is defined by

cx(n1, n2) = E[(x(n1) − mx(n1))(x(n2) − mx(n2))]. (A.60)
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A positive covariance value indicates that the deviations from the mean value
for these two samples, in average, have the same sign, while a negative value
indicates that the deviations tend to have opposite sign. The covariance
matrix Cx is defined by

Cx = E
[
(x − mx)(x − mx)T

]
=

⎡⎢⎢⎢⎣
cx(0, 0) cx(0, 1) · · · cx(0, N − 1)
cx(1, 0) cx(1, 1) · · · cx(1, N − 1)

...
...

...
cx(N − 1, 0) cx(N − 1, 1) · · · cx(N − 1, N − 1)

⎤⎥⎥⎥⎦ , (A.61)

which is symmetric. The correlation function (also called the autocorrelation
function) is defined by

rx(n1, n2) = E[x(n1)x(n2)], (A.62)

which has an interpretation similar to that of the covariance function, al-
though it does not reflect deviations from the mean value. The correlation
matrix is defined by

Rx = E
[
xxT

]
=

⎡⎢⎢⎢⎣
rx(0, 0) rx(0, 1) · · · rx(0, N − 1)
rx(1, 0) rx(1, 1) · · · rx(1, N − 1)

...
...

...
rx(N − 1, 0) rx(N − 1, 1) · · · rx(N − 1, N − 1)

⎤⎥⎥⎥⎦ . (A.63)

A close relation exists between the covariance and the correlation matrices
since

Cx = Rx − mxmT
x , (A.64)

and thus a zero-mean process has identical covariance and correlation ma-
trices.

A cross-correlation function can be defined which describes the correla-
tion properties between two different stochastic processes x(n) and y(n)

rxy(n1, n2) = E[x(n1)y(n2)]. (A.65)

The corresponding cross-correlation matrix is defined by

Rxy = E
[
xyT

]
. (A.66)
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A.2.2 Stationarity

In the previous subsection the stochastic process was characterized by its
first and second moments. It should be noted, however, that the first two
moments do not provide a complete statistical description of a stochastic pro-
cess. On the other hand, it is seldom possible to exactly determine the prob-
ability density function, and the process may be reasonably well-described
by its first two moments.

A stochastic process is said to be strictly stationary if all of its moments
are time-invariant. A less strict assumption is that its first two moments are
time-invariant, and the process is called wide-sense stationary. A process is
wide-sense stationary if the mean value function is a constant,

mx(n) = mx, (A.67)

and the covariance and correlation functions depend only on the lag between
the two samples,

cx(n, n − k) = cx(k) (A.68)

and

rx(n, n − k) = rx(k). (A.69)

The correlation function of a wide-sense stationary process is symmetric,

rx(k) = rx(−k). (A.70)

For a zero lag, the correlation function is non-negative and equals the mean-
square value of the process,

rx(0) = E
[
|x(n)|2

]
≥ 0. (A.71)

Furthermore, the correlation function is bounded by the mean-square value,

|rx(k)| ≤ rx(0). (A.72)

The correlation matrix Rx of a wide-sense stationary process x(n) is
symmetric and Toeplitz,

Rx = E[xxT ] =

⎡⎢⎢⎢⎣
rx(0) rx(−1) · · · rx(−N + 1)
rx(1) rx(0) · · · rx(−N + 2)

...
...

...
rx(N − 1) rx(N − 2) · · · rx(0)

⎤⎥⎥⎥⎦ , (A.73)

and is positive semidefinite with non-negative, real-valued eigenvalues.
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A.2.3 Ergodicity

Often different realizations of a signal are unavailable, and the mean value
and the correlation function can be estimated using time averages instead of
ensemble averages. If a large number of samples of a wide-sense stationary
process are available, the mean value of a stochastic process can be estimated
by using

m̂x(N) =
1
N

N−1∑
n=0

x(n). (A.74)

If

lim
N→∞

E
[
|m̂x(N) − mx|2

]
= 0, (A.75)

the process x(n) is said to be ergodic in the mean. Similarly, the correlation
function can be estimated by

r̂x(k, N) =
1
N

N−1∑
n=k

x(n)x(n − k). (A.76)

If

lim
N→∞

E
[
|r̂x(k, N) − rx(k)|2

]
= 0, (A.77)

the process is said to be correlation ergodic.

A.2.4 Bias and Consistency

An estimate θ̂N of the unknown parameter θ is referred to as being unbiased
if

E
[
θ̂N

]
= θ, (A.78)

or, otherwise, the difference

b(θ) = E
[
θ̂N

]
− θ

is referred to as the bias; the parameter N denotes the number of obser-
vations used to compute an estimate of θ. The estimate is asymptotically
unbiased if the bias approaches zero for an increasing number of observations,

lim
N→∞

E
[
θ̂N

]
= θ. (A.79)

The estimate is said to be consistent if it is asymptotically unbiased and
has a variance that approaches zero as the number of observations goes to
infinity.
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A.2.5 Power Spectrum

The discrete-time Fourier transform of the correlation function is called
power spectrum or power spectral density

Sx(ejω) =
∞∑

k=−∞
rx(k)e−jωk. (A.80)

Inversely, the correlation function can be calculated from the power spectrum
by

rx(k) =
1
2π

∫ π

−π
Sx(ejω)ejωkdω. (A.81)

The z-transform can be used instead of the discrete-time Fourier transform,
and the power spectrum can be written

Sx(z) =
∞∑

k=−∞
rx(k)z−k. (A.82)

For a wide-sense stationary process the power spectrum is symmetric,

Sx(ejω) = Sx(e−jω), (A.83)

and non-negative,

Sx(ejω) ≥ 0. (A.84)

The average power of a zero-mean, wide-sense stationary process can be
written

E
[
|x(n)|2

]
=

1
2π

∫ π

−π
Sx(ejω)dω. (A.85)

A.2.6 White Noise

A zero-mean process that has constant power spectrum is called a white noise
process. A stationary, white noise process v(n) is completely described by
its second-order moment,

rv(k) = σ2
vδ(k), (A.86)

where σ2
v is the variance of the process. The correlation function shows that

white noise is a sequence of uncorrelated random variables. If the process is
a sequence of Gaussian random variables it is called white, Gaussian noise.
The power spectrum of white noise is

Sv(ejω) = σ2
v . (A.87)
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A.2.7 Filtering of Stochastic Processes

Stochastic processes are often inputs to linear, time-invariant filters. The
first and second-order moments of the output process y(n) of a filter with
impulse response h(n) then relate to the input process x(n) as follows:

my = E[y(n)] = mx

∞∑
k=−∞

h(k), (A.88)

and

ry(k) = rx(k) ∗ h(k) ∗ h(−k). (A.89)

In the frequency domain these relations can be written

my = mxH(ej0), (A.90)

and

Sy(ejω) = |H(ejω)|2Sx(ejω). (A.91)

Similarly, using the z-transform,

Sy(z) = H(z)H(z−1)Sx(z). (A.92)

Filtering of white noise with variance σ2
x can then be expressed as

Sy(z) = H(z)H(z−1)σ2
x. (A.93)

A white noise process v(n) filtered with a filter H(z) having a rational
transfer function with q zeros and p poles of the form

H(z) =
Bq(z)
Ap(z)

=

q∑
k=0

bq(k)z−k

1 +
p∑

k=1

aq(k)z−k

(A.94)

is called an autoregressive moving average (ARMA) process of order (p, q).
The power spectrum of an ARMA process x(n) can then be written

Sx(ejω) =
|Bq(ejω)|2
|Ap(ejω)|2 σ2

v . (A.95)

There are two special cases of an ARMA process and that is when q = 0
and when p = 0, respectively. When q = 0 the process is referred to as
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an autoregressive (AR) process of order p. The transfer function and power
spectrum are given by

H(z) =
b(0)

1 +
p∑

k=1

aq(k)z−k

(A.96)

and

Sx(ejω) =
|b(0)|2

|Ap(ejω)|2 σ2
v , (A.97)

respectively. Similarly, when p = 0 the process is referred to as a moving
average (MA) process of order q for which the transfer function and power
spectrum are

H(z) =
q∑

k=0

bq(k)z−k (A.98)

and

Sx(ejω) = |Bq(ejω)|2σ2
v , (A.99)

respectively.
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Appendix B

Symbols and Abbreviations

B.1 Mathematical Symbols

ˆ denotes estimator
ˇ denotes approximate estimator
˜ denotes reversal of a vector or matrix
¯ denotes mean value
∗ convolution
FT←→ Fourier transform pair
�·� denotes integer part
| · | denotes absolute value∮
C contour integral over C

arg max
x

f(x) denotes the value of x that maximizes f(x)

0 vector whose elements equal zero
1 vector whose elements equal one
1M vector whose M elements equal one
A maximum amplitude of excitatory postsynaptic potentials
Ai M × M matrix describing temporal and spatial correlation
A(z) denominator polynomial of an AR system transfer function
Ap(z) denominator polynomial of a pth order AR system transfer function
Ap(ejω) discrete-time Fourier transform of denominator polynomial
Ax(τ, ν) Ambiguity function of signal x(t)
a amplitude factor,

average time delay in excitatory postsynaptic potentials
a signal amplitude vector
ai feedback coefficient of a linear, time-invariant system,

amplitude factor
ap vector of feedback coefficient of a linear, time-invariant system,

signal amplitude vector

649
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α gain factor in various recursive algorithms,
weight coefficient

B continuous-time signal bandwidth
maximum amplitude of inhibitory postsynaptic potentials,

B(z) numerator polynomial of the transfer function
B(ejω) discrete-time Fourier transform of numerator polynomial
b multiplicative parameter,

average time delay in inhibitory postsynaptic potentials
b(n) signal envelope
bi feedforward coefficient of a linear, time-invariant system
β waveform duration parameter,

exponential weighting factor
βl discretized waveform duration parameter,

lth ECG measurement on the observed signal
β̃l lth ECG measurement on the reconstructed signal
β(n) time-varying waveform duration parameter
Ci interaction between neuron subpopulations
Cx covariance matrix of x
Cψ normalization factor in the inverse wavelet transform
Cx(t, Ω) general Cohen’s class time–frequency distribution
c constant
ci partial fraction expansion coefficient
cj(k) dyadic scaling expansion coefficient
cu
j (k) cj(k) with zeros inserted

cw constant
D decimation/interpolation factor,

signal duration,
interval preceding EP stimulus

D0, D1 QRS detection threshold parameters (refractory period)
DHT(Ω) Fourier transform of dHT(t)
DHTk

(Ω) Fourier transform of dHT(t) at k/T 0

Du
E(Ω) Fourier transform of du

E(t)
Du(Ω) Fourier transform of du(t)
D(Ω) Fourier transform of d(t)
d vector of unevenly distributed signal samples at d(ti)
du(t) unevenly sampled signal (continuous-time)
di(t) interpolated signal (continuous-time)
de(t) evenly sampled signal (continuous-time)
dHT(t) heart timing signal
dIT(k) interval tachogram signal
dIIT(k) inverse interval tachogram signal
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dIF(t) interval function
dIIF(t) inverse interval function
di

IIFs
(t) inverse interval function interpolated with RR interval shifting

dE(t) event series signal
dLE(t) lowpass filtered event series signal
dSR(k) interval tachogram from sinus rhythm
d(n) heart rate signal
di pole of a linear, time-invariant system
dj(k) coefficient of the dyadic wavelet expansion
du

j (k) dj(k) with zeros inserted
∆(n) discrete-time segmentation function
∆w(n) time-varying weight error vector
∆wb bias in the weight vector estimate of the LMS algorithm
∆ωi 3-dB bandwidth of ith spectral component
∆t continuous-time signal duration
∆Ω continuous-time signal bandwidth
∆n discrete-time signal duration
∆ω discrete-time signal bandwidth
∆θ tolerance interval time in QRS detector evaluation
∆ŝa(n) difference signal between two subaverages
∆tij time distance from ith beat to the (i + j)th beat
∆β step size for discretized duration parameter β,

normalized ECG measurement error
δ(t) continuous-time unit impulse function (Dirac function)
δ(n) discrete-time unit impulse function
e(n) discrete-time error signal
ep(n) prediction error of a pth order AR system
er(n) prediction error within a reference window
et(n) prediction error within a test window
e+(n) forward prediction error
e−(n) backward prediction error
ei error signal vector in block LMS algorithm
E[·] expected value
Es energy of s(n)
E mean-square error
E(n) mean-square error function at time n
Eex(n) excess mean-square error function at time n
Emin minimum mean-square error
Ew mean-square error function of the weight vector w
Ew(n) mean-square error function of the weight vector w at time n
ε fraction of a number
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ε tolerance in data compression
ε2 least-squares error
F continuous-time frequency
Fi constant frequency values for series development
Fs sampling rate
Fc cut-off frequency
FI mean repetition frequency
Fm(n) matrix used in LMS filtering
f normalized discrete-time frequency
fc normalized cut-off frequency
f(·) nonlinear function, e.g., a sigmoid
Φ matrix defining a set of basis functions
Φ(Ω) Fourier transform of ϕ(t)
φ phase
ϕ vector basis function
ϕ(n) discrete-time basis function
ϕ(t) continuous-time phase function,

scaling function in wavelet representation
ϕj,k(t) dyadically sampled scaling function
G(t, Ω) two-dimensional Fourier transform of the kernel function g(τ, ν)
g(τ, ν) two-dimensional continuous-time kernel function
g(l, n) sum across basis functions of the product at samples l and n
gM update factor in recursive weighted averaging
g(n) QRS detector threshold (refractory period)
g(·) interpolation function
g(n, ε) slope function with tolerance ε for SAPA data compression
|Γxy(ejω)|2 magnitude squared coherence of x(n) and y(n)
ΓSPI(n) spectral purity index
Γ(ν) Gamma function
γ reflection coefficient of a lattice filter,

trimming factor in the trimmed mean estimator
H matrix of sine/cosine basis functions
H(ejω) frequency response of h(n)
H(ejω, n) time-varying frequency response of h(k, n)
Hc(ejω) clipped frequency response of h(n)
H(z) transfer function of h(n)
Hij(z) cross-transfer function relating xi(n) and xj(n)
Hp(z) transfer function of order p AR system
Hi Hjorth descriptor
h complex-valued parameter
h vector of discrete-time impulse response,

vector of unevenly spaced samples
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h(k) impulse response of a discrete-time, linear, time-invariant filter
hϕ(n) sequence of scaling coefficients
hψ(n) sequence of wavelet coefficients
h(k, n) impulse response of a discrete-time, linear, time-varying filter
h(t) continuous-time impulse response
he(t) impulse response (excitatory postsynaptical potentials)
hi(t) impulse response (inhibitory postsynaptical potentials)
I identity matrix
i column vector whose top element is one and the remaining zero
J finest scale in wavelet decomposition,

total number of leads
�(·) imaginary part
J (·) mean-square error for continuous functions
j

√
−1

K size of truncated set of basis functions,
number of occurrence times,
periodogram segmentation parameter,
subset used in trimmed mean

Kψ number of vanishing moment for a certain wavelet
Kmc(x) kurtosis of signal x(n)
κ(t) continuous-valued indexing function
κx(k1, k2) third-order moment (cumulant) of discrete-time process x(n)
L filter length,

segmented signal length
L(x) likelihood ratio
L Lagrangian function
Λ diagonal matrix of eigenvalues
λ eigenvalue,

Lagrange multiplier
λr average firing rate
M number of channels/leads/events
M(Ω) Fourier transform of m(t),

number of realizations in an ensemble
M(p) function for model order determination
m(t) continuous-time modulation function
mi constant amplitude factors in function series development
mx mean value of stationary process x(n)
mx vector of mean values for x
mx(n) mean value of the process x(n)
µ adaptation parameter in the LMS algorithm,

fraction of peak amplitude for QRS detection threshold selection
N signal length,
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negative amplitude peak of an EP
Nϕ number of scaling coefficients hϕ(n)
Nψ number of wavelet coefficients hψ(n)
NFN number of false negative detections
NFP number of false positive detections
NTN number of true negative detections
NTP number of true positive detections
ND number of true detections
NM number of missed detections
NF number of false alarms
n sequence index
∇x gradient with respect to the x
∇w gradient with respect to the vector w
η threshold value
η(n) influence function for robust, recursive averaging
ηI(n) interval-dependent threshold
ηT threshold parameter for wavelet denoising
Ω continuous-time radian frequency
Ω center of gravity of X(Ω)
ω discrete-time radian frequency
o(k) binary variable
P power,

positive amplitude peak in evoked potentials
PD probability of detection
PF probability of false detection
PM probability of missed detection
Pi power of the ith component of a rational power spectrum
Px(Ω) characteristic function of x
PCR data compression ratio
PPRD percentage root mean-square difference
PRMS root mean-square parameter
PWDD weighted diagnostic distortion
p model order
p1,2 pair of complex-conjugate poles
px(x) probability density function of x
p(x; θ) probability density function of x with θ as a parameter
p(x;θ) probability density function of x with θ as a parameter vector
Ψ(Ω) continuous-time Fourier transform of the mother wavelet
ψ(·) influence function for robust averaging
ψ(t) mother wavelet
ψs,τ (t) continuous-time family of wavelet functions
ψj,k(t) dyadic discretized family of wavelet functions
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q model order
q(n) discrete-time signal
R threshold value in the IPFM model
R eigenvalue-based performance index
r radius in complex plane,

steepness of a sigmoid function between the two levels
ri RR interval preceding the ith beat
rj autocorrelation vector of j lags of x(n)
r(n) instantaneous RR interval estimate
rx(k) autocorrelation function of x(n)
rx(n1, n2) autocorrelation function of x(n) between the samples n1 and n2

rx(k;n) time-varying autocorrelation function of x(n)
rx(τ) autocorrelation function of x(t)
rxy(k) cross-correlation function of x(n) and y(n)
ρ cross-correlation coefficient,

exponential damping factor
ρij cross-correlation coefficient between xi(n) and xj(n)
ρq(l) energy-normalized autocorrelation function of q(n)
Rx autocorrelation matrix of x
Rv(n) spatial correlation matrix between different channels at time n
RV M × M correlation matrix between the M different EPs in V
rxy cross-correlation vector of x(n) and y(n)
Res[·, �] residue of a complex-valued function (·) at pole (�)

(·) real part
Sx(ejω) power spectrum of x(n)
SA(ejω) discrete-time Fourier transform of the analytic signal sA(n)
Sr

x(ejω) rhythmic activity of the EEG power spectrum
Sa

x(ejω) unstructured activity of the EEG power spectrum
Sx(z) complex power spectrum of x(n)
Sx(Ω) energy spectrum of x(t) in time–frequency representations
Sm(Ω) power spectrum of m(t)
Su

d (Ω) power density spectrum of du(t)
Sx(t,Ω) spectrogram of x(t)
Smc(x) skewness of x(n)
s IPFM model parameter related to ectopic beats
s signal vector
s(n) discrete-time signal
š(n) Hilbert transform of s(n)
sA(n) the analytic signal of s(n)
s(t) lowpass envelope signal
sc(t/β) lowpass envelope signal with varying duration β
ŝa vector ensemble average estimator
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ŝal
vector ensemble subaverage estimator

ŝe,M vector exponential average estimator based on M EPs
ŝr,M recursive, robust average estimator
ŝw vector weighted average estimator
ŝa(n) ensemble average estimator
ŝa,M (n) ensemble average estimator based on M EPs
ŝal

(n) ensemble subaverage estimator
ŝe,M (n) exponential average estimator based on M EPs
ŝmed(n) ensemble median estimator
ŝtri(n) trimmed mean estimator
ξ signal energy
ξ(n) running signal energy
σ2

v variance of v(n)
σv standard deviation of v(n)
σ width parameter,

variance of a Gaussian PDF
T sampling interval
T synthesis matrix for ECG lead transformation
TI mean interval length
t continuous-time
t “center of gravity” of x(t)
ti occurrence time of the ith beat
tke occurrence time of a sinus beat preceding an ectopic beat
t̂fke+1 forward extended time (sinus rhythm replacing the ectopic)
t̂bke

backward extended time (sinus rhythm preceding the ectopic)
te occurrence time of an ectopic beat
τ time delay/latency (continuous-time),

convergence time for the LMS algorithm
θ unknown vector parameter
θ unknown scalar parameter
θi discrete-time occurrence time
θ′i discrete-time segmentation onset of ith PQRST complex
U window signal power normalization factor
u(t) continuous-time unit step function
V N × M matrix modeling the noise of M different EPs
V (z) transfer function of the discrete-time noise v(n)
V [·] variance of a estimate
Vj space spanned by the translated scaling function at scale j
v vector of discrete-time noise samples
vi vector of noise signal samples from ith evoked potential
v(t) continuous-time noise
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v(n) discrete-time noise
v(n) M × 1 vector of noise samples at time n of M channels
ν continuous-time radian frequency,

conduction velocity
W window length
WB(ejω) discrete-time Fourier transform of the Bartlett window
Wx(t, Ω) continuous-time Wigner–Ville distribution
Wx1,x2(t, Ω) cross Wigner–Ville distribution between x1(t) and x2(t)
Wj space spanned by the translated wavelet function at scale j
w weight vector
wo optimal weight vector
w(n) weight vector at time n
wi scalar weight
wj,k coefficient expansion of the discrete wavelet transform
w(n) discrete-time window or weighting function
w(s, τ) continuous wavelet transform
wB(n) Bartlett window
ωi ith order spectral moment
ωi peak frequency of the ith spectral component
ωc normalized cut-off frequency
X data matrix of an ensemble of signal
XM data matrix of an ensemble of M signals
X(z) transfer function of x(n)
X(ejω) discrete-time Fourier transform of x(n)
X(Ω) Fourier transform of x(t)
XA(Ω) Fourier transform of the analytic signal xA(t)
X(t, Ω) STFT of x(t)
x(n) observed discrete-time signal
xi,l(n) observed discrete-time (ith beat and lth lead)
x̃(n) reconstructed signal
x̂p(n) pth order linear prediction of x(n)
x(i)(n) ith order discrete-time “derivative” of x(n)
x(t) continuous-time signal
xc(t) continuous-time signal
xA(t) analytic signal of x(t)
x(n) observed signal
xi(t) ith continuous-time signal in an ensemble,

wavelet approximation signal at scale i of x(t)
x vector of signal samples
x̃ reconstructed/decompressed signal vector
xi vector of signal samples from ith evoked potential
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x′
i piled lead vector of signals xi,j from ith beat

xi,j vector of signal samples from ith QRS complex at jth lead
xp vector of p signal samples preceding n
x(n) M × 1 vector of samples at time n of M channels
X space expanded by a set of basis functions
y(n) discrete-time filter output
y∞(t) continuous-time ECG baseline wander signal
y(t) cubic spline approximation of baseline wander
yj(n) wavelet decomposition detail signal at scale j
Z complex variable matrix
z complex variable
z̃e,i exponentially updated peak amplitude at ith beat
z1,2 pair of complex-conjugate zeros
z(n) discrete-time signal
zd(n) discrete-time signal decimated from z(n)
zu(n) discrete-time signal with zeros inserted

B.2 Abbreviations

A/D analog-to-digital (conversion)
AEP auditory evoked potentials
AIC Akaike information criterion
ANS autonomic nervous system
AR autoregressive
AR(p) autoregressive process of order p
ARMA autoregressive moving average
ARV average rectified value
AV atrioventricular
AZTEC amplitude zone time epoch coding
BAEP brainstem auditory evoked potentials
BCI brain–computer interface
BPM beats per minute
BLMS block least mean-square
CCU coronary care unit
CNS central nervous system
CPU central processing unit
CSA compressed spectral array
CWD Choi–Williams distribution
CWT continuous wavelet transform
dB decibel
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DC direct current
DFT discrete Fourier transform
DSP digital signal processor
DTFT discrete-time Fourier transform
DWT discrete wavelet transform
DWPT discrete wavelet packet transform
ECG electrocardiogram
ECoG electrocorticogram
EEG electroencephalogram
EG electrogram
EGG electrogastrogram
EMG electromyogram
ENG electroneurogram
EOG electrooculogram
EP evoked potential
ERG electroretinogram
FT Fourier transform (continuous-time)
FFT Fast Fourier Transform (discrete-time)
FIR finite impulse response
GAL gradient adaptive lattice
HRV heart rate variability
HT heart timing
Hz Hertz
IBIS integrate body mind information system database
ICU intensive care unit
IF interval function
IIF inverse interval function
IIR infinite impulse response
IIT inverse interval tachogram
IT interval tachogram
IPFM integral pulse frequency modulation
KL Karhunen–Loeve
KLT KL transform
kHz kilohertz
LMS least mean-square
LTST long-term ST database
MA moving average
MDL minimum description length
MEG magnetoencephalogram
ML maximum likelihood
MSE mean-square error
MMSE minimum mean-square error
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MRI magnetic resonance imaging
MUAP motor unit action potential
MVC maximal voluntary contraction
NN normal-to-normal RR interval
PC personal computer
PDF probability density function
PET positron emission tomography
pNN50 pairs of NN RR intervals differing by more than 50 ms
PNS peripheral nervous system
PRD percentage root mean-square difference
PWVD pseudo Wigner–Ville distribution
REM rapid eye movement
RMS root mean-square
Res residue
rMSSD root mean-square of successive differences
ROC receiver operating characteristic
SA sinoatrial (node)
SAPA scan-along polygonal approximation
SDNN standard deviation of NN intervals
SEM spectral error measure
SEP somatosensory evoked potentials
SNR signal-to-noise ratio
SPA spectral parameter analysis
SPECT single photon emission computed tomography
SPI spectral purity index
SQUID superconducting quantum interference device
SSW spikes and sharp waves
STFT short-time Fourier transform
SVD singular value decomposition
SVPB supraventricular premature beat
TINN triangular interpolation index
VCG vectorcardiogram
VEP visual evoked potentials
VPB ventricular premature beat
VT ventricular tachycardia
WCT Wilson central terminal
WVD Wigner–Ville distribution
WDD weighted diagnostic distortion
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10/20 electrode system, 37, 186
12-lead vectorcardiogram, 426

50/60 Hz powerline interference, 76, 190,
202, 441, 473–483

abbreviations, 658
abrupt changes, 62
action potential, 7, 28
activity (Hjorth descriptor), 100
adaptive filter (LMS), 83, 91, 279, 482
adaptive signal whitening, 355
afferent, 27
Akaike information criterion (AIC), 118
all-or-nothing principle, 7
all-pole modeling, see autoregressive

modeling
alpha rhythm, 34, 78
alternate ensemble average, 244
ambiguity function, 142–147
ambulatory monitoring

ECG, 439, 441, 444
EEG, 43

analysis filter bank, 300
analytic signal, 145
angina pectoris, 438
arrhythmia, 430

atrial, 434
bigeminy, 434
bradycardia, 431
paroxysmal, 431
persistent/permanent, 431
respiratory sinus, 432
tachycardia, 431
trigeminy, 434
ventricular, 436

artifact cancellation, 78–91
artifacts in EEG, 73–91

cardiac, 75, 83
electrode, 76
equipment, 76
eye movement, 73

muscle, 74
asphyxia, 125
atrioventricular node, 414
atrium, 413
auditory EP, 185, 234, 252
autocorrelation/covariance methods, 106
automaticity, 414
autoregressive modeling, 648

autocorrelation method, 106
Burg’s method, 112
covariance method, 106
impulse input, 67
model order, 118
modified covariance method, 110
multivariate, 67
sampling rate, 119
segmentation, 131
spectral parameters, 119–125
stability, 116
time-invariant, 65, 104
time-variant, 66

autoregressive moving average modeling, 64,
122, 647

average beat subtraction, 534
average firing rate, 342, 373
average rectified value, 355
averaging, see ensemble averaging
axon, 28, 338
a posteriori filter, 241, 249

baroreceptor reflex, 615
Bartlett window, 94
baseline wander, 441, 457–473
basis functions, 260, 500

cal, 263
Karhunen–Loève, 264
sal, 263
sine, cosine, 260, 481
Walsh, 263

beta rhythm, 34, 75, 78
bias, 645
bigeminy, 434
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bioelectricity, 6
bispectrum, 63
blinks, 73, 78, 82
block LMS algorithm, 279
bradyarrhythmia, 431
bradycardia, 431
brain–computer interface (BCI), 47
brainstem auditory EP, 185, 214
Burg’s method, 112

cascade algorithm, 308
central sulcus, 30
cerebral cortex, 30
characteristic function, 225, 380
Choi–Williams distribution, 154
circadian rhythm disorders, 45
circulant matrix, 482
clustering, 387

MUAPs, 387
QRS morphologies, 456

cognitive EP, 189
Cohen’s class, 153–158
coherence function, 616
Coiflet wavelets, 310
comb filter, 464
compensatory pause, 433
complexity (Hjorth descriptor), 101
compressed spectral array, 139
compression ratio, 541
conduction blocks, 438
conduction velocity estimation, 365–371

multichannel, 369
two-channel, 367

consistency, 645
continuous wavelet transform (CWT), 289
correlation

ergodicity, 645
estimator, 93
function, 643
matrix, 59, 643

cortex, 30, 68, 185, 187
covariance matrix, 59, 643
cross Wigner–Ville distribution, 150
cross-correlation coefficient, 200, 603
cross-correlation matrix, 643
cross-power spectrum, 615
cubic spline baseline estimation, 470

damped sinusoids, 272
data acquisition, 14
data compression, 3
data compression (ECG), 456, 514–544

AZTEC, 520
compression ratio, 541
direct methods, 519–526
fan method, 525
long-term predictor, 536
lossless, 514, 517–518
lossy, 514
PRD, 541
quantization and coding, 540
rate distortion curve, 542
RMS, 542
SAPA, 522
transform-based methods, 526–533
wavelet packets, 531
wavelets, 531
WDD, 543

databases, 17
AHA, 18
European ST–T, 18
IMPROVE, 18
LTST, 18
MIMIC, 18
MIT–BIH arrhythmia, 18, 542

Daubechies wavelets, 310
decimation (sampling rate), 465
decomposition (EMG), 383
deconvolution, 229
delta rhythm, 34, 73
dendrites, 28, 70
denoising, 312–318

hard thresholding, 313
soft thresholding, 313

depolarization, 7, 414–419
direct decomposition, 257
direct sum, 257
discrete wavelet transform (DWT), 291
dyadic sampling, 290

ECG, see electrocardiogram
ectopic beat correction, 605–614

correlation-based, 608
heart timing, 611
interpolation-based, 609

EEG, see electroencephalogram
efferent, 27
eigenvalue, 638
eigenvector, 638
electrocardiogram (ECG), 11, 411

ambulatory monitoring, 444
beat morphology, 438
filtering, 454
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generation, 415–419
high-resolution, 447
intensive care monitoring, 444
late potentials, 447
noise and artifacts, 440–443
recording techniques, 419–426
resting, 443
rhythms, 430
stress test, 445
waves and time intervals, 426–430

electrocorticogram (ECoG), 11
electrode motion artifacts, 344, 441
electrodes, 9

ECG, 419
EEG, 37
EMG, 343

electroencephalogram (EEG), 11, 25
10/20 electrode system, 37, 186
alpha rhythm, 34
amplitude, 32
artifacts, 73–91
beta rhythm, 34
delta rhythm, 34
frequency, 32
gamma rhythm, 34
ictal, 35
mental tasks, 47
mu rhythm, 49
recording techniques, 37
sampling rate, 39
sleep rhythms, 35
spikes and sharp waves, 34, 62
theta rhythm, 34
video recording, 42

electrogastrogram, 14
electrogram (EG), 11, 412
electromyogram (EMG), 12, 75, 77, 337

amplitude estimation, 347–360
diagnostic, 345
ergonomics, 345
kinesiology, 345
prosthesis control, 346
recording techniques, 343
spectral analysis, 361–364

electromyographic noise, 441, 484
electroneurogram (ENG), 12
electrooculogram, 73
electrooculogram (EOG), 14
electroretinogram (ERG), 13
EMG, see electromyogram
endogenous response, 189

ensemble averaging, 83, 181, 192
alternate, 244
as a linear filter, 200–202
exponential, 202–205
homogeneous, 193–200
inhomogeneous, 207–218
latency correction, 230
robust, 219
SNR, 200
weighted, 207–218

ensemble correlation, 236–241
ensemble median, 221
ensemble variance, 198
envelope, 501
EOG, see electrooculogram
EP, see evoked potentials
epilepsy, 40, 68, 75, 76, 141

partial seizures, 41
primary generalized seizures, 41

ergodicity, 645
estimation–subtraction filter, 479
Euclidean norm, 637
event series, 373, 576, 582–585
evoked potentials (EPs), 11, 181

auditory, 185, 234, 252
brainstem auditory, 185, 214
cognitive, 189
latency, 181
noise and artifacts, 190
somatosensory, 187, 214, 252
visual, 188, 197, 214, 223, 234, 252
wave definitions, 182

excess mean-square error, 87
exogenous response, 189
exponential averaging, 202–205, 224, 254,

285
eye movement, 73, 78–91, 191
eye-closing period, 505

feature extraction, 2, 48, 386, 387, 456
fiducial point, 568
filter

a posteriori, 241, 249
comb, 464
FIR, 88, 105, 110, 250, 460
forward-backward IIR, 462
IIR, 245
inverse, 229
lattice, 108
least mean-square, 83, 91, 279
lowpass differentiator, 498
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noncausal, 245
nonlinear, 476
notch, 473
prediction error, 105
time-varying, 252, 467, 484
time-varying Gaussian, 484

filtered-impulse signal model, 374
firing pattern, 342
firing rate, 29, 70
forward-backward IIR, 462
Fourier series, 261
Fourier transform

continuous-time, 227
discrete-time, 60, 92
fast (FFT), 92
short-time, 61

Frank lead system, 424
French–Holden algorithm, 585
Frobenius norm, 281, 637

gamma rhythm, 34
Gaussian PDF

definition, 59
EEG analysis, 57, 197
EMG analysis, 349

generalized eigenvalue problem, 209
generalized Gaussian PDF, 219
gradient adaptive lattice algorithm, 160

Haar wavelet, 290, 297
heart rate variability (HRV), 431, 567

ectopic beats, 605–614
generalized IPFM model, 577, 587, 611
heart rhythm representations, 573
IPFM model, 574–578
pNN50, 570
rMSSD, 570
SDANN, 570
SDNN, 570
spectral analysis, 589–603
time domain measures, 570–573
TINN, 572
triangular index, 572

heart rhythm representation, 578–589
event series, 582–585
heart timing, 585–589
interval function, 579
interval tachogram, 578
inverse interval function, 579
inverse interval tachogram, 578
lowpass filtered event series, 583

heart surgery, 140

heart timing, 585–589, 611
hemispheres, 30
Hessian matrix, 396
higher-order moments, 62, 363
Hilbert transform, 502
Hjorth descriptors, 100–102
hypersomnia, 44
hyperventilation, 42
hypoxia, 125

indexing function, 577
influence function, 223
inner product, 255, 636
insomnia, 44
instantaneous LMS algorithm, 278
integral pulse frequency modulation model,

574–578
interfiring intervals, 342
interpolation (sampling rate), 465
interval function, 579
interval tachogram, 578
inverse z-transform, 123
inverse filtering, 229
inverse interval function, 579
inverse interval tachogram, 578
isoelectric line, 417
isometric force, 343
isopotential map, 183

Karhunen–Loève expansion, 264
Karhunen–Loève transform (KLT), 528
knee-jerk reflex, 30
kurtosis, 62
K complexes, 35, 67

Lagrange multipliers, 107, 209, 266, 640
Laplacian PDF, 219, 353
late potentials, 476
latency

definition, 181
estimation, 229
shifts, 225

lattice filter, 108, 160
lead

augmented unipolar limb, 420
bipolar, 419
bipolar limb, 420
unipolar, 419

lead system
ECG, 419

bipolar, 420
orthogonal, 423
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precordial, 420
standard, 419
synthesized, 425

Frank, 424
lead vector, 416
leader–follower clustering, 387
leakage, 94
least mean-square (LMS), 83

algorithm, 85, 159, 279, 482
block, 279
block algorithm, 285
convergence, 85
excess mean-square error, 87
instantaneous, 278

least-squares error, 106
least-squares solution, 392, 641
Levinson–Durbin recursion, 108, 113
likelihood function, 217
limiter

hard, 224
sign, 224

linear equations, 641
linear models, 63
list of symbols, 649
lobe

frontal, 30
occipital, 30
parietal, 30
temporal, 30

locked-in syndrome, 47
Lomb’s periodogram, 597–603
look-back detection mode, 507
lossless compression (ECG), 514, 517–518
lossy compression (ECG), 514
lowpass differentiator, 498
lowpass modeling, 261
lumped-parameter model, 70

magnetoencephalogram, 26
magnitude squared coherence, 616
Mahalanobi distance, 388
marginal condition

frequency, 149
time, 149

matched filter, 232, 490
matrix definitions, 633–639
matrix inversion lemma, 389, 637
matrix optimization, 640
maximal voluntary contraction, 342
maximum likelihood estimation

amplitude, 347

ensemble correlation, 239
latency, 230
occurrence time, 490
occurrence time and amplitude, 491
occurrence time, amplitude and

duration, 494
signal waveform, 216, 220
time delay, 367

mean frequency (MNF), 361
mean instantaneous frequency, 152
mean-square error (MSE), 79, 256, 264, 279

with constraint, 91
median, 221
median frequency (MDF), 361
method of steepest descent, 84
Mexican hat wavelet, 290
minimum description length, 118
mobility (Hjorth descriptor), 101
model order, 118

Akaike information criterion, 118
minimum description length, 118

modified covariance method, 110
mother wavelet, 288
motor imagery, 48
motor nerves, 27
motor unit, 338–343
motor unit action potential (MUAP), 338
motor unit recruitment, 339
moving average modeling, 648
mu rhythm, 49
MUAP resolution, 391
MUAP train, 342, 372

amplitude, 377
model, 372
power spectrum, 378

multiresolution signal analysis, 292–300, 513
myocardial infarction, 439
myocardial ischemia, 438
myocardium, 413
myopathy, 340

needle EMG, 343
negative predictive value, 17
nervous system, 27

autonomic, 27
central, 27
parasympathetic, 27, 414, 430, 431, 570,

590
peripheral, 27
somatic, 27
sympathetic, 27, 414, 430, 431, 570,

590
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neuromuscular junction, 338, 342
neuron

inter-, 28, 68
motor, 28
postsynaptic, 28
sensory, 28

neuropathy, 340
Newton’s method, 395
noise reduction

ensemble averaging, 192
linear filtering, 241–253

nonlinear transformation, 68, 486, 492, 500
nonparametric spectral analysis, 91–97
nonstationarity, 61
norm

Euclidean, 637
Frobenius, 637

normal equations, 108

oddball task, 190
ordinary eigenvalue problem, 266
orthogonal expansions, 254–272

Karhunen–Loève, 264
sine,cosine, 260
SNR, 258
truncation, 257
Walsh, 263

orthogonal lead system, 423
orthogonal matrix, 635
outer product, 636

P wave, 427
pacemaker, 412
parasomnia, 45
Parseval’s theorem, 130
partial fraction expansion, 121
pattern reversal, 188
peak-and-valley picking strategy, 497
performance evaluation, 16, 507
periodogram

definition, 93
Lomb’s, 597–603
mean, 93
variance, 95

photic stimulation, 42, 139
Physionet, 19
polynomial fitting, 470–473
polyphasic MUAPs, 341
polysomnography, 46
positive definite, 636
positive predictive value, 17
positive semidefinite, 636

postsynaptic potential
excitatory, 29, 31, 69
inhibitory, 29, 69

power spectrum, 60, 92, 646
powerline interference, 76, 190, 202, 344,

441, 473–483
PQ interval, 429
PQRST delineation, 510–513
prediction error filter, 105
premature beat, 433

supraventricular, 433
ventricular, 433

probability density function (PDF)
Gaussian, 59
generalized Gaussian, 219
Laplacian, 219, 353
uniform, 219, 227

Prony’s method
least-squares, 277
original, 274

pseudo Wigner–Ville distribution, 151
Purkinje fibers, 414

Q wave, 428
QRS complex, 428
QRS detection, 455, 485–509

decision rule, 486, 504–507
nonlinear transformation, 486, 500
performance evaluation, 507
preprocessing, 497
signal and noise problems, 487
signal modeling, 488
threshold, 504

QT interval, 429

R wave, 428
rank of a matrix, 634
rapid eye movement (REM), 35, 58, 74
rate distortion curve, 542
receiver operating characteristic (ROC), 509
recording techniques

auditory EP, 185
ECG, 419
EEG, 37
EMG, 343
somatosensory EP, 187
visual EP, 188

recruitment, 339
reentry, 430
refinement equation, 294
reflection coefficients, 113
refractory period, 8, 30, 415, 490, 505
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repolarization, 7, 414–419
respiratory sinus arrhythmia, 432
rhythms

brain, 31
heart, 430, 457

RR interval, 429
running average, 102

S wave, 428
sampling jitter, 227
sampling rate alteration, 464
scaling function, 292
scalogram, 291
segmentation, 62, 125–135

dissimilarity measure, 127
periodogram-based, 128–131
reference window, 127
test window, 127
whitening approach, 131–134

seizure, 34, 68, 141, 162
sensitivity, 17
sensory nerves, 27, 183, 187
septum, 413
short-time Fourier transform (STFT), 137–

142
sigmoid function, 70
signal acquisition, 14
signal decomposition (EMG), 383
similarity measure, 388, 603
simulation, 21
single-trial analysis, 182, 197, 253–278
singular value decomposition, 639
sinoatrial node, 414
sinus rhythm, 431
skewness, 62
sleep rhythms, 35, 67
sleep spindles, 35
sliding window, 352
smearing, 94
soma, 28
somatosensory EP, 187, 214, 252
spatial correlation, 80, 356
specificity, 17
spectral analysis

EMG, 361
model-based, 103–119
moments, 100
nonparametric, 91–97
segmentation, 128

spectral averaging, 95
spectral compression, 361

spectral parameters
AR-based, 119–125
Hjorth descriptors, 100
peak frequency, 99
power in bands, 98
spectral purity index, 102
spectral slope, 99

spectral purity index, 102
spectrogram, 138
spectrum of counts, 592–596
spike and sharp waves, 34, 62
spike-wave complexes, 35
split trial assessment, 198
ST segment, 429
standard 12-lead ECG, 419
stationarity, 60
steepest descent, 84
stochastic process, 642
subaveraging, 197
surface EMG, 343
synapse, 28
synthesis filter bank, 303
synthesized leads, 425

T wave, 429
T wave alternans, 439
tachyarrhythmia, 431
tachycardia, 431
theta rhythm, 34, 73
time delay estimation

multichannel, 369
two-channel, 367

time–frequency analysis, 135–162
ambiguity function, 142–147
Choi–Williams distribution, 154
Cohen’s class, 153–158
cross Wigner–Ville distribution, 150
GAL algorithm, 160
LMS algorithm, 159
mean instantaneous frequency, 152
pseudo Wigner–Ville distribution, 151
short-time Fourier transform, 137–142
Wigner–Ville distribution, 147–152

Toeplitz matrix, 60, 81, 108, 110, 350, 635
trace of a matrix, 636
triangular window, 94
trigeminy, 434
trimmed means, 222

uncertainty principle, 139
uniform PDF, 219, 227
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vagus nerve stimulator, 44
vectorcardiogram (VCG), 419
ventricle, 413
vertex waves, 35
visual EP, 188, 197, 214, 223, 234
visualEP, 252
volume conductor, 9

Walsh functions, 263
wave delineation, 455, 510–513
waveform resolution (MUAPs), 391
wavelet data compression, 531
wavelet denoising, 312–318
wavelet equation, 296
wavelet function, 295
wavelet packets, 531
wavelet series expansion, 296
wavelet transform, 288–292, 513
wavelets, 286–318

Coiflet, 310
Daubechies, 310
dyadic sampling, 290
Haar, 290, 297
Mexican hat, 290
sinc, 306

weighted averaging
Gaussian noise, 216
MSE, 208
signal-to-noise ratio, 209
varying noise variance, 210
varying signal amplitude, 214

Welch’s method, 97
white noise, 63, 230, 488, 646
wide-sense stationary, see stationary, 644
Wiener filtering, 90, 246
Wiener–Hopf equations, 246, 251
Wigner–Ville distribution, 147–152
window

Bartlett, 94
Hamming, 143, 461
rectangular, 460
triangular, 94

windowing, 95
Woody’s method, 229–236

z -transform, 245, 646







Mexican road sign of particular importance in biomedical signal processing:
Do not maltreat the signals! (Photo by LS)




