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and have contributed to an improved understanding of clinical and biological phenom-

msc: ena, with implications for disease prevention, diagnosis and treatment. This special issue
92Bxx presents examples of this synergy, with a particular focus on the investigation of cardiac
Keywords: and neural excitability.

Excitable dynamics This issue includes 24 original research papers and covers a broad range of topics re-
Neural systems lated to the physiological and pathophysiological function of the brain and the heart. Stud-
Cardiac systems ies span scales from isolated neurons and small networks of neurons to whole-organ dy-

namics for the brain and from cardiac subcellular domains and cardiomyocytes to one-
dimensional tissues for the heart.
This preface is part of the Special Issue on “Excitable Dynamics in Neural and Cardiac
Systems”.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Neural tissue and heart muscle are important examples of biological excitable media. A key characteristic of an excitable
medium is its capacity to allow the passage of electrical excitation from one element to another by means of local coupling.
For neural and cardiac systems, this corresponds to their ability to respond strongly to the action of a relatively weak
external stimulus delivered after a refractory period.

This special issue aims at providing an overview of recent theoretical and computational research in neural and cardiac
systems. The basic elements of both systems are excitable cells, i.e., neurons and cardiac myocytes, which when connected
form neural tissue and heart muscle, respectively, where new emergent behavior appears. The extensive use of mathematical
and numerical techniques has allowed detailed studies to simulate the functioning of these two complex systems and to
investigate the underlying mechanisms in both health and disease. As both systems share important characteristics but have
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specific particularities, major objectives of this issue are, on the one hand, to show how both can be analyzed using similar
techniques and, on the other hand, to showcase the dynamics of each particular system. The articles included use numerical
modeling and time series analysis to elucidate the mechanisms underlying the onset, perpetuation, and control of complex
neuronal and cardiac dynamics.

In summary, important contributions of this special issue include a snapshot of the current research landscape on these
two types of excitable media and an emphasis on the numerous links between neural and cardiac studies using theoreti-
cal/mathematical and computational approaches.

2. Neural systems

The first group of papers is devoted to the study of neural systems across scales from detailed analysis of isolated neu-
rons, small networks of neurons and finally large networks and brain studies.

2.1. Isolated neuron dynamics

Currently, stochastic models are increasingly common in mathematical neuroscience. In [1] the torus canard paramet-
ric region in the stochastic Hindmarsh-Rose neuron model is studied. It is shown that noise can transform the torus
canard into a large-amplitude torus, which can underlie a transition from amplitude-modulated spiking behaviour to
bursting.

The classical Hodgkin-Huxley (HH) and the FitzZHugh-Nagumo (FHN) models are revisited in Rameh et al. [2], where the
generation of the action potential is now achieved via a single delay-differential equation (DDE). The solutions of the new
models are similar to those of the original HH and FHN models, showing that delay-differential equations can also be used
as building blocks in the development of new mathematical cell models.

Fold/homoclinic (square-wave) bursting orbits are typical of many excitable dynamical systems. In [3] a complete the-
oretical scheme to describe spike-adding in these systems is given. The main bifurcations and their connection with ho-
moclinic bifurcations are described. This global scheme provides an explanation of different phenomena presented in the
literature (continuous and chaotic processes) and indicates where each kind of spike-adding process occurs in parameter
space.

The firing properties of Purkinje cells are regulated by cerebellar stellate cells. These cells have a temporary increase in
excitability during patch clamp configuration of the entire cell in what is called “runup”. In [4] modeling approaches are
used to clarify the dynamics of runup and classify the firing behavior of cerebellar stellate cells as type I oscillators that
have a saddle node in an invariant cycle (SNIC) bifurcation.

Phase response curves (PRC) have been widely used to understand the response of limit cycle oscillators to weak ex-
ternal perturbation. Recently, extensions of the phase-oscillator reduction technique have been introduced to capture more
information away from the limit cycle, including the phase response function (PRF, a generalization of the PRC) and the
amplitude response function (ARF). In [5] the study of the dynamics of PRF-ARF systems under periodic pulsatile stimuli is
presented using several techniques from dynamical systems.

Inner hair cells (IHCs) are excitable sensory cells in the inner ear that encode acoustic information. In [6] a three-
dimensional model of a reduced IHC is proposed and non-dimensionalization is carried out. When the typical time scales
of the variables in the reduced IHC model are estimated, it is shown that this model can be characterized by two fast and
one slow or one fast and two slow variables, depending on the biophysically relevant parameters that control the dynamics.
This fast-slow analysis describes how to pass from pseudo-plateau bursting to mixed-mode oscillations by varying a single
parameter in the model.

The phenomenon of reverse stochastic resonance (ISR) consists of an unexpected depression in the response of a system
subject to external noise, for example, as seen in the average firing rate in some pacemaker neurons subject to moderate
noise values. In [7], the specific conditions for ISR in a general bistable model system are determined. In addition, the
existence of another non-standard stochastic resonance is shown, even in the absence of any weak input signal.

2.2. Coupled neuron dynamics

The study of the synchronization patterns of small neuron networks that control different biological processes has be-
come a growing discipline. In [8-10] the problem of studying small groups of neurons, and more specifically patterns in
central pattern generators (CPGs), is treated.

In [8] the problem of the detection of patterns in generic CPGs is studied and two new numerical techniques are intro-
duced: a lateral phase delay analysis based on a graphical representation of some Poincaré maps and a sweep quasi-Monte
Carlo method with an optimized generic classification of the different patterns that allows location and classification of all
coexisting rhythms. As a test example, the authors consider an insect movement CPG consisting of six coupled neurons for
cockroach motor neurons.

In [9] the coexistence of multistable rhythms generated by oscillatory neural circuits formed by four cells is stud-
ied. Modern computational approaches are used that include unsupervised machine-learning algorithms and fast parallel
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simulations on GPUs, which allow the authors to analyze the mechanisms that establish the robustness and multifunction-
ality of these neural circuits.

In [10], using a phase-reduction technique of an intersegmental network model of stick insect locomotion, the authors
construct a reduced model of the intra- and intersegmental network that controls the activity of the depressor elevator in
the meso- and metathoracic ganglia. When examining intra- and intersegmental phase differences in the model, the authors
identified the properties of network couplings that replicate several results observed in stick insect experiments. In addition,
they define general characteristics of coupling between CPGs of any type that maintain the phase relationships observed in
experiments.

Analyzing spike sequences generated by individual and coupled stochastic FitzHugh-Nagumo models shows that relative
spike timing can encode signal information [11]. Using a symbolic method to analyze the sequence of spikes, preferred and
uncommon spike patterns can be detected. It is found that for a group of neurons, only a few connections to each other can
significantly improve the coding of small-amplitude signals, which indicates that the encoding of information in preferred
and that unusual spike patterns are a plausible way for neuronal populations to encode weak periodic inputs, exploiting the
presence of neuronal noise.

The theory of communication through coherence (CTC) proposes that brain oscillations reflect changes in the excitability
of neurons and, therefore, successful communication between two oscillating neural populations. A population rate model
consisting of excitatory and inhibitory cells is considered in [12]. Different bifurcation studies are performed as several
phase-locked states are detected, as well as bistability regions. The neuronal implications of these findings are studied in
detail.

Stochastic resonance (SR) is a noise-induced phenomenon reported in dynamical systems with a threshold, while reverse
stochastic resonance (ISR) is the opposite phenomenon that occurs in dynamical systems with bistability between a stable
node and a stable limit cycle. In [13] the possible coexistence of both phenomena, SR and ISR, is shown in a minimal circuit
of neurons that are synaptically coupled. Simulations indicate that the main characteristics of SR are the direct results of
dynamic properties that lead to ISR.

2.3. Brain dynamics

The study of brain electrical activity measured by electroencephalographic recordings (EEG) is an important technique
for the understanding and diagnosis of neurological diseases. Several applications to detect pathologies or to study brain
waves are shown in David et al. [14], Galadi et al. [15]. In [14], multifractal deviated fluctuation analysis, the Hurst exponent
(H) and the fractal dimension (D) are used to analyze the dynamics of EEG signals from normal and epileptic patients
using a set of physiological time series. In addition, a new measure is proposed, the combined index. The results presented
indicate that the H and D indices are useful for constructing a combined measure to study healthy and epileptic brain EEG
activity. In [15] the authors focus on understanding EEG data from first principles through numerical simulation. They study
a network model of excitatory and inhibitory neurons that generates a variety of comparable waves similar to ¢, 8, y and
other rhythms observed in EEG recordings.

The brain can be considered a system that optimizes the structure of anatomical connections based on efficiency require-
ments of functional connectivity. The power of this principle in organizing the complexity of brain architecture is illustrated
in Tapia et al. [16], where functional connectivity is described as diffusion in the current network structure. By showing
how several structures arise (modular small-worlds with rich club effects, as observed in neural anatomy), the authors offer
a new conjecture about how structures similar to natural and artificial brains can be physically implemented.

The responses of excitable systems can be probed by exposing them to a variety of different perturbations. Typically,
small inputs produce approximately linear responses, whilst large ones may give rise to radically different large amplitude
nonlinear responses. A difficult task is to determine the transition between the two. In [17] this transition, between normal
and pathological responses, is studied using a variety of mathematical techniques in a model of coupled Wendling neural
masses.

The gamma rhythm (20-100 Hz) is present in numerous cognitive tasks. A weak gamma rhythm results from syn-
chronous firing of pyramidal neurons in an interaction with local inhibitory interneurons in a pyramidal-interneuron gamma
(PING). Based on previous results, the authors of [18] postulate that dopaminergic modulation can control weak gamma clus-
tering and explain how dopaminergic network modulation and cellular properties influence the cluster formation process in
a PING network model.

Mammals can efficiently select actions based on noisy signals and adapt to unexpected results to better take advantage
of future opportunities. These behavioral changes based on feedback depend partially on long-term plasticity within cortico-
basal-ganglia-thalamic networks, driven by dopaminergic modulation. In [19], the authors simulate the evolution of synaptic
corticostriatal weights based on a spike-time-dependent plasticity rule driven by dopamine signaling that is induced by the
results of actions in the context of a task of forced choice between two alternatives.

The estimation of parameters in stochastic processes has been investigated for decades and the asymptotic properties
of the estimators are known. However, achieving the regime where asymptotic properties are valid can take so long that
well-founded theoretical results have no practical value. In [20], three processes of the Pearson diffusion class are studied,
which are examples of leaky integrate-and-fire models, that describe the electrical properties of a neuronal membrane.
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3. Cardiac systems

The second group of papers is devoted to the study of cardiomyocytes exhibiting arrythmic dynamics and the propagation
of waves in one-dimensional cardiac tissue fibers and generic excitable media.

The study presented in Lai et al. [21] sheds light on the phenomenon of cardiac alternans, which has been reported to
increase the risk for cardiac arrhythmias in different clinical scenarios. Cardiac cellular alternans are defined as a period-
2 oscillatory response of the membrane potential or the intracellular calcium concentration. Along with calcium alternans
developing uniformly in the whole cardiomyocyte, subcellular calcium alternans has been also described, which manifests
as spatial heterogeneities in the amplitude of the calcium transients along a cardiomyocyte. A two-dimensional network of
calcium release units in cardiomyocytes is used to investigate the role of calcium buffers and L-type calcium channels in
the generation of subcellular calcium alternans. By numerical simulations, calcium diffusion in the sarcoplasmic reticulum
is shown to be a critical determinant of the spatial pattern of subcellular calcium alternans.

In [22], complex cardiac excitation dynamics at macroscopic scales is investigated by methods accounting for non-local
spatio-temporal coupling, which presents the advantage of avoiding the need for resolution of tissue heterogeneities to
microscopic scales. Specifically, a simulation study of fractional diffusion models in one-dimensional cardiac tissue fibers is
presented, with both phenomenological and biophysically detailed models used to represent the electrophysiology of ion
channels. The authors prove that spatio-temporal features of cardiac tissue are influenced by the introduction of non-local
operators in such a way that the domain size plays a much more important role in the model output than in the standard
local case. Importantly, the effects of boundary conditions are not only relevantly observed near the boundaries of the
domain but in a much wider space due to the introduced non-locality.

The work presented in Bezekci and Biktashev [23] offers a characterization of the relationship between the strength and
duration of stimulation in one-dimensional excitable media. Threshold phenomena are important because they determine
whether cardiac action potentials in the heart can be elicited or not and, consequently, whether success or failure in electri-
cal propagation occurs. Similarly, threshold phenomena have been reported to be key in explaining pathological findings in
brain diseases such as Alzheimer. Here, the authors focus on strength-duration curves and propose an analytical approach to
assess ignition of propagation waves in one-dimensional media like those from the brain or the heart, including both linear
and quadratic approximations. Subsequently, a “hybrid” approach is proposed where the ingredients of the expressions used
in those approximations are numerically computed. Applicability of the proposed methods is illustrated for five different
models, covering one-component as well as multi-component examples.

In [24], novel adaptive time-step numerical methods are proposed to solve stiff excitable models that use Markov chain
formulations to describe ion channel dynamics. This type of models is becoming increasingly used to simulate electrical
abnormalities due to mutations in genes encoding ion channels or to predict the effects of drug-channel interactions. Since
many of these models are stiff, the performance of standard explicit solvers, like the Euler method, is compromised due to
stability constraints. Among the methods proposed in the study, the adaptive time-step scheme that combines the general-
ized Rush-Larsen method with Uniformization (adaptive GLR1 + UNI) is shown to outperform all other tested methods in a
range of scenarios involving highly stiff cellular models. In single cell simulations, the adaptive GLR1 + UNI is more than 25
times faster than the adaptive time-step Euler method and 350 times faster than the fixed time-step Rush-Larsen method.
In 3D tissue simulations, it renders a 5-fold acceleration with respect to the adaptive Euler method.
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